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Matematicky &asopis 17 (1967), No. 2

A NOTE ON THE STRUCTURE OF SOME TYPES
OF SEMIGROUPS

BLANKA KOLIBIAROVA, Bratislava

The purpose of the presented paper is to study the structure of semigroups
of following types: 1. semigroups, each subsemigroup of which possesses
a left identity; 2. semigroups, each left ideal of which possesses a left identity;
3. semigroups, each left ideal of which possesses a right identity. The main
part of our discussion deals with the construction and with the properties
of ideals (and F-classes). It can be shown that types 1 and 2 are special cases
of the so called ,,product of semigroups over a given semigroup‘‘ which has
been introduced in [4]. The construction of semigroup of type 3 is here not
given. Many of the results of the present paper are contained in the paper
[1] which I have read after having prepared my results for publication. I mention
them here, because they have been obtained in a different, quite simple manner
(similarly as in [3], [4]).

Let S be a semigroup. The set of all elements which generate the same
principal ideal (left (z)z, right (x)r, two-sided (z)) is called the F-class (left
Fi(z), right Fr(x), two-sided F(z)). An element ee S is called a left (right)
identity iff ex = x (xe = ) for each x € §. The set of idempotents of S will
be denoted by I(S); the elements of I(S) will be denoted by e (with indices,
if necessary). ‘

We shall introduce in I(S) the relation R and L as follows:

Definition 1. e;Rey iff e; = exes (i.e. (ei)r C (ex)r).

Lemma 1. The relation R is a quasiordering of the set 1(S) (in the sense of [5]).

Proof. It is evident that e;Re;; further e;Rey, exRe, imply e;Rey,.

The set of all elements ¢, for which e;Rex, exRe; simultaneously hold will
be denoted by Er(e:).

Definition 2. e;Lex iff ex = eiex (this means (&) C (ex)r)-
We evidently have

Lemma 2. The relation L is a quasiordering of the set I1(S).
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The set of all elements e; for which e;Lex, exLe; simultaneously hold will

be denoted by Er(e:).
Now we shall introduce the relation < in the set of Fir- (Fg-) classes:

Definition 3. Fi(x) < Fi(y) (Fr(z) = Fr(y) of @)z < @) (@r E @)r)-

1. SEMIGROUPS, EACH SUBSEMIGROUP OF WHICH POSSESSES
A LEFT IDENTITY

Definition. The semigroup S will be said to have the property U iff each sub-
semigroup of S possesses at least one left identity.

In what follows we mention some properties of these semigroups obtained
in [3].

Theorem 1. The necessary and sufficient condition for a semigroup S to have
the property U is: 1. S is the union of disjoint periodic groups; 2. I(S) is a sub-
semigroup of S and has the property U.

Proof. (Analogously as in [3]). a) Let S have the property U. 1. Let s e S;
we consider the semigroup S, = {s, s2, ...}; by the assumption S, possesses
a left identity, which is evidently an identity of S,. This means, s has a finite
order, hence according to Theorcm 7 [2] § is a union of disjoint periodic groups.
2. is evident since I(S) is a subsemigroup of § (see Theorem 4 of [3]). b) Let S
have the properties 1, 2. Let H be a subsemigroup of S; let h € H. Then by
1. there exists a positive integer n such that A? = ¢, where ¢; is an idempotent and
erh = h. Hence I(H) = (). According to 2., I(H) is a subsemigroup of I(S),
hence I(H) possesses a left identity ex. Then euwh = en(erh) = (ener)h =
= exh = h and so eg is a left identity of H.

In this section § is always a semigroup having the property U. The groups
in the decomposition of S in the sense of Theorem 1 will be denoted by Gi;
e; will denote the identity of G;. The group with the identity esex will be denoted
by Gi. The elements of G; will be denoted by g; (with indices if necessary).

Lemma 4. Let ¢;Rey. Then GiG; C G;.

