
Matematický časopis

Ján Gatial
Some Geometrical Examples of an IMC-Quasigroup

Matematický časopis, Vol. 19 (1969), No. 4, 292--298

Persistent URL: http://dml.cz/dmlcz/126655

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/126655
http://project.dml.cz


Matematický časopis 19 (1969), No. 4 

SOME GEOMETRICAL EXAMPLES OF AN IMC- QUASIGROUP 

JAN GATIAL, Bratislava 

A quasigroup Q( •), i. e. a non-vacuous set Q with a binary operation for 
which each the equations a . x = b and y . a = b have a unique solution for 
any a, b e Q is called 

(a) medial if 

(1) (x . y) . (u . v) = (x . u) . (y . v) for any x,y,u,veQ, 

(b) idempotent if 

(2) x2 = x . x = x for any xeQ , 

(c) commutative if 

(3) x .y = y ,x for any x,y eQ . 

A medial, idempotent and commutative quasigroup is said to be an A-struc-
ture. 

E x a m p l e 1. An n-dimensional real affine space An with respect to the 
„mid-point of the couple of points" is an operation •. 

E x a m p l e 2. Let A, B, G be three different copies of the space An and <pAB 

an affine mapping of A onto B. Similarly define <pBA, <pAc> <?CA> 9BC> 9CB> 
s o t h a t <?AB = <?BA, <pAC = <pCA, <pBC = <?CB, <pAB<pBC = <?AC> O n t h e p o i n t 
set Q = A U B U G the following binary operation is defined: if x, y belong 
to one of the spaces A, B,G then x . y (according to Example 1) is the mid-point 
of the couple x, y; if x, y belong to different spaces of A, B, G (suppose xe A, 
y e B), then we define x . y = <fAC . <fBC. I t is not difficult to prove that Q( •) 
forms an A-structure. 

In the following we shall write xy instead of x . y. 
In the theory o^ quasigroups there are introduced two important mappings 

Xa-left translation and Ra -right translation by the relations 

Lax = ax , Rax = xa . 

Because Lja — Ra holds in an A-structure Q for any aeQ, we shall introduce 
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only one mapping denoted by Ga, namely 

(4) Ga:Q -> Q : x -> a# = xa ; a; G Q ; 

this mapping is termed as a homology, according to Example 1. 
I t is clear that the homology Ga is a permutation of the set Qj i. e. a 1 — 1 

mapping of Q onto Q. 
The inverse permutation to Ga is denoted by G'1, the identical permutation 

by I. In the group of all permutations of Q the set of all homologies Ga gener­
ates a group Q, which is said to be an A-group of the structure Q( •) . 

Proposition 1. The homologies Ga, G\ are automorphisms of the A-structureQ. 
There is exactly one fixed point of Ga, namely the point a. 

Proof . From (1), (2) it follows that the A-structure is distributive, i. e-

(5) x . yz = xy . xz 

holds for any x, y, zeQ. Hence Ga and G'1 are automorphisms. The rest of 
our assertion can be checked directly by calculation. 

Proposition 2. For any A-structure 

(6) GXyZ = GXZ . GyZ , 

(7) G£z = G-h . G-h , 

(8) x . Q?y = y . 

Proof . The identity (6) is a distributive law. To prove (7) we denote 
G'yZ = w, G'h = u, G_1z = v. Hence z = w . xy, z = xu, z = yv. Thus by 
using these equations and identities (1), (2), we obtain xy . uv = xu . yv = 
— z . z = z = w . xy, therefore w = uv. According to the definition Gxy = 
— y . Gxx = xy. If we multiply this equality from the left by G'1 we obtain (8). 

Proposition 3. Let xeQbe such an element for which Gax = G^x or G^x = G^x 
holds. Then a = b. 

Proof . The first assertion is clear. If G^x = G^x, then bx = G^x = 
— GbGaGlxx = GbGaG^x = Gb{a . G^x) = (Gba) . x. Thus b = G^a = ab => 
=> a = b. 

Proposition 4. For any a eQ the mapping 8a : x -> G'^a is an endomorphism. 

Proof . The proof follows directly from (7). The mapping 8a is said to be 
a symmetry with respect to the element a. 

