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Matematicky &asopis 17 (1967), No. 2

REMARKS ON THE ERGODIC THEORY
OF THE CONTINUED FRACTIONS

TIBOR SALAT, Bratislava

The applications of the ergodic theory to the metric theory of the continued
fractions are based on the following theorem of C. Ryll—Nardzewski.

1 1
Theorem I. For each x € (0, 1) let 3(x) = = [Z] ([w] denotes the integral

part of the number [u]). Let f be a Lebesgue integrable function on the interval
(0, 1). Then for almost all x € (0, 1) (in the sense of the Lebesgue measure) the
Jollowing holds:

1

J)
lg?o;;‘fsi ~ log 2 Jl e 0
(See [1]).

Several applications of the above theorem to the metric theory of the
continued fractions may be found in [1] and also in [2]. In [2] it is proved
by means of Theorem I — the result, which will be used in what follows.

Theorem II. If f is a measurable, non-negative and non-integrable function
n (0, 1), then for almost all x € (0, 1)

n-1
1
gg;Sf(Si(x)) = 4 oo

We shall study in this paper from the metric point of view the behaviour
of the sequences

[ ci(@)

02+1(x)

} . oareal; {lex(®) — ecxn(@)o},, «=0
k=1 . .

(1) 3(x) = 3(3(x)), B¥(x) = (3(3%2)), ...
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(the notation see in what follows) and we shall give a new proof of a certain
‘well-known result of the metric theory of continued fractions (see Theorem 1).

DEFINITIONS AND NOTATIONS

1. The expansion of the number z € (0, 1) into the continued fraction
{the continued fraction of the number x) will be denoted in this paper as
follows .

1

Ot e T

+ ck(x) + ..

<k(®) (k =1, 2, 3, ...) are natural numbers (so called quotients of the continued
fraction of z). If the above expansion is finite and cx(x) is the last quotient
of the continued fraction of x, then ci(x) > 1. Further if (1) has more than
one quotient (or in other words if x # 1/p, p = 2, 3, 4, ...), then evidently

1
d(x) =
Cz(x) -|—
c3(x) + .
. 1
k(@) + -
{as to the meaning of 3(x) see Theorem I).
2. If A is (any) set of natural numbers, we put for a naturaln A(n) = > L.

a=n,aeAd
, if it exists, is called the asymptotic density

A(n
The number k(4) = lim n
Nn->o00

of the set A.
3. The sequence of numbers {a,}’ , is said to be summable by the method

ay + a2 4+ ... + ag

(C, 1) to the number a€(— oo, + o) if lim " = a.
Nn>00
a as+ ... +an|”
If the limit of the sequence L o —: + an is improper or if it does
n=1

not exist, then we say that {@,}>, is not summable by the method (C, 1).
The sequence of functions {g,}n, is said to be almost everywhere in (0, 1)
(for almostall z € (0, 1)) summable by the method (C, 1), if there exists a set
M C (0,1) of measure 1 such that for each x € M the sequence {g.(x)}r,

122



is summable by the method (C, 1) to any finite number s = s(x). The sequence
{9.}0, is said to be almost everywhere in (0,1) (for almost all x e (0, 1))
non-summable by the method (C, 1) if there exists a set P C (0, 1) of measure 1
such that for each e P the sequence {ga(x)};, is non-summable by the
method (C, 1).

By means of Theorem I we shall easily prove the following result of A.
Chingin (see [4]) which we shall use.

Lemma 1. Let « < 1. Then for almost all x e (0,1) the following holds:

The sequence {c;(x)}r, is summable by the method (C, 1) to the number (which
does not depend on x):

1 =)
1 c3(t 1 1)2
0, _ Epak’g >+ 1
log2 ) 1+¢ log 2 p(p + 2)
0 p=1

Remark 1. It is proved in [2] that for almost all x € (0, 1) the sequence
{ck(%)}32, is not summable by the method (C, 1).
The proof of the lemma. Let « < 1. Put in Theorem I f(t) = cj(t) > 0.