Proof. First we shall prove that gre;€Gi. Let gre; e (. this means
that for any positive integer n (giei)n = en holds, thus eze; = en. By
Lemma 3 for the couple e;, ¢, at least one of the relations e;Rea, enRe;
holds. Let e;Rey, i.e. e; = eqe;. By the foregoing we have e; = e,. Let enRe,
i.e. ey = ey. Since gye; € Gn, we have gres = greien = gren = engiti. Since
for some integers m, n we have (gxe:)® = €1, gi = ek, we obtain e, = (gre))"" =
= (gres)™gre; = (grei)™2grengrti = (Jres)grgres and repeating this proceed-
ing we obtain after mn — 1 steps en = gi"es = exes = e;, therefore gies € Gi.
Hence gkgi = gi(egs) = (gres)gs € G q-e-d-
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Lemma 5. P; = U {Gy/ex € Erfes)} is a subsemigroup of S. Here Gy are
1somorphic groups and the partition of Py into the groups Gy yields a congruence
relation on Pj.

Proof. From Lemma 4 it follows e;Rex implies G%G; C G4. Similarly G4G C
C Gx. Therefore P; is a subsemigroup of S and the partition of P; into
Gri(ex € Er(ei)) yields a congruence relation on P;.

Clearly the mapping g; — giex is a homomorphism of G; into Gx. We show
that each element gx € G is the image of some element of G;. Since gye; € Gy,
we have (grei)er = grleier) = grex = gx, thus g is the image of gie;. Further
let guexr = Ji2lr, then giexei = (Ji2exes, whence di1 = gi2 (since exe; = éq,
gne; = gi1 , gizei = ¢i2) . This shows that Gy and Gy are isomorphic groups.

Lemma 6. Let e;Rey. Then Gigr C Gp, where ey € Er(e;).

Proof. First we prove that eigr € Gn, where e,e Er(e;) . Suppose that
(eigk)® = en, git = ex for some positive integers m, n. Therefore evidently
eien = ey, thus e, Re;. Further ese; = (eigr)™me;, and by Lemma 4 gre; € Gy,
Hence we obtain e;gre; = gres. Similarly as in the proof of Lemma 4 we get
enei = exe; = e;, hence e;Re,. Together with e,Re; we obtain e, € Er(e).
With respect to Lemma 5 we have gigx = gi(eigr) € Gn. Hence Gigy & Gh.

Lemma 7. Let e;Re. Then the following holds:

a) Let egy € Gm, €93y € Gu, (n < m), emRey; then e,97™ € G .

b) Let egt € Gm, gy € Gm (n < m), where if g™ = ex, then (m — n)/s.
We then have en = eey.

c) Let b) hold where at least two of the integers m, n, s are relatively prime.
Then G.g; C G for each v=1,2,3, ...

Proof. a) (eg})’ = en for some z. Hence e, = (eg7)" '(e,gy) and therefore
engi " = (eg3) Hegi™ ™) = (egh) (egi) € G,

b) Let m — n/s, this means s = k(m — n) for some k. According to a)
we have eier = ey = eglgi™ ™ = egie, gp g V" = egie, i " gl V.
Repeating this proceeding we obtain after k — 1 steps eex = e g (e, g5 ™) e
€ Gm. Thus e, = eey.

c) First we shall prove that g;'** = ez implies e,9; € Gix. Suppose egy € Gy,
which means e;exe; = e;, hence e;Reser. Then according to Lemma 4 and with
respect to the fact that by the assumption and b) e,g}’ € G holds, we obtain
egredr € Gi. Now egied = (egiee,)ds = egy™® = ewex. Thus e = eep.
Suppose that at least two of the integers m, n, s be relatively prime. We denote
them by x, y. We then have 1 = kx 4 ty for some integers k, ¢. Since eg},
egr, egieGix, we obtain egtieg? e Gy, whence egifegl = egt=tv —
= eigx € Gi:. Hence evidently eg; € Gy for each v=1,2,3, ...

