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Matematicky &asopis 19 (1969), No. 4

SOME GEOMETRICAL EXAMPLES OF AN IMC- QUASIGROUP
JAN GATIAL, Bratislava

A quasigroup Q(*), i. e. a non-vacuous set @ with a binary operation for
which each the equations @ .2 = b and y .a = b have a unique solution for
any a, b € @ is called

(a) medial if

(1) z.y).(w.v)=(x.u).(y.v)forany z,y,u,vEQ,
(b) idempotent if

(2) 2?=x.x=xzforanyze@,
(c) commutative if

(3) z.y=y.xforanyz,ye@.

A medial, idempotent and commutative quasigroup is said to be an A4-struc-
ture.

Example 1. An n-dimensional real affine space A” with respect to the
,,mid-point of the couple of points“ is an operation .

Example 2. Let 4, B, C be three different copies of the space A? and ¢4p
an affine mapping of 4 onto B. Similarly define ¢g,, ©40, Pc4> Pros Pons
so that ¢, = 934> Pac = 9cu> Psc = Pcb> PanPsc = Pac- On the point
set @ = A U B U C the following binary operation is defined: if z, y belong
to one of the spaces 4, B, C then z . y (according to Example 1) is the mid-point
of the couple z, y; if z, y belong to different spaces of 4, B, C' (suppose x € 4,
y € B), then we define x . y = 9%, . ¢%¢. It is not difficult to prove that Q(-)
forms an A-structure.

In the following we shall write zy instead of z . y.

In the theory of quasigroups there are introduced two important mappings
Lg-left translation and R,-right translation by the relations

Logx = ax , Ryx = za .

Because Lg == R, holds in an A-structure ¢ for any a € @, we shall introduce
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only one mapping denoted by G4, namely
(4) Ga:Q - Q:x - ar=uza; x€Q;

this mapping is termed as a homology, according to Example 1.

It is clear that the homology G, is a permutation of the set @;i.e.a 1 — 1
mapping of @ onto Q.

The inverse permutation to G, is denoted by G2, the identical permutation
by I. In the group of all permutations of ¢ the set of all homologies G, gener-
ates a group ¢, which is said to be an A-group of the structure @(-).

Proposition 1. The homologies G,, G*, are automorphisms of the A-structure Q.
There is exactly one fixed point of Gy, namely the point a.

Proof. From (1), (2) it follows that the A-structure is distributive, i. e-
(5) T.Yz =Y .22

holds for any z, y, z € Q. Hence G, and G;' are automorphisms. The rest of
our assertion can be checked directly by calculation.

Proposition 2. For any A-structure

(6) nyz = ze . Gyz ,
(7 Gz =G'2. Gz,
(8) z.Gly=y.

Proof. The identity (6) is a distributive law. To prove (7) we denote
Gz =w, G2 =u, G;'2 =v. Hence z = w .y, z = 2u, z = yv. Thus by
using these equations and identities (1), (2), we obtain zy.uv = zu.yv =
—=z.z=2z=w.uay, therefore w = ur. According to the definition Gzy =
— y . Ggx = xy. If we multiply this equality from the left by G, we obtain (8).

Proposition 3. Let z € Q be such an element for which Gox = Gz or G;'x = G;'x
holds. Then a == b.

Proof. The first assertion is clear. If G}z = G;'x, then bxr = Gy =
— GGG = GpGaG3'x = Go(a . G3'x) = (Gpa) . x. Thus b = Gya = ab =

= a=0>,.
Proposition 4. For any a € Q the mapping S, : x — G;'a is an endomorphism.

Proof. The proof follows directly from (7). The mapping S, is said to be
a symmetry with respect to the element a.

Corollary 1. (Of Proposition 1). If there exists x €@ such that S,x = Spx,
then a = b.
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Corollary 2. There is exactly one invariant point of the symmetry Sa, namely
the point a.

Proposition 5. For any x, y, z€ @

(9) Y. Szy =z,
(10) Sxyx =Y,
(].].) (Syx)(Szx) = Syzx .

Proof. From G, = Szy it follows that @ = GySzy = y . Szy. Hence (9)
holds. Multiplying 2y = Gy from the left by G;' we find (10) by means of (8).
Identity (11) shows that the reflection y -~ Sy is an automorphism.

Proposition 6. For any z, y,z € Q
(12) Syr=2 <= z=y,

(13 Sx=y < zy==2.

Proof. According to the definition the equation x = Syz is equivalent to

the equation x = G;ly, (i. e. Gzx = y), hence to the equation z = y. If we

rewrite zy = z in the form Gzy = z and multiply this from the left by G;' we
obtain (13).

Proposition 7. For an arbitrary a € Q
(14) 82 =88, =1.

Proof. From (13) and (3) we obtain Suz = y < xy = a < Sy = z thus
Sz = Sa(Saz) = Say = x.

Corollary 3. The endomorphism Sg is an automorphism.

The subgroup of the group of all permutations on @ generated by the set of all
symmetries Sq, a € Q is termed the symmetry group (of the quasigroup Q) and is
denoted by & .

Now we turn our attention to the structure of the group & . First the notion
of transfer is to be introduced. An automorphism SySz, z, y € @ is said to be
a transfer (with respect to the elements z, y) on @ and will be denoted by Wzy.

The subgroup of the group of all permutations on @ generated by the set
of all transfers Wgy, x, y €Q is called a transfer group (of the quasigroup Q)
and denoted by #".

From Proposition 7 it follows immediately :

(15) sz =I,
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(16) WaeyWyz = I, Wy = W:,;x s
(17) WzyIsz - ny .

Proposition 8. Let a + b, a, b €@Q. Then there is no invariant element x of
the transfer Wap.