Corollary 1. (Of Proposition I). If there exists xeQ such that Sax = St,x, 
then a = b. 

293 



Corollary 2. There is exactly one invariant point of the symmetry Sa, namely 
the point a. 

Proposition 5. For any x, y, zeQ 

(9) y .Sxy = x, 

(10) Sxyx = y , 

(11) (SyX)(SZX) =Syzx. 

Proof . From G~xx = Sxy it follows that x = GySxy = y . Sxy. Hence (9) 
holds. Multiplying xy = Gxy from the left by G'1 we find (10) by means of (8). 
Identity (11) shows that the reflection y -> Sy is an automorphism. 

Proposition 6. For any x,y, zeQ 

(12) Syx = x o x = y , 

(13) Szx = y o xy = z. 

Proof . According to the definition the equation x = Syx is equivalent to 
the equation x = G'^y, (i. e. Gxx = y), hence to the equation x = y. If we 
rewrite xy = z in the form Gxy = z and multiply this from the left by G'1 we 
obtain (13). 

Proposition 7. For an arbitrary aeQ 

(14) S2
a = SaSa = I . 

Proof . From (13) and (3) we obtain Sax = y o xy = a o Say = x thus 
S2

ax = Sa(Sax) = Say = x. 

Corollary 3. The endomorphism Sa is an automorphism. 

The subgroup of the group of all permutations on Q generated by the set of all 
symmetries Sa, aeQ is termed the symmetry group (of the quasigroup Q) and is 
denoted by Sf. 

Now we turn our attention to the structure of the group Sf. First the notion 
of transfer is to be introduced. An automorphism SySx, x,y eQ is said to be 
a transfer (with respect to the elements x, y) on Q and will be denoted by Wxy. 

The subgroup of the group of all permutations on Q generated by the set 
of all transfers Wxy, x,yeQ is called a transfer group (of the quasigroup Q) 
and denoted by W. 

From Proposition 7 it follows immediately: 

(15) WXX = I, 
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(16) WxyWyx = I, Wxy = W~l , 

(17) WzyWxz = Wxy . 

Proposition 8. Let a =t= b, a, b eQ. Then there is no invariant element x of 
the transfer Wab. 

Proof . We assume that there exists xeQ such that Wabx = x. Making 
use of relation (9) and denoting y = Sbx, we obtain a = ySay = (Sbx)(SaSbx) = 
= SbxWabx = xSbx = b. But this contradicts the assumption a =|= b. 

Proposition 9. For any a, b, ceQ 

(18) ad = bc o Wab=Wcd. 

Proof. Let ad = be and xeQ. If we denote y = Wabx = SbSax, then 
from (1) and (9) we obtain cb = ad = (x . Sax)(y . Sdy) = (x . Sdy)(y . Sax) = 
= x . Sdy[(SbSax) (Sax)] = (x . Sdy)b. Thus, c = x . Sdy = x . SdSbSax, and 
also c — xScx. Comparing the last two equations we find x . Scx = x . SdSbSax. 
Hence Scx = SdSbSax or Sc = SdSbSa; thus we obtain Wcd = SdSc = SdSdSbSa = 
= SbSa = Wab. The converse assertion should be proved easily. 

Corollary 4. Let Sa, Sb and Sc be three symmetries on Q; then there exists one 
and only one symmetry Sd such that Sd = SaSbSc. 

Proof . The element d can be found from the equation be = ad. The unique­
ness of Sd follows from Corollary 1. 

Corollary 5. Let Wab be a transfer on Q and p eQ. Then there exists one and 

only one element xeQ such that WpX = Wab. 

Proof, x is determined by the equation pb = ax. 

Now we shall show a very important consequence concerning the structure 

of the group W. 

Proposition 10. Let p be a fixed point of Q. Then the set iTp of the transfers 
Wpx, xeQ, forms an Abelian group with respect to the operation of composition. 
The neutral element of Wp is Wpp = I and the inverse to the element Wpx is Wpy, 
where y = Spx. 

Proof . For any Wpa, Wpb ^i^P there is 

(19) WPb . Wpa = WPC, where pc = ab . 