Lemma 4 and 6 lead immediately to
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Theorem 2. The partition of S into semigroups P; (see Lemma 5) yields
a congruence relation on 8.
The following two Theorems can be easily proved:

Theorem 3. The set, E consisting of all Er(e:) ( for e; € I(8)) is a dually well-

ordered chain with respect to the relation R given as follows: Er(en)RER(es)
ﬂ:ﬁ enRe't .

Theorem 4. Let I be an idempotent semigroup having the property U. Then:
I = U Er(e;) where the elements Eg(e;) form a dually well-ordered chain with
respect to the relation R. At the same time Eg(e;)REg(er) implies Er(e:)Er(er) <
= Er(e;); Er(ex)Er(e:) < Er(es). Further exe: = e, for e; € Er(es), ex € Er(ex) (ex
are left identities for Eg(ei)).

Lemma 8. Let e;Re. Then the mapping gr — gre; ts a homomorphism of Gy
nto Gy.

The proof follows from Lemmas 4,5 and 6.

As a consequence of the foregoing results we obtain the construction of any
semigroup having the property U:

Theorem 5. Let I be an idempotent semigroup having the property U. To every
ey € ER(e;) we associate a group Gy all isomorphic to Gy. Denote Py = U {Grfeq €
€ Er(e:)} and define a multiplication in Py by the following rule: gign = (vigi)gn,
where ), is a homomorphism of G; into Gy.

Let $ be a set of homomorphisms such that for each Egr(e;)REr(ex) there
exists in $), a homomorphism of Py into Py (denoted by ¢f), where ¢ is the
identical mapping and @iy}, = ¢i. Denote P = U {Pi/Er(e;) C I} and define
in P a multiplication as follows: let Er(e;)REr(ex) in I and let g; € Py, gx € Pk,
then gigr = giligi), gr9s = (¥i9x)g:-

The semigroup P has the property U and any semigroup having the property
U can be constructed in this manner by choosing suitably I and .

Remark 1. In [4] the semigroup P constructed in the manner described
in Theorem 5 is called a product of semigroups P; over the semigroup I.
[4] deals with the structure of such semigroups.

We have the following special case:

Theorem 6. Let I be an idempotent semigroup each subsemigroup of which
possesses a unique left identaty (I is a chain). To each e; € I we assign a periodic
group Gi. Let $ be a set of homomorphisms such that if eiex = e;, then there
exists a homomorphism of Gy into G (denoted by ¢¥) with ¢! as the identical
‘mapping and iy = ¢i.. Let P = U {Gife; € I}. Define a muitiplication in P
as follows: Let eier, = eq, then gigr = gi(¢#¥q:), grgs = (@¥g,)9:. Then each sub-
semigroup of P possesses a unique left identity. Conversely every semigroup P
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each subsemigroup of which possesses a unique left identity can be constructed
an this manner.

Remark 2a. The statement that I is a chain follows from Theorem 3 and
Theorem 4 by which each Egr(exr) possesses a unique element.

Remark 2b. In [4] the semigroup constructed by the construction given
in Theorem 6 is called a product of groups G; over the semigroup I. [4] deals
with the structure of such semigroups.

Evidently the subsemigroup I(S) is isomorphic to I (see Theorem 5).
Accordingly we use the same symbols in J as in I(S).

From the foregoing we evidently have:

Theorem 7. Let the semigroup S have the property U. Then:

a) In J we have (e)r = \J Er(es) for Er(en)REr(es); further Frie;) =
= E’R(ei).

b) In 8 we have (e;))r = U Gy for ex€ (ei)r tn J; further Fr(e;)) = U G
_for (5 EER(ez).

In both cases the elements of Er(e;) are left identities of the ideals (e))r tn J
as well as in S.

Theorem 8. Let the semigroup S have the property U. Then:

a) In J we have Fr(e;) = {e:}; (ei)r N Er(er) = {es};

b) In S we have Fr(e;) = G, (ei)r = U Gy for ex € (er)r in J.

¢) (2)z in J and in S possesses an identity e;.

d) Let ey € Ex(e;), ex 7 ei. Then (e;)r C (ex)r does not hold.

