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M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 9 1969 Č Í S L O 4 

LUSH'S THEOREM IN AN' ABSTRACT. SPACE 

SIMMIE S. BLAKNEY, Toledo, Ohio (U.S.A.) 

In [3] W. J . T r j i t z i n s k y obtained a generalization of Lusin's theorem 
(hereafter called the L-— T—-Th.) for necessary and sufficient conditions for 
measurability of a finite real valued function on. a set with finite measure. 
Also in [3'] (17.11) Trjitzinsky proved a Lusin type theorem for sets with 
infi.ni.te measures. In this paper another Lusin type theorem, is obtained for 
sets with infinite measures. I t is easy to give an example t h a t all assumptions 
of this theorem, but not all assumptions of cited Trjitzinsky?s theorem, are 
satisfied.-

Definition 1. Let F be any family of sets. A point x is indefinitely covered in 
the sense of measure # by the family F, if F contains a sequence {En} of sets such 
thai x e En for all n and the exterior measures of the En approach zero, i. e. 
&e(E?i) -~> 0. [I] A set all of whose points satisfy the above conditions is said to be 
a set indefinitely covered by F and is denoted by 1(F). 

Definition. 2. Let X be a subset of 1(F); then F(X) is the family of all E of F 
for which X n E * 0. 

Definition 3. ([3], Def. 11.5) A family F of sets is a simply regular family if the 
following are satisfied: 

i) E is (Immeasurable and 0 < 0(E) < oo for all E EF; 

ii) F ==- U FnwhereFn
 c Fn+i (n = 1, 2, 3, . . . ) , 

iii) &( y E) < oo? U{E:E e 0} is ^measurable and &(v{E:E e G}) < oo 
EeFn 

•for every 0 c: Fn. 

Definition 4. ([3], Def. 12.5) Let F be a simply regular family of sets. If X is 
a subset of I(Fn) we say thai X is a noyau with respect toFn if& (Gn(X)) = 0 
where Cn(X) = I(Fn(X)) — X.. - .' 

IfX is a subset of 1(F), X is a noyau with respect to F if0(Cn(X O I(Fn))) == 0 
i. e, if X n l(Fn) is a noyau with respect- to Fn. 
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N o t e . Every noyau X is measurable and the union of a finite number of 
noyaux is a noyau. 

Definition 5. ([3], Def. 12.8). A family F of sets is a completely regular family 
(G. R.) if F is simply regular and if to every set X contained in I(Fn) and 
measurable and to every s > 0 there corresponds a noyau Y with respect to Fn, 
such that 7 c J and @(X — Y) < e. 

Definition 6. ([3], p . 86). Let f be a real valued function defined on H such 
that for every real number c the sets 

Ht = {x eH:f(x)> c}, 
H~ = {xe H : f(x) ^ c} are noyaux with respect to F. We say that f is 

a pseudocontinuous function (f is P—G—F). 

Definition 7. Let F be a simply regular family of sets. We say F fulfills the 
condition (G), if and only if every noyau with respect to Fn is a noyau with 
respect to FVi-i (w = 1, 2, •••)• 

L-T-Theorem. ([3], Theorem 17.3). Let F be G.R. with0( \J E) < oo. Let H 
EeF 

be a measurable subset of 1(F) and assume that f is a finite real valued function 
defined on H. In order that f be measurable on H it is necessary and sufficient 
that to every real number e > 0 there correspond a noyau N contained in H, 
on which f is P—G—F and &(H—N) < e. 

The main result of this paper is obtained in the following theorem. 

Theorem. Let F be G.R. and fulfil the condition (G). Let H be a measurable 
00 

subset of \J I(Fn) and f be a finite real valued function on H. Then f is measurable 
n = l 

if and only if to every e > 0 there corresponds a noyau contained in H, on which 
f is P—C-F and 0(H-N) < e. 

Proof . Assume that / is measurable. Pu t Hn = H n I(Fn) — H n 7(FV-i), 
n = 2, 3, . . . , Hi = I(Fi), By L—T-Th. to any s > 0 and any n there is 

s 
a noyau Nn with respect to Fn such that &(Hn — Nn) < a n d / is P—C— 

2n+l 

—Fn on Nn. 

00 

Put N =\J Nn. We prove tha t N is a noyau. Since F fulfils (G), Nt is 
w = l 

noyau with respect to Fn for i = 1, 2, . . . , n. Hence &(I(Fn(N n I(Fn))) —-

- N n I(Fn)) = 0(I(Fn(\J Ni))-\J Nt) ^ | 0(I(Fn(Nt)) - Nt) = 0. 
i = l i = l i = l 
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We get N n I(Fn) is a noyau with respect to Fn, therefore N is a noyau 
00 

with respect to F. Clearly # (H — N) ^ 2 * ( # » — -^») < e a n d / i s P — C—F 
n = l 

on N. 
If/fulfils the above condition, then to any n there is a noyau Nn such tha t 

1 
/ i s P—C—P on Nn and @(H — N^) < — . Since every noyau is measurable, 

n 
00 00 

/ is measurable on Nn, hence on ( J Nn too. But @(H — [J Nn) = 0, therefore 
n=l n=l 

/ is measurable on H. 
This paper is based on a doctoral dissertation written at the University 

of Illinois under the supervision of Professor W. J . Trjitzinsky, to whom the 
author is greatly indebted. He is also grateful for the helpful suggestions of 
the reviewer, in particular for the elegant formulation of Definition 7. 
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