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GROUPS OF ORDER WHICH IS INDIVISIBLE 
BY A FIXED PRIME 

KLARA SCHERMANN, Budapest (Hungary) 

Many of the results obtained by Kate Fenchel [2] in the investigation of 
groups of odd order hold with some restrictions for infinite groups, too. We 
consider now the possibility of this generalization. 

I n the structure of groups whose order is odd, that is, indivisible by 2, 
the prime 2 plays a major role. I t can be shown, e. g. t h a t the order of a finite 
group G is odd if and only if there exists for any aeG one and only one xeG 
such that a = x2. In view of the generalization we consider instead of groups 
of odd order the more general concept of groups whose order cannot be divided 
by an arbitrarily fixed prime number. 

As far as possible the groups are denoted by capitals, the elements by small 
Roman, while the real numbers by small Greek letters. The following symbols 
are used: 

e is the unit element of a group; 
n is the arbitrary fixed prime; 
[C7] is the order of group G; 
\G : H] is the index of subgroup H in G; 
{a} is the cyclic subgroup generated by the element a; 
co(a) is the order of element a; 
(a) is the class of elements conjugate with a; 
ax = x~xax; 
Za is the centralizer of element a; 
Z(H) is the center of subgroup H; 
+ denotes the union of disjoint sets; 
X(a) is the number of elements in the class (a); 

Theorem 0.1. If in the product (a±) (a2) . . . (av) of the classes (a{), (a2), . . . , 
(av) of group G an element be G is contained g-times, then for any xeG the 
element bx is also contained q-times. 

Proof . Let 
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a?"...af = b, 

a\el ...a
x" = b 

be all those products which yield b in the product (ai) . . . (av). I t follows that 
the products 

axfx ...a
xfx = bx, 

<e l* . . . ax*vX = bx 

represent every possible production of bx. 

Using the notation ^(ai)(aa)...(at;)(6) for the number Q in Theorem 0.1. we write 

card [(ax) (a2) ... (av)] = 2 V)M...(«v)(&) • 
(P) 

(For the case v = 2 see [1, p. 58.]) If (a{) = (a2) = . . . (av) = (a), then 

" f a ) <* )...(«v)(6) = ^(a)"(6) • 

1. Itonttem&ltal properties 

Theorem 1.1. The order of a finite $rou$ G is indivisible by ut if and only if the 
group has no element of order divisible by n. 

Proof . If [G] cannot be divided by n and aeG, then by Lagrange'^ theorem 
[{a}] = co(a) is also indivisible by n. 

If no element of G is of order divisible by n, then the divisibility of [G] by n 
is in contradiction with Cauchy's theorem. 

R e m a r k 1.1. The concept of a group whose order is indivisible by n can 
be generalized by Theorem 1.1. for those torsion groups in which (though 
they may be infinite themselves) the order of every element is a finite natural 
number, relatively prime to n. 

Theorem 1.2. Let Gbea torsion group. The following properties are equivalent: 
(a) G has no element of order which is divisible by n. 
(b) There exists for any aeG one and only one xeG such that xn = a. 
(c) For any fixed xeG, any heG can be uniquely produced in the form h = 

= axax ... xa where aeG, and a is contained n-times, while x occurs (n — \)-times 
in the product. 

(d) / / any g eG is fixed, there exists for any element xeG one and only one 
aeG such that g = a . ax a**""1*. 

Proof . The proof is given cyclically, as (a)-> (b)-> (c)-> (d)-> (a). 
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1. Assume that no element of the torsion group G has an order divisible 
by n. Let a be an arbitrary element of G and of order co(a) = a. Since (a, n) = 1, 
there exists a natural number £ such tha t 

f;r = 1 (mod a) , 
tha t is 

(1) &i = ocv + 1 , 

where v is a positive integer. Let 

(2) x = a*. 

Then, by (1) and (2) we have 

#?* = a*71 = (a")" . a = a . 

Suppose also that 

(3) yn = a , 

that is 

(4) x71 = yn. 

Using (2) and (3), 
xeZ(Za) 

aeZy; yeZa; y-^eZa, 
that is 

(5) a^ - 1 = y~xx . 

Using (4) and (5), we find 

(6) e = yny-n = xny~n = (xy1)71. 

Let (^(a;?/-1) = //. Because of (6) /i|:r, but it was postulated that ^ 4= TZ, thus 
/j = 1, tha t is 

xy-1 = e ; x = y , 

which completely proves the assertion (a) -i> (b). 

2. Suppose that for any element a e G of the torsion group G there exists 
one and only one xeG such tha t xn = a. Consider the elements xeG and 
h e G with hx = g. By the postulate, the equation 

yn = g 

can be solved for y; while the equation 

y = ax 
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has a solution for a owing to the group axioms. On resubstitution 

hx = axax ... xax , 
h = axax ... xa , 

where a is contained yr-times on the right side of either equation, while x occurs 
rc-times and (n — l)-times respectively. If, in addition, 

h = bxbx ... xb 

where b occurs jz-times and x occurs (n — l)-times in the product, then 

hx = (ax)71 = (bx)n. 