Remark 3. (e;)z N Er(es) in J for Egr(eqn)REr(es), n # i can contain more
than one element of Er(exs).

Example. Let S be a semigroup given by the following multiplication
table:

al az as a21 asz a321 as31
a1 a1 a2 asz a21 as2 a321 asi
a2 @21 as as azi azz a321 as1
as as1 az2 as a321 asz 321 a31
a21 az1 az as az1 a32 a321 asi
az2 a321 agz as a321 agzz a321 a31
@321 a321 a3z ag a321 a32 a321 asi
ag1L asi a32 as a321 asz a321 asi

‘Each subsemigroup of § possesses at least one left identity. S is an idempotent
semigroup. We can obtain a graphical representation of S as follows: Small
circles are drawn to represent the elements of S. An oriented segment is then
drawn from a; to ax whenever a;Ray. (Fig. 1.) We have (a1). = {a1, @21, ase1, as1},
ER(a:s) ES {a;;, asz, 321, aal}. Hence ER(es) N (al)[, = {asz]_, a31}.
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Remark 4. Considering a left ideal L in J (not necessarily principal),
it is evident that there exists such an Eg(e;) that L N Eg(e:) # 0 and we have
Er(en)RERg(e:) for all Er(es) with L N Eg(en) # ). Then all elements of Eg(e:}
are left identities in L. i

a,

a a
321 M pig 1.

2. SEMIGROUPS EACH LEFT IDEAL OF WHICH POSSESSES
A LEFT IDENTITY

Definition. The semigroup S is said to have the property L ff each left ideal
of S possesses at least one left identity.
In this section we shall consider the semigroup S having the property L..

Lemma 9. e ts an identity of (e)r.

Proof. Evidently e is a right identity of (e)r. Further, let ¢’ be a left identity
of (e)r, hence e’e = e. Since ¢’ € (¢)r, we have e’e = ¢’. Thus e = ¢/, hence e
is a left identity. This implies that e is an identity of (e)z.

Lemma 10. For each e;, ex € I(S) at least one of the relations e Rey, exRe; holds..

Proof. Consider the left ideal of 8: N = (e1)r U (e2)r.. Let e be the left
identity of V. Then either e € (e1)z, ore € (e2)r. Let e € (e1)z, then by Lemma 9-
we have ¢ = e;. Thus ejes = e3, whence e;Re;. In the case that e e (e2)s
we prove analogously that e;Re; holds.

With respect to the property L we evidently have:

Lemma 11. The set E consisting of the subsets Er(e;) is a dually well-ordered
chain with respect to the relation R defined in Theorem 3.

Lemma 12. Let e1Rez, then eiez € Ex(er).
Proof. (eies)e; = ei(eze1) = e1, hence ejR(eies). Further ei(eiez) = erez,
hence (eiez)Re;. Together we have eies € Er(e1).

" Theorem 9. 1 (S) ¢s a subsemigroup of S.
Proof. Let for e;, ez € I(S) e;Res holds. Then eze; = ey € I(S), further
(8162) (6162) = 61(8261)62 = e1e2 € I(S), q.e.d.
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Theorem 10. Each element x € S belongs to some Fr(e)-class.

Proof. We have to prove that (x). = () for some ¢ € I(S). Let e be a left
identity of (x)r. Then e = sx for some s € 8. Let e’ be a left identity of (s)z.
Then e = e'sx, hence e¢’e = e. For some z € S we have ¢’ = zs, whence ee’ =
= sxe' = sxzs. But ee’'x = x (since ex = x, e == ¢’s), whence ee’(ex) = ex = x,
hence ee'x = x. Since ee’ = sxzs, we obtain x = ee’x = swzsx = eze, thus
x € (e)r. This means that (x). C (e)r. Since e (x),, we have (e)L C (x)z;
this, together with (z)r C (e)r proves that (x). = (e)r as required.

Theorem 11. S is a union of groups Fr(e) (e € I(S)).