Indeed, defining c by the equation pc = ab, we obtain Wac = WPb. From (18) 
and regarding (17) we find WPbWpa = WacWpa = Wpc; from ab = ba and (19) 
we obtain WPb . Wpa = Wpc = WpaWPb. 

If WpxWpy = I = Wpp, then from (19) it follows that p = pp = xy. 
Hence y = Spx. In accordance with Corollary 5 any element Wab can be 
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written in the form of Wvx. Hence the group W is not only generated by the 
elements Wab but iV is directly the set of these elements and it is isomorphic 
with the group iVv. I t is clear that without being afraid of confusion we can 
identify group iVv with the group iV*. 

Proposition 11. The group iTv acts on Q transitively and effectively. 
Proof . The effectivity is the direct consequence of Proposition 8. 
For any x, y eQ we determine c by the equation ex = p . xy and according 

to (18) and (10) we find 

WVCX = Wx, xyX = SxySxX -= SXyX = y . 

I t is known that the mapping 

cop : Q -> iVv : x -> Wvx 

is a 1 — 1 mapping from Q onto iVv. 

I t is not difficult to see that the operation ° on the set Or
v corresponds 

to the operation ° on Q. 

Wpx° WVy = Wv,Xy. 

The mapping u>v is an isomorphism between the quasigroups Q(°) and /#/*3?(°). 

Proposition 12. Let S e Sf and p eQ be fixed. Then there exists exactly one 
element xeQ such that one and only one of the following relations holds 

(a) S = Wvx, 

(b) S = SVWVX. 

If S = SvWpx, then also S = WvaSv, where a = Svx. 

Proof . From Corollary 4 it follows that S may be written in one of the 
forms Sa, SaSi). 

From Corollary 2 and Proposition 8 it follows that S may be written only 
in one of the forms Sa and SaSi>. 

From Proposition 1 it follows that if S = SaSi>, then S = Wpx, where x is 
determined uniquely. If S = Sa then Sa = SaSpSp = WpaSp. I t is easy to 
show tha t there exists just one invariant element of the mapping SpSaSp, 
namely the element x = Spa. Thus, SpSaSp = Sx and therefore 

WpaSv = Sa = SVSXSV = SVWVX. 

Corollary 6. The group # " is a proper subgroup of the group £f. Now we shall 
shoiv that the group iT is a subgroup of the group <S. 

Proposition 13. The set of all elements of the form Vab = G~a
xGi> with respect 

to the composition is the group iV. 
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Proof. It is necessary to verify tha t any transformation Vab can be expressed 
as WXy and any transformation Wab can be expressed as Vxy. For proving 
this we shall use: 

Lemma 1. For any a, b eQ 

(20) Vab= Wa,ab. 

Proof . By means of relations (4), (9), (5), (9) and (10) we obtain 

GbSax = b . Sax = (x . Sbx)Sax = (x . Sax) . (Sax . Sbx) = a . Sabx = GaSabx. 

Thus 

GbSa = GaSab. 

Having multiplied the last equation from the left by G'1 and from the 
right by Sa and considering (14) we obtain (20). 

Now it is not difficult to prove Proposition 13. If the mapping Vab is given, 
then WXy is determined by (20). And vice versa if the transfer Wac is given, 
then Vab - - Wac holds for b = Sca. 

From the foregoing statements it immediatelly follows tha t £P z> iT, @ => iT. 

Proposition 14. For any a, b 

(21) V\h= VabVab^ Wab. 

Proof . For any x eQ 

Wa,abX = SabSax = [Sa(Sax)] [Sb(Sax)] = x(SbSax) = Sb(Sbx . Sax) = 

= SbSabX = Wab,bX . 

Thus 

(22) Wa,ab = Wab,b . 

Hence 

VabVabX = Wab,bWa,abX = SbSabSabSaX = WabX. 

Some of the problems of this paper are special cases of those introduced 
in [2]. The main difference is in the commutativity of the structures. For 
instance, the groups #~ and ^ are proper subgroups of the group of all regular 
transformations CA (notation by Belousow [1]). I t might be interesting to use 
Belousow's results in geometry. 
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