Proof. We assume that there exists x € Q such that Wyx = . Making
use of relation (9) and denoting y = Sy, we obtain @ = ySsy = (Spx)(SaSpx) =
= SprWapx = xSpxr = b. But this contradicts the assumption a =+ b.

Proposition 9. For any a, b, c€ @
(18) ad =bc < Wep = Weq.

Proof. Let ad = bc and xe€@Q. If we denote y = Wopxr = SpSaz, then
from (1) and (9) we obtain ¢b = ad = (x . Sez)(y . Say) = (x . Sqy)(y . Sax) =
= . Sqy[(SsSa) (Sex)] = (x . Say)b. Thus, ¢ ==x.Sqy = x. SaSpSex, and
also ¢ =: #S.x. Comparing the last two equations we find x . S,z = x . SgSpSax.
Hence S,z = SgSpSax or S, = S3SpS,; thus we obtain Wz = SzS. = SaSaSeSa =
= 885 = Wap. The converse assertion should be proved easily.

Corollary 4. Let Sy, Sy and S, be three symmetries on Q; then there exists one
and only one symmetry Sq such that Sqg = SuS6S..

Proof. The element d can be found from the equation b¢c = ad. The unique-
ness of Sy follows from Corollary 1

Corollary 5. Let Wap be a transfer on @ and p € Q. Then there exists one and
only one element x € Q such that Wyz = Wap.

Proof. x is determined by the equation pb = ax.

Now we shall show a very important consequence concerning the structure
of the group #".

Proposition 10. Let p be a fixred point of Q. Then the set W p of the transfers
Wz, x € Q, forms an Abelian group with respect to the operation of composition.
The neutral element of W p is Wpp = I and the inverse to the element Wyz is Wy,
where y = Spx.

Proof. For any Wya, Wy € # 7 there is

(19) Woo . Wpa = Wpe, where pc = ab .

Indeed, defining ¢ by the equation pc = ab, we obtain Wge = Wpy. From (18)
and regarding (17) we find Wy Wpa = WaeWps = Wpe; from ab = ba and (19)
we obtain Wpp . Wpe = Wye = WpaWps.

If WpaWpy=1= Wpp, then from (19) it follows that p = pp = zy.
Hence y = Spx. In accordance with Corollary 5 any element Wa, can be

295



written in the form of W,,. Hence the group #” is not only generated by the
elements Wyp but ¥ is directly the set of these elements and it is isomorphic
with the group #7,. Tt is clear that without being afraid of confusion we can
identify group #", with the group #".

Proposition 11. The group W, acts on Q transitively and effectively.

Proof. The effectivity is the direct consequence of Proposition 8.

For any z, y € Q we determine ¢ by the equation cx = p . xy and according
to (18) and (10) we find

Wpcx - I’Vx, ;cyx - SxySzw - Sxyx == y .
It is known that the mapping
wp:Q > Wpix - Wy

is a 1 — 1 mapping from @ onto # .

It is not difficult to see that the operation o on the set ¥, corresponds
to the operation o on Q.

pr ° Wpy = Wp,xy.
The mapping wp is an isomorphism between the quasigroups @(°) and % ().

Proposition 12. Let Se€ & and p € Q be fixed. Then there exists exactly one
element x € Q such that one and only one of the following relations holds

() S = Wpe,
(b) S = SpWops.
If S = SpWyz, then also § = Wp.S,, where @ = Syx.
Proof. From Corollary 4 it follows that § may be written in one of the

forms Sg, SaSp.

From Corollary 2 and Proposition 8§ it follows that S may be written only
in one of the forms S, and 8,85

From Proposition 1 it follows that if 8 = 8,Sp, then 8 = W,;, where z is
determined uniquely. If § = S, then S; = 8u8,8p = WpaSp. It is easy to
show that there exists just one invariant element of the mapping Sp,SaS,,
namely the element = Spa. Thus, SpS.8, = Sz and therefore

WoaSp = 8o = SpSaSp = SpWops.

Corollary 6. The group #~ is a proper subgroup of the group &. Now we shall
show that the group W~ is a subgroup of the group 9.

Proposition 13. The set of all elements of the form Vap = G;'Gy with respect
to the composition s the group W .
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Proof. It is necessary to verify that any transformation Vap can be expressed

as Wgy and any transformation Wgp can be expressed as Vazy. For proving
this we shall use:

Lemma 1. For any a, b €Q
(20) Vao = Wasan.
Proof. By means of relations (4), (9), (5), (9) and (10) we obtain
GpSax = b . Spx = (x . Spx)Sex = (x . 8ax) . (Sax . Spx) = @ . Sap® = GoSavx.
Thus
GvSa = GaSas.

Having multiplied the last equation from the left by G,! and from the
right by Sq and considering (14) we obtain (20).

Now 1t is not difficult to prove Proposition 15. If the mapping Vap is given,
then Wy is determined by (20). And vice versa if the transfer W, is given,
then Vgp == Wy holds for b = Sca.

From the foregoing statements it immediatelly foll‘ows that ¥ >, 9 >W.

Proposition 14. For any a, b
(21) V2, = VaoVapr = Wap.

Proof. For any z€Q

Wa,avr = SapSa = [Sa(Sax)] [Sp(Sax)] == 2(SeSa) = Sp(Spx . Sax) =
= SoSavt = Wapp .
Thus
(22) Waap = Wap,p .
Hence
Vas Varx = Wap,o Wa,a0% = Se8a6SapSex = Wapx.

Some of the problems of this paper are special cases of those introduced
in [2]. The main difference is in the commutativity of the structures. For
instance, the groups #” and & are proper subgroups of the group of all regular
transformations C4 (notation by Belousow [1]). It might be interesting to use
Belousow’s results in geometry.
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