Prcof. The following holds: Let (). = (y)r = (e)z, then (xy)r = (ey)r =
= (y)r = (e)r; further (yx)r = (ex)r = (¥)r = (¢). Hence Fpr(e) is a semi-
group. We have to prove that Fi(e) is a group. It follows from Lemma 9
that e is an identity of Fp(e). We shall show that for any x e Fr(e) there
exists an y € Fr(¢) such that yxr = e. We have already seen that e = sz =
= s(ex) = (se)x for some se 8. We shall show that see Fr(e). Evidently
se € (e)r, hence (se)r C (e)r. Let e’ be a left identity of (s)r, hence e’ = zs
for some z€ 8. From e = sr we obtain e = e'sx, hence e’e = e. Therefore
e =e'e = (2s)e = z(se), thus ee(se)r or (e)r C (se)r. This, together with
(se)r C (e)r proves (e)r = (se)r. To accomplish our proof it is sufficient
to put y == se According to Lemma 9, each Fy(e)-class of S consists of a unique
group, thus the Fi(e)-class is a group. According to Theorem 10 S is a union
of groups.

Lemma 13. Let e;Rey, then Fr(er)Fr(e:) C Fr(e:)-

Proof. e;Re; implies ere; = e;. Let x e Fr(e)), y € Fr(ex). There exists
an element z € Fr(ex) such that zy = ex, hence zye; = ere; = e;and e; = (yei)r;
this, together with the evident statement ye; € (e;) proves that (e))r =
= (ye;)r. This means that ye; € Fr(e;). Now yxr = y(eix) = (yei;)x € Fr(e:)
as required.

Theorem 12. P; = U {Fr(en)/2n € Er(e:)} ts a subsemigroup of S. Here
Fi(en) are isomorphic groups. The partition of P; into the union of Fr(es)
yields a congruence relation on Pj.

Proof. According to Lemma 13 for Fr(en), Fr(ex) CP; we have
Fr(en)Fr(ex) C Fr(ex). Hence P; is a subsemigroup of § and the partition
of P; into Fr(e,) yields a congruence relation on P;. The assertion stating
that F1(es) are isomorphic groups can be proved similarly as the same assertion
in Lemma 5.

From Lemma 13 it is evident:

Remark 5. Let ¢; be a left identity of the left ideal N. Then all e; € Eg(e:)
are exactly all left identities of IV.
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Theorem 13. Fr(ex) = U {F(e:)/e: € Er(er)}.

Proof. The definitions of the relation R and of the set Er(e;) implies
{e)r = (ex)r. Evidently U {F(e:)/e; € Er(ex)} & Fr(ex), since all elements
of a group generate the same right principal ideal. We show that U F(e;)
is equal to the whole class F(eg). Let (em)r = (ex)r; this means enRex,-
¢xRe,n, hence ey € Eg(eg).

Lemma 14. Let e;Rer. Then: a) Fi(ei)ex C Fr(eiex); b) Frle)Fr(ex) € Fir(en),
where e, € Eg(e;).

Proof. a) Let x € F(e;). Clearly xex = wesex, hence xey € (esex). Let e; = sx
for seF(e;); then eer = swey, consequently eser € (wer),. This, together
with ey € (esex);, implies (esex); = (x2x)y; in other words wex € Fy(eex).

b) Let x € Fy(ei), y € Fy(ex). Hence (ex)r = (y)r (since Fy(ex) is a group),
‘whence (eer)r = (eiy)r. By Theorem 14 we obtain ey e U {Fy(ex)fen €
€ Ep(e;)}. Further ay = (we))y = x(esy), whence, by Theorem 12 ay e
€ U {F(en)/en € Er(es)}.

Clearly we have

Lemma 15. Let e;Rey, y € Fi(ex). Then the mapping y — ye; is a homo-
‘morphism of F(ex) into F(e;).
Lemma 11 implies:

Theorem 15. Let J be an idempotent semigroup having the property L. Then:
J = U Eg(e;), where the set {Er(e;)} is a dually well-ordered chain with respect
2o the relation R given as follows: Er(e;)REg(en) iff eiRer.

