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ON THE GENERAL PROBLEM OF ADJUSTMENT
OF MEASURED VALUES

LUBOMIR KUBACEK, Bratislava

The aim of the present paper is the determination of the estimation ([1], [3])
of components of the N dimensional vector y and the k-dimensional vector z
which satisfy ¢ conditions

(1) x0—|-Xy—i—Xlz=0.

It is assumed that the vector xo and the matrices X and X; are known.
The rank of the matrix (X, X;) is A(X, X;) = ¢ and for the matrix X; we
have h(X1) = k < ¢, analogously. The condition N > q¢ — & > 0 holds for N*).

The components of the vector y can be measured and results of the measure-
ment Iy, ..., Iy of the components #1, ..., yy are the components of realization
of the random vector /... N(y, ¢2P~1). A diagonal matrix P is the matrix
of weights p; > 0 of the results /;,7 =1, ..., N. The components z;,j = 1,
..., k of the vector z cannot be measured.

The above problem is sometimes called the adjustment of conditions with
parameters ([2], [4]). The next problem is to determine how the statistical
properties of calculated estimations are or how connections among them are.

Lemma 1. Let A be a matrix of a positive definite quadratic form of the order
N X N and let R be a matriz of the order ¢ X N with the rank s < min (g, N).
Then RAR' is of the rank s.

(Proof in [1], p. 41.)

Corollary. The matriz XP-1X’ is of the rank h(X).

Lemma 2. The matrix

* If N = q — k, the system (1) would be a system of ¢ equations with ¢ unknows.
According to the assumption that the matrix of system (1) is regular, the problem of the
determination of the maximum likelihood estimation would be trivial. Therefore this
possibility, will not be dealt with. '
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2) (XP'1X’ X1)

X; O
is of the rank q + k and is therefore regular.

Proof. R(Xi) =k, R(X,X;)=¢q hence A(X) > q — k. According to
Lemma 1, A(XP1X') > q¢ — k therefore A(XP1X’, X;) > ¢, since linearly
independent columns of the first submatrix remain linearly independent on
the columns of the other submatrix. According to the first size of submatrices,
R(XP1X’, X;) = ¢ holds. Analogously in a matrix

XP1X’
X
k rows of the submatrix X; are linear independent on linearly independent

rows of the submatrix XP-1X’ hence all rows of the whole matrix (2) are
linearly independent.

Theorem 1. The conditional local extreme of a likelihood function holds for
y = I and z = %, resp., which satisfy equations

XP1X'| X;\ [k m
P o () o
X; |0/\z o

m = Xy —I— X ,
v = P1X'k,
P=1+v
Proof. The likelihood function gains its local extreme when the corrections
v, ¢t = 1,..., N,i. e. components of the vector v and values Z;,j = 1, ..., ki.e.

components of the vector z, provide the minimum of the function .
D(v1, ..., 0N; 21, ..., 2) = V' Pv — 2k’ (Xv 4 X,z + m),

where k is the g-dimensional vector of the Lagrange coefficients.
v v
d® = 2(v'P,0')d (——) —2k’'(X, X1)d (—) = Onik, 1,
z z

which shows that (v'P, O0’) = k’(X, X;) and therefore v = P-1X'k; X;k = O.
If the two last relationships are considered in the system of conditions (1),
then
xo + X(I 4 P1X'k) + X1z = Oq¢,1
Xk = Ox1
holds, which completes the proof.
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Theorem 2. The extreme from Theorem 2 is the minimum of the function P.
Proof. Let

Qui, Q2
3) Q= (Qzl, sz)
be a reciprocal matrix of (2).
Then ,
GQ 4 X1Qo1 = g,
(4) GQ;; + X1Qz2 = Oy,
X;Qu - okq,
X, Q2 = lgx

holds, where G = XP-1X'.
Further the following holds:
v'Pv = k'Gk = m'@;G@;m = (Xv + X;z)'@u(XV + X1z) = v'X' Q1 Xv.