Thus, owing to the postulate and to the group axioms, 

a = b 
which proves that (b)-> (c). 

3. Suppose that for any x e G and h e G in the torsion group G there exists 
uniquely an element a e G such that h = ax ... xa where a is contained 7r-times 
and x occurs (n — 1)-times in the product. Let the element g e G be fixed 
and consider an arbitrary x e G. The equations 

gx~(n~V — a . x~x . a . x~~ x"1 . a 

(a occurs rc-times) and 

g = a . a* . a&2) a^l) 

are obviously equivalent and the former can be solved uniquely for a. Thus 
(0)->(d). 

4. Suppose that for every fixed g e G of the torsion group G there exists 
for any x e G one and only one aeG such tha t g = a . ax a^x'~l) while 
the property (a) does not hold for G, that is, there exists an element he G 
such that co(h) = na, where a is a natural number. Then by Cauchy's theorem 
there exists an element of order n of subgroup {h}, tha t is, there exists some 
B> e G such that a =)= e, an = e. In this case, however, the simultaneous validity 
of the equations 

e = e . e* . e(*2> e(e"_1) 

and 
e = a.a* .aW a(e*_1) 

is contrary to what we supposed, tha t is (d) -> (a) and by this the theorem is 
proved. 

R e m a r k 1.2. If G is not assumed to be a torsion group, the property (a) 
does not follow from the properties (b), (c) or (d) (though (b), (c), (d), as it 
can be readily checked, are equivalent). For example, the additive group of 
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rational numbers has the properties (b), (c) and (d), but does not possess the 
property (a). 

Theorem 1.3. if the order of any element of G is relatively prime to n, then 
for any qE G and q~ = g it follows that Zq = Zg. 

Proof . Let x be an arbitrary element of Zq. Hence xq = qx; which, if used 
successively jr-times, gives 

xg = xq71 = qnx = gx 

tha t is xeZq, thus 

(?) ZqCZZg. 

Let now y be an arbitrary element of Zg. Then yg = gy, by which 
J 

(y-iqy)- = y~xgy = y~lyg = qn\ 

thus, because of the postulate and by Theorem 1.2. 

y-iqy = q 

that is, y E Zq and 

(8) Zg c Zq 

hence, the theorem follows from (7) and (8). 
R e m a r k 1.3. The reversal of Theorem 1.3. does not hold, e. g. as a counter -

-example consider the commutative groups of order divisible by n. 

2. The special case of n = 2 

Considering now the case of n = 2, let us see how the theorem 2. and the 
relation (3) stated in [2] will be satisfied for torsion groups. We shall investigate 
also the possibility of generalizing the problems under consideration to any n. 

Theorem 2.1. Let G be a torsion group. The order of every element of G is odd 
if and only if for any aE G, a 4= e we have (a) #= (a-1). 

Proof . Suppose tha t an arbitrary element of group G is of odd order, yet 
there exists some a E G such tha t (a'1) = (a), tha t is, there exists some qEG 
such that 

(9) q~xaq = a - 1 

(10) aq = qa-1. 

Then, by (9) 
a = (a-1)'1 = q-^ar^q 

a-1 = qaq-1. 

259 



Hence, again by (9), with the notation q2 = g 

aeZg . 
By Theorem 1.3. then 

(11) aq = qa 

and from (10) and (11) 

qa'1 = qa 
a% = e . 

Since the order of every element of G is odd, a = e. 
Suppose further tha t for any element a e G, a =f= e we have (a -1) =f= (a). 

We have to prove tha t G has no element of even order. Suppose therefore 
tha t v eG and co(v) = 2v, where v is a positive integer. Then 

g = vv =j= e 
and 

gz = e , 
g-1 = g 

that is (g-1) = (g), which is a contradiction. 

R e m a r k 2.1. I t must be pointed out in connection with Theorem 2.1. 
that the order of every element is assumed to be finite. In fact, it is not true 
tha t a group which has an element of infinite order (when, of course, the order 
of every element cannot be odd) must always contain also other ambivalent 
class than tha t of the unit element. Consider, e. g., the infinite cyclic group 
G = {g}. If it contained also another than the trivial ambivalent class of 
elements, there would exist two positive integers rj and Q satisfying the equation 
g-vgQgv = g-Q. I n this case 

g*Q = gQ . gQ = gQ . g~V+Q+-V = gQ . (g~V . gQ . gn) = gQ .g-Q = e , 

contrary to the infinite order of g. 

Theorem 2.2. Let the order of every element of G be odd. Then each of the 
elements g eG determines a system of cosets of centralizers of certain (g-dependent) 
elements. This system of cosets covers the group G precisely once. 