Theorem 16. Let J be an idempotent semigroup having the property L. To every
en € ER(e;) we associate a group Gy all isomorphic to G;. Denote Py = U {Grlen €
€ Eg(e;)} and define a multiplication tn Py by the following rule: gign = (Yugi)gn,
where v, is a homomorphism of Gy to Gy.

Let $§ be a set of homomorphisms, where for each Eg(e;)REg(ex) in J there
exists in § a homomorphism of Py into Py (denoted by ¢F), where ¢ is the
identical mapping and @il = ¢.. Denote P = U {Pi/Eg(e) CJ} and define
wn P a multiplication as follows: Let Egr(e;)RER(ex) in J and let g; € Py, gk € Py,
then gigi = gil¢lr), gt = (Fige)ge-

The semigroup P has the property L and any semigroup having the pro-
perty L can be constructed in this manner by choosing suitably J and $.

It is easy to prove, that the foregoing construction gives a semigroup
of required properties. In consequence of Lemmas 12—15 and Theorems 11
and 12 every semigroup having the property L can be constructed in this
manner.

Remark 6. In case that each left ideal of S possesses a unique left identity,
each Kg(e;) contains a unique element, hence P; are groups. We can obtain
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a similar construction of § as in Theorem 6 (with the exception that G; need
not be periodic).

Remark 7. For a semigroup having the property L it is possible to give
a construction of § as a product of groups G; over an idempotent semigroup J
having the property L, with the multiplication defined by homomorphisms
(similarly as in Theorem 16): for e;Rex let grgi = (9¥9,)9:, gigr = (¥.9:) (¢£g),
with similar conditions for »n as in Lemma 14.

Remark 8. A semigroup having the property U has also the property L.
Therefore all results proved for the semigroups having the property L hold
for semigroups having the property U.

3. SEMIGROUPS, EACH LEFT IDEAL OF WHICH POSSESSES
A RIGHT 1IDENTITY

Definition. T'he semigroup S is said to have the property R iff each left idea
of S possesses a right identity. '
In this section we suppose that the semigroup S has the property R.

Lemma 16. For each e;, ex € I(S) at least one of the relations e;Ley, ey Le;
holds. ’

Proof. Let e; # ex. Clearly e; is a right identity of (e;)z, ex is a right identity
of (ex)r. Let ey be a right identity of (e;)r U (ex)r. Then either e, e ()L,
or ey € (ex)r. Let ey € (e:)r, this means that e,e; = e,. Since e = exe,, we have
e = exene; = exe;, hence exLe;. In the case that e, € (ex)r, we show similarly
that e;Ley.

Theorem 17. I(S) is a subsemigroup of S.
Proof. Let e;Le;, this means that e;e;r = e;. Further exeer, = ere;, whence
exeiere; = exeie; = exe;; hence epe; € I[(S).

Theorem 18. S is a regular semigroup.
Proof. Let z €8, let e be a right identity of (). Then ¢ = sz for some
s € 8, thus xe = wsx. Since xe = « hence x = xsx, which proves our assertion.

Theorem 19. Each element x € S belongs to some Fr(e)-class.

Proof. Let ¢ be a right identity of (x)r. Then xe = w, this means that
xe(e)r, consequently (x)rC (e)r. Since ee(x)., we have (e)C (x)z,
hence (x)L = (e)z.

Theorem 20. Each element x € S belongs to some Fr(e)-class.
Proof. According to Theorem 18 8 is regular, hence there is an s such that
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2 = xsx. Therefore xs = wsxs; thus zs is an idempotent, this means that
xs € I(8). Evidently x € (xs)r, s € (¥)r, this implies (x)r = (@s)r.
Evidently we have:

Lemma 17. Let e;Ley. Then either e;Rey, or e;, e; are incomparable.

Theorem 21. Fr(e) N Fr(e) is a maximal group of S.