Theorem 1 and the first and third equality in (4) were applied.

Now it will be shown that for another choice of vectors v and z, which
obviously have to satisfy the conditions (1), v'"Pv > v'X'@Q1 Xv = m'Q;m =
v'Pv will hold.

The following holds:

vX' Q1 Xv = VPP IX'Q 1 XP iPlv; Piv=w;

PEX'@XP*=U; U =U; U2=U. There is such an orthogonal
matrix F, for which the following holds: FUF' = D, where D is a diagonal
matrix and D2 = D, which means that the diagonal elements of the matrix D
are only zeros or unities. If Fw is denoted by t, the following holds:
vX'Q1 Xv = w'FFUFFw = t'Dt. For the rank of the matrix D we have:
k(D) = Sp(D) = Sp(FP*X'Q;; XP*F) = Sp(XP*F'FPiX'Qq1) = Sp(lgy —
— X1Qg1) = g — Sp(@QuX:) = ¢ — Sp(lwx) = ¢ — k.

The relationships (4) and the rule Sp(Ap¢Bgp) = Sp(BgpApg) were applied.
For v'Pv we have: v'Pv = v'P}F'FPiv = t't and always v'Pv =t't > t'Dt =
=vX' @ Xv = m'@Qpm = v'Pv. '

Theorem 3. The wvector k is a mormal vector with at least q-k independent
components k ... N(O, a2@Q1y).
Proof. The vector 4 = I — y will be called an error vector. Obviously

A...N(O, o2P1). For k we have: k = — Quxo + Xy + X4) =
— Qui(— Xz + X4) = — @1 XA (with regard to @1 X; = Og). The
mean value M (k) = — @11 XM (4) = O and for the covariance matrix of the

vector k the following holds: X = QuX. M(44') X'Qu1 = ¢2@;:G Q1.
With regard to Lemma 1 we have for the rank of the matrix Q;:
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h(QuX) =S h(Qu). Further, with regard to (4), Q21X1Q2]_ = Q21 and
X1@::X; = Xi, which shows A(Qg1) = h(Xi) = k. As the matrix @ is regular,
h(Qu, @12) = ¢ and therefore k(Qu) > q¢ — k.

Theorem 4. The vector z is a normal vector with at most k independent com-
ponents z ... N(z; o%(— Qz2)).

Proof. z = — Qai1(x0 + Xy + X4) = Q1 X1z — Q21 X4. With regard to
the last equation of (4) the following holds
; —Z = — Q21XA; 22 = Q21X02P—1X'Q12 = O‘2Q21GQ12 = — 0‘2Q22,

with regard to the second equation of (4). With regard to Lemma 1 A(Q2X) =
= /L(ng) < k.

Lemma 3. If s = Ax and t = Bx, where x ... N(u, 3,), then AZ B’ = O
is the sufficient and necessary condition for the statistical independence of the
vectors s and t. (proof see in [3] p. 57.)

Theorem 5. The vector 1 = | -+ v and the vector v are statistically tndependent.
Proof. T—y = (I — P1X'@;;X)4; v = — P-1X'@Q;;XA. Next we have
(I — P-1X'@Q;; X)P-1X' @ XP-1 = P-1X'@Q; XP-1 — P-1X'@;;GQ;; XP-1 —

= Oy, with respect to the equation @;:G@;; = Q;; which proves this
theorem with regard to Lemma 3.

Theorem 6. The vector Z and the vector v are statistically independent.

Proof. z —z= — @uX4; v= — P1X'@;X4. With regard to the
relationships @G == — @22 X; and X;@; = O, the following holds @z Xo?
P-1X’'@Q;; XP-1 = O, which proves this theorem with regard to Lemma 3.

Theorem 7. Vector 1 is a singular normal vector with N — (¢ — k) independent
componentsT ... N(y; o2(P~1 — P-1X'@;; XP-1)).

