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MATEMATICKO-FYZIKALNY CASOPILS SAV, 16, 3, 1966

ADDITIONAL NOTE TO OUR PAPER
»A GENESIS FOR COMBINATORIAL IDENTITIES”

PAVEL BARTOS, JOSEF KAUCKY, Bratislava

In the paper [1] we have described a certain method by means of which
we can derive some combinatorial formulas. In this note we introduce another
similar method.

Theorem. Lei n be a natural number, x an arbitrary complex number and
W1, G, ..., (g, Apy1 the given distinct complexr nuwmbers, with the condition
g = dg_n-1 for k> n -+ 1. Then the following relation holds
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Proof. (1) is an algebraic equation of degree n in v. But it has (#n - 1)
roots
(2) —y, (g, ..., -y, —Uy, 1.

Therefore it is an identity.

In fact the factor (v -+ ax), £ = 1,2, ..., n, (1 4 1) occurs in all members
on the left side of this equation except in member with 7 . & 1 1. Thus for
x = —ag only the member
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is different from zero.
Example. Let a; = 4. In this case equation (1) gives
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In virtue of identity

(5) x4 n 1) (x +k\ _ (x+n+ l) 2\ n oL

we have therefrom
n
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This is a generalisation of the well-known relation
n
N\ 1 ‘n (n!)2
(7) (—1)f —— e (k) = et
n 4k + 1 \¥ (2n + 1)!
k=0
See [2].
Yemark. Let us only remark that the identity (4) can be obtained in

\
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another with the aid of Cauchy’s identityz (z) (1 _i k) = ( vt y)
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