Proof. Denote Fr(e) N\ Fr(e) =T. Let x, y € T. Then we have xe = ex = x.
This means that ¢ is an identity of 7. We have (x)r = (y)r = (e)r, (¥)r =
= (y)r = (¢)r. Hence (2?) = (yx)r = (ex)r = (@) = ()1, (¢*)r = (xY)r =
= (xe)r = (2)r = (¢)r. This says a2 €T. Similarly we obtain y2eT. At the
same time we have (zy)r = (e)r, (xy)r = (e)r, hence xycT. In a similar
way we obtain yx € T', which says that 7' is a semigroup. We shall show that 7"
is a group. We have e = sz for some s €S. Now e = es(ex) = (ese)x, hence
ese is a left inverse for z. We shall show that ese € T'. Since e = sx, we obtain
e = es(ex) = (ese)r, hence e € (ese)r; but clearly ese € (¢)r. Summarily we
have (ese)r = (e)r. Further we assert that e = xese. Namely e = xz for
some z € S (by the assumption (e)r = (®)r). Then z(ese) = wes(xz) = xe(sx)z =
= geez = xez = ¥z = e, hence e € (ese)r. Evidently also ese e (e)r, hence
(ese)r = (e). Consequently eseeT. We proved that 7' is a group. It is
evidently a maximal group, sincs all elements of a group generate the same
left (right) principal ideal.

Theorem 22. Fr(e;) N Fr(ex) can possess at most one idempotent.
Proof. Let ey, em € Fr(e;) N Fr(ex). Then (en)r = (ém)r, whence enen = ey.
At the same time (es)r = (ém)r, thus exen = en. Hence e, = ey,

Lemma 18. Let xeFi(e;), yeFr(ex) and let eLex. Then xye Fgr(e:),
xy € Fr(ewy) = Fu(y).

Proof. Since xe(e;)r C (ex), we have wxex =x. Since (y)r = (ex)r,
we have e = yz for some ze 8. Hence x = wer = xyz, whence z € (xy)r;
evidently xy € (x)r, thus (%)r = (xy)r. Further (x)r = (e;)r implies (xy)r =
= (esy)r C (y)r; this proves the second part of our assertion.

Theorem 23. Let each left ideal of S possess a unique right identity. Then I(S)
is @ commulative semigroup, which is a chain with respect to the relation L (R).

Proof. Let e;€ (ex)r; then e; = sex for some se 8, whence e; = sere;;
thus e; € (exe;). This implies (es)r C (exes)r.. Evidently exe; € (e;)r, and
(exe:)r. C (ei)r, hence (e;)r = (exes)r. Further: e; is a right identity of (e)z, exes
a right identity of (exe;)r. With respect to the uniqueness of the identity
we have e; = exe;. Further e¢; = se; implies e;er = e, hence e; = ere; = ejex.
By Lemma 16 I(S) is a chain with respect to the relation L(R).

Corollary. In such semigroups e;Ley implies e¢;Rey.
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Theorem 24. Let each left ideal of S possess a unique right identity. Then
each Fgr- (Fr-) class possesses a unique tdempotent.

Proof. Let (e;)r = (ex)r. According to Theorem 22 we have e; = e.
Analogously for the Fi-classes.

REFERENCES

[1] Petrich M., Semigroups certain of whose subsemigroups have identities, Czechosl.
Math. J. 16 (91) (1966), 186—198.
[2] Schwarz 8., Tedria pologrip, Sbornik préac Prir. fak. Slov. univ. v Bratislave 6
(1943), 1—64.
[3] Kolibiarova B., O pologrupdch, ktorych katdd &astoénd pologrupa md lavi jednotku,
Mat.-fyz. ¢asop. 7 (1957), 177—182.
{4] Kolibiarovd B., On a product of semigroups, Mat.-fyz. dasop. 15 (1965), 304—312.
{5] Birkhoff G., Lattice theory, New York 1948.
Received January 29, 1966.
Katedra matematiky a deskriptivnej geometrie
Stavebnej fakulty
Slovenskej vysokej $koly technickej,
Bratislava

141



		webmaster@dml.cz
	2012-07-31T16:17:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