Since c¢1(t) = —t- , the above defined function has in the interval (0, 1) at most

a countable number of points of discontinuity (in the case of « 7% 0 these
points of discontinuity are of the foim 1/p, p = 2, 3, 4, ...). From the funda-
mental properties of the Lebesgue integral we have

jﬂndt jcﬁ)& zifcl

p=1 1
1 1 1
For <t<— cf) =|—| = p holds, so we have

p+1 p ¢

1 oo

f(t)dt=$———< +
. Zplp+1)
D=

Thus f is integrable on (0, 1) and in view of Theorem I for almost all = € (0, 1)
the following holds:

1

1
© P
1 1 |20 it
lim — (¢* " = -
n]}gn(cl(x)—}— + cp(®)) log2,{1+t log 2 ZJV
0 .
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o

o zgmméﬁiﬂf
log 2 - p(p+2)

p=
2,3

k=1

Lemma 2. Let a, = 0, t, > + 00, sup
n

= tn}. Then h(A) = 0.
Proof. A can be supposed to be infinite. Put V, = ztk, where the sum-
mation is taken over all k€ 4 for which £ =< n. The last sum has 4(n) sum-

<+ 0. Put 4= {n; an =

mands, from which fact it easily follows that - 4 oco. If we put

A(n)

A(n) _ A(n) s
Sp = Z ax, then clearly s, = V, and consequently —— =< — = 0.

E-1 n Ve ™
Now we shall give a new proof of the following result belonging to the
fundamental results of the metric theory of the continued fractions. The
original proof of this result is based on Lévy’s well—known theorem on the
frequency of quotients in the continued fraction expansions of the numbers
z € (0, 1) (see [2]). According to Lévy’s theorem, for almost all z € (0, 1) the
following holds: each of the numbers p (p = 1, 2, 3, ...) appears in the sequence

: 1 (»+ 1)
{cx(%)};2, with the frequency lo (see [3] p. 110). Note

log2 © p(p + 2)
that the frequency of the number p in the sequence {cx(x)};>, means the
asymptotic density of the set of all such % for which cx(z) = p.
The proof of the following theorem is based on Lemma 2. We shall illustrate
the usefulness of Lemma 2 also in the proofs of Theorems 3, 5. But note that.
these theorems follow also easily from Theorem 1.

Theorem 1. Let v, - + 0. Then for almost all x € (0, 1) h({n; ca(x) = T4}) =
= 0 holds.

Proof. We can already suppose that 7, =0 (n = 1,2, 3,...). Put t, = ]/-—r:,,
(n=1,2,3,...) and further let g,(x) = 1 cn(x) for all irrational z, x € (0, 1).
In view of Lemma 1, the sequence of functlons {9,}2, is almost everywhere
summable by the method (C, 1). There exists a set M C (0, 1) of measure 1

S k(@)

such that for x e M sup k=—1n— < + oo. From Lemma 2 it follows that.

for x € M h({n; gn(x) = t»}) = 0 holds, consequently ({n; cn(x) = t.}) = 0.
In [2] S. Hartman studies the question of summability (by the method
(C, 1)) of the sequences
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Ce+1(%) Jza , k() Jioa
defined for each irrational = € (0, 1). He shows by means of Theorem II that
for almost all z € (0, 1) the above mentioned sequences are non-summable

by the method (C,1). In what follows an analogical question concerning
the sequences

{ (@) J (e« real number)

C11(®) Ja

will be solved and a result (see Theorem 3) similar to the one in Theorem 1
will be proved.

Theorem 2. If |«| <1 then for almost all x e (0, 1) the following holds:
() }""
Cr1(%) Jra

(which does not depend on x):

The sequence { is summable by the method (C,1) to the number

log 2 1+t
0

If || = 1, then for almost all x € (0, 1)

nmi(”“’”’ +...+i‘””’—)=+oo

mee M\ c3(x) Cur1(®)

holds.
ci(t)

ca(t

Proof. For ¢ irrational, ¢ € (0, 1) let () = > 0. It follows from

the construction of the continued fractions that

e[t} o[- )]

hence if « is real and ¢ irrational, ¢ € (0, 1), we have

1 1 -1« 1 o4
a(t) = | |— — | — .
The function y* is evidently measurable. Let us examine f'zp"‘(t) dt. We get
0
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— |

1 o
f yOd=> 1, I, = [ y)
0 =1 1
p+1
1 1 1
Further, if ¢ is irrational, te( ,—), we have [—l = p, hence I, =
p+1p 4

1
? ‘ .
N 1 1 .
= po - df. Since the interval 1 , ; is a union of the
—ip p
1
P+l

countable system of pairwise disjoint intervals
\

1 1 \\

1’ /
Pt PRI/

properties of the Lebesgue integral

(n=1,2,3,...), we get on the basis of the simple

. -5

n+1
t -
I, =§Ipn,lpn= J [l—th .dt.
n=1 1
bl

By means of a simple computation we find that if ¢ is irrational,

1 1 t

te > , then = n holds, hence

3 1 1 1—tp
Pt n P n-+1

»* 1

Tt (1) 1 1\
P+ﬂ@+n+J

From the last we get by means of a simple estimation

Ipn

pe 1 1 1
: = Izm = : .
(® + 12 n*tl(n+ 1) P> ntl(n+ 1)
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If || < 1, then

n=1
and thus
: , -
1
sz"‘(t) dt < a(a)z < 4+ oo.
P
0 p=1

With respect to Theorem I we get the correctness of our affirmation.
If |ocl = 1, then two cases will be distinguished.

oo

(o4
l.x = 1. Clearly I, = I3 = —p—, hence$‘Ip = + oo and thus
2(p +- 1) ya

1 =1
fwa(t)dt= + .