Proof . Let g e G be fixed and consider the equation 

(12) g = a ,ax 

which by Theorem 1.2. determines for every x e G precisely one a. 
By the known and easily proved theorem ax = ay, tha t is a . ax = a . ay 

if and only if y eZax. This means that a solution to (12) for a can be mapped 
onto tha t coset of Za whose elements produce this element a. 
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The thus obtained cosets of centralizers cover the group G since by Theo­
rem 1.2. every xeG determines an a. These cosets are disjoint since, if a 4= b, 
and we postulate tha t the cosets Zax and Z^y are involved in the covering, 
it would mean tha t for z e Zax n Z^y both a and b are determined by z and 
this would be contrary to Theorem 1.2. (K. F e n c h e l ' s proof in this respect 
is, in fact, superfluous, since the disjointness follows immediately from the 
preceding assertions.) 

Thus, we have obtained a partition of the group G with respect to the 
element g, which can be written in the form 

(13) G = Zg+Zaxa + ...+Zsxs 

Theorem 2.3. Let G = 2 Avgv be a partition of group G where Fis an arbitrary 
ver 

set of indices, gv e G and Av is a subgroup of G for which [G : Av] = ocv is finite. 
Then 

ZLa" 
ver 

(By definition 2 pv = sup 2 P*, where Pi runs over all finite, non-empty 
veT veE i 

subsets of r.) 

Proof . Let 
Ain A>n ... nAft = Dy 

By Poincare's theorem also [G : Dy] is finite. Decompose G into cosets of D^ 
such that the set 2 Avgv decomposes to Qn cosets and thus 

ver 
v^l,2,...,n 

[0 : Du] = e„ + | [A,: DM] . 
1=1 

If both sides are divided by the finite [G : Dy], then 

'i__t-H-yi^yi. 
[0:DU] Z L a ' Z > ' 

i=i i=i 

hence 

1 
— g 1 . 
OCv 

ver 

R e m a r k 2.2. Theorem 2.3. cannot be stated more explicitly since, in 
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V general, the relation > — = 1 is not true. As a counter-example consider 
/ ^v 

ver 

the additive group of integers. Let Av = {3V} (v = 1,2, . . . ) . The cosets Av + gv 

covering the group G are formed by choosing for gv the smallest of the non-
v - l 

-negative numbers not covered by the set 2 At + ffi)> (gi = 0)- Since such 
i=i 

a number always exists, the sequence of cosets as well as the sequence of 
00 

indices <xv = 3V are infinite. On the other hand, ]j> Av + ffv) *s a partition 
v=l 

of the group for which 
co co 

y±_y±=±. 
v=l v=l 

Theorem 2.4. Every element of the locally normal group G will be of odd order 
if and only if for any class (g) 

(u) y^^) l 
(a) 

Proof . If the order of every element of the locally normal group G is odd 
then by Theorems 2.2. and 2.3., since [G : Za] = X(a) , 

(15) S-j-Zl, 

where the summation is over the elements whose centralizer is involved in 
the partition (13), tha t is, those elements which for fixed g are solutions to 
equation (12). 

Keepeng g fixed, let the class (a) be also fixed. By definition, there exist 
K(a)(a)(g) products of the form aia2 such that ai e (a) (i. e. of the form ai = ax), 
«2 e (a) and aia2 = g. I t follows that if the class (a) is fixed, then there exist 
exactly ^(a)(a)(g) elements a which yield a solution to (12) for x. Thus 

(16) > — = \«*™L 
"(a) _ / ^ *<a) 

(a) 

and (14) follows from (15) and (16). 

Suppose now that (14) is satisfied for any class (g) of the locally normal 
group G, yet G has an element of even order. Then, by Theorem 2.1., G must 

262 



have a class (b) satisfying the condition t h a t (b) =j= (e), (ft-1) = (b). Consider 

the case of (g) = (e), then 

K(a)(a)(e) _ *(e)(e)(e) ^(b)(b)(e) ^\K(a)(a)(t) 

X(a) X(e) K(b) / ^ K(a) 

(a) (a) 

that is 

(a)Ф(e) 
(a)Ф(Ъ) 

Щa)(a)(e) Щe)(e)(e) , ЩЪ)(Ъ)(e) 

Щa) Щe) ЩЪ) 

(a) 

where the notations are chosen such that y<(e)(e)(e) = 1, X(e) = 1, X(b)(b)(e) > 0, 
Xd,) > 0 and, since G is locally normal, x^) is finite. Thus 

*(a)(a)(e) 

> 1 , K(a) 

(a) 

contrary to what we supposed. 

R e m a r k 2.3. The next task would be to generalize the theorems of Section 2. 
for any prime number n. This applies specifically to Theorem 2.4., which has 
been introduced by the preceding assertions. I t can be seen t h a t the generali­
zation of this theorem would read as follows: the order of every element 
of a locally normal group G is relatively prime to n if and only if for any 
class (g) 

' X(a)n(9) 

*(a) 

(a) 

As a counter-example consider the dihedral group D%, where for different 

classes (g) and n = 5 the above sum becomes 6, 5,5 and 27. 
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