Proof.T— y = (I — P-1X’'@;1X)4, therefore £7 = 02(P-1 — P-1X'Qy; XP-1).
The rank of the matrix | — P-1X'@;; X is denoted by 2. We have b =
= h(l — P1X'Q;;X) = AP}l — P1X'@Q_X)P?}] = k(I — U), where U
is the matrix from the proof of Theorem 2. There is such an ortogonal matrix
F that FUF is a diagonal matrix D, which satisfies the condition D% = D.
Since we can easily obtain A == k(1 — U) = N — Sp(D) = N — (¢ — k).

Theorem 8. The covariance matriz of the vector (1,2') is

¥ = Zy , — UZP—1X’Q12) .
@) \— c2@uxp-1, =3
Proof. It is sufficient to show that M[(I —y)(z — z)]=— Gfp‘lx'Qm;
T—y=(>—PiX'@QX)4, (z —z) = —AX'Qu; Ml —y)z — 2) =
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= ¢?2[— P 1X'Q;2 + P1X'@; XP1X'@Q;2] . With regard to the relationships
G = XP1X’ and @1:GQ;2 = O from (4) the proof is obvious.

Corollary. If w = fo + (f } fa) (y) and % = fo + flli + le; ,then @ ... N(u;
z
02(u)), where o*(@) = o%(f,P-1f1 — f;P~1X'Qu XP-1f; — 2f; P-1X' Qqafz — f5 Qusf).
Theorem 9. The random variable v'Pv|c® has the y%-distribution whith q—k
degrees of freedom.

Proof. Analogously as in the proof of Theorem 2 we have:
V' Pv = (¥VXQ@XP1) PP-1X'@;Xv). With regard to Theorems 1
and 3v = — P-1X'@;; X4, therefore P-1X'@;;Xv = — P-1X’'@;; X4. Since
we have V'Pyv = A’X' @1 XPIPP1X'@Q;; XA = A'X'@;1 XA . Let us denote
P4 =6...N(O; ¢2l) Since V'Pv = 6’'US where U is a matrix from the
proof of Theorem 2. If we denote F§ = 6... N(O; ¢2l), then v'Pv = 9'Dy
where k(D) = Sp(D) = ¢g—¥k, which proves this theorem.

Theorem 10. For a weighted sumation of a posteriori dispersions of measured

N N
values Y, pio?(l;) the following holds 3 pio®(ly) = o*(N — q - k).
ia

i1
N
Proof. > pio%(ls) = Sp(P Z7) = Sp[Po%(P-1 — P-1X'@y;; XP-1)] = Sp[o%(l —
i1
— X'QuXP1)] = 0[N — Sp(XP1X'@Q11)] = 62N — Sp(GQu1)) = o?(N —
— q + k). Theorem 7, the rule of the trace of the product of matrices and
results in the proof of Theorem 2 were utilized.

Theorem 11. Let X be a matrix of the order ¢ X N, where N > q (this case
occurs often) and h(X) = q. Then for Q from Theorem 2

Qi = G1 — G1Xy(X;G1X;)1X G,
Qs = G—1X1(X;G‘1x1)_1,
Q= — (X;G1X;) !

Proof. With regard to Lemma 1 the matrices G and X;G1X; are regular.
By substituting (5) into (3) and by multiplication with (2) we can confirm
that the statement is true.

Corollary 1. In this case the vector k has ¢ — k independent components.
Proof. With regard to Lemma 1 and Theorem 3,

M@ X) = A(QuXP-1X'Qp) = h(@uGQy) = h(Qn) = H(GQp) = q — k

(see the proof of Theorem 2).
Corollary 2. In this case the vector Zis reqular. With regard to Theorem 11 Qg 13
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namely regular and therefore with regard to Theorem 4 we have (@2 X) =
= h(Qg) = k. :
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