1

— > .
2. a = —1. ThenJ p(t) dt = I = EII" = z netl(n + 1) e

0
hence f p(t) dt = + oo.

Accordmg to Theorem II we get in both cases for almost all z € (0, 1)
1 [z Xz
lim—( @ +~(—)—) —tw
e n CZ(x) cn+1(x)

Theorem 3. Let 7, — + 0. Then for almost all x € (0, 1)
3 ([n, Cn(x) > ¢ ]) —0, h( Cn+1(x) > Tn} -0
Ccn+1(2) ca()
holds.

Proof. We may alrea,dy suppose that 7, = 0 (n = 1, 2,3,...). Put ¢, = V;

n=12,3,...) and gnu(x l/"" x)/cn+1(x) for each irrational x € (0, 1). With
respect to Theorem 2, the sequence {g,}n; is almost everywhere summable
by the method (C, 1). Consequently, there exists a set M C (0, 1) of measure 1

> ()

such that for x e M sup™>
n

< -+ oo holds. It follows from Lemma 2
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that for @ € M h({n; ga(x) = ta}) = O takes place, hence

h ({n, enl®) = -rn}) = 0.
Cn+1()

In a quite similar way the existence of M’ C (0, 1) of measure 1 may be proved

such that for
c
xeM' h({n, n+1(2) = rn}) =0
ca(x)

is true. The set M N M’ is of measure 1 and for x € M N M’ the following
holds simultaneously

[l e sz
cns1(x) cn(x)

This completes tha proof.

In connection with Theorem 2 the problem arises to examine the
behaviour of the differences of two subsequent quotients of the continued

fraction of x. Such a question is discussed in Theorem 4, Theorem 5 is a con-
sequence of Theorem 4 and Lemma 2.

Theorem 4. Given 0 < « < 1 then for almost all x € (0, 1) the following holds:

The sequence {|ck(x) — cx+1(x)|*}5ny 98 summable by the method (C, 1) to the
finite number (which does not depend on x):

LREERAN

log 2 14+t
0

a

1

dt.

If « = 1, then for almost all x € (0, 1)

1
lim — (lea(x) — c2(®)|* + ... + [ea(x) — cn41(2)[*) = + 0

n>c0 N

holds.

Remark 2. For a < 0 the sequence {|cx(®) — cx+1(x)[*};>; is not defined

on a set of positive measure. In fact it can be easily found out that for each
irrational x belonging to the interval

1 1
@) 1’ 1
p+p p+p+1
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e

holds and the set of all the irrational numbers contained in the union of the
intervals (2) is of positive measure.
Proof of Theorem 4. Put for ¢ irrational, ¢ € (0, 1) f(t) = |ci(t) — c2(t)].
1

Let us examine f fx(¢) d¢. Evidently
0

1 1
1 o » P
. ; a
Jf“(t)dt:?],,, Ip=Jf0‘(t)dt=J p-—[ ] det.
0 p=1 1 1
p+1 p+1
Further
1
1
2 i [P — nl*
p—mn
Ip=ZI1m’I:Dn= f lp — n|*dt = 1 1 .
= i nin+1)|p+—||p+
p+% (n + )(p n P n+1

From the last, with 0 < « < 1, we get by means of a simple estimation

1 |p — m|* 1
I, <— _ < — 1)
*=2p Lo+ 1) pZ(z Y)_ [(p )Z n(n 4 1

n=1 n=1 n=p+1

oo (=]

+§ ¥ }=(p—1)rx+a(a)’0(a)=§ n <+
n(n 4 1) 2 P2 n(n + 1)

n=1

Hence it is evident that f S dt = Z I, < + oo.
p=1

— 1)
In the case of « =1 we have Ip = I, = -@—)- and consequently

 2(p 1)
1

ﬁWM=§h=+w.
p=1

0

The correctness of the affirmation follows immediately from Theorems I, II.
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Theorem 5. Let vn— -+ o0. Then for almost all xz € (0,1) h({n; |ca(x) —
— cpi1(2)| = Ta}) = 0 holds.

The author wishes to express his thanks to J. Maiik for the valuable
suggestions improving the original version of the paper.
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