Matematicky casopis

Miloslav Duchon
On the Projective Tensor Product of Vector-Valued Measures

Matematicky ¢asopis, Vol. 17 (1967), No. 2, 113--120

Persistent URL: http://dml.cz/dmlcz/126705

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/126705
http://project.dml.cz

Matematicky &asopis 17 (1967), No. 2

ON THE PROJECTIVE TENSOR PRODUCT
OF VECTOR-VALUED MEASURES

MILOSLAV DUCHON, Bratislava

1. The aim of this article is to consider the following problem. Let measur-
able spaces (S, &) and (T, J), locally convex topological vector spaces X
and Y, and (countably additive) vector-valued measures p:% — X and
v:J — Y be given. Let us denote by symbols L ® 7, ¥ Rs T (¥ RsT)
the ring, the o-ring (the d-ring), respectively, generated by the sets of the form
EXF,Ee, FeJ. Let X & Y denote the projective tensor product
of the spaces X and Y. We ask under which conditions imposed on the space X
there exists a vector-valued measure 41: ¥ ®s7 - X & Y such that the
relation ‘

Q) ME X F)=uB)@wWF), Ec #, FeT,

holds.

We give the following definition.

A locally convex topological vector space X 1is called an admissible factor if,
Jor any locally convex topological vector space Y and for every wvector-valued
measure u: & — X and every vector-valued measure v:7 — Y, there exists
a vector-valued measure 1: S ®¢ I - X & Y such that the relation (1) holds.
(We suppose that & and J are g-algebras.)

Thus if a vector-valued measure takes its values in an admissible factor,
we can construct from it and from any other the projective tensor product.

It is true that every nuclear locally convex topological vector space is an
admissible factor. This proposition is proved in [4] in this form:

Let & and T be o-rings (6-rings). Let X and Y be locally convex topological
vector spaces and let X be nuclear. Then there exists a unique vector-valued
measure A: L Qs T (£ RsT)>X & Y such that (1) holds.

An adaptation [10] of the example given in [13] provides us with the normed
spaces X and Y, the bounded bilinear operation z==zo0y, z,ye Y, z€ X,
such that the vector-valued measure y : & — Y (& is the g-algebra of all subsets
of the set of nonnegative integers) can be defined, for which the function 4,
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ME XF)=puE)oulF)eX,E,Fe, extended on the algebra & ® &
by an additivity, is not bounded on & ® &.

Since every vector-valued measure defined on a c-algebra is bounded (see
[5, IV. 10. 2] or [6, Theorem 2.6]), we can see from the mentioned example
that the question if a locally convex topological vector space is an admissible
factor or not, is reasonable.

It is known that it is possible to divide all in functional analysis occurring;
concrete locally convex topological vector spaces (with exception of a few
cases) into two classes. We have on the one hand the normed spaces that.
belong to the classical part of functional analysis and on the other we have
the nuclear locally convex topological vector spaces (see e.g. [14]). Both
classes have the trivial intersection because only the finite-dimensional locally
convex spaces are both normable and nuclear. It follows that we must search
for admissible factors in the class of the non-nuclear locally convex topological
vector spaces.

In this paper we give some admissible factors. All given admissible factors
have ,,sequence* character.

2. Let X and Y be locally convex topological vector (abbreviated locally
convex) spaces. Let the topology of the space X be determined by the system.
of the seminorms {| |,},., and the topology of the space Y by the system
of the seminorms {| |z}s.5. X’ and Y’ are the dual spaces for X and Y,
respectively. For 2’ € X’ we denote ||x'||l« = sup {|<z, ")| : x|« =< 1} for every
a € A. Similarly for the space Y.

The topology defined on the algebraic tensor product X ® Y of the spaces X
and Y by the system of the seminorms

(2) ]in ®J1,l(a fedxB = 1nfz [uilalvilg, ( B)ed x B,

=1
where the 1nﬁmum is taken over all expresswns Z u; ® vy, which belong to
=1

the same class as Z 2; @ ¥, is called the projective tensor topology (denoted
t=1
by &). The completion of the locally convex space X ® Y under thls topology

is the projective tensor product X & Y of the spaces X and Y. (These notions
are introduced in [7], [12], [2], [14]).

3. To start with some propositions.

Let us remark that there exists only one vector-valued measure 1 : & ®s7 -
— X & Y such that the relation (1) holds (if it exists). Thus the problem is
only as regards its existence.

Proposition 1. Let X be an admissible factor and Y any locally convex space.
Let & and T be o-rings (6-rings) and pu: S > X and v: Z - Y be vector-
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valued measures. Then there exists a wunique vector-valued measure
AP R I (L RsT)>X &Y such that the relation (1) holds.

Proof. Let & and J be o-rings. For every a« € A and f € B there exist
the sets Sz e & and TseJ such that |u(E — Sy)|la = 0 for all E€ & and
p(F — Tg)|lg =0 for all F eI ([9], Theorem 3.1). Evidently, we can now
proceed as in the case of o-algebras.

If & and J are d-rings, then to every set G € & ®s 7 there exist the sets
Ee¥ and FeJ such that G CE X F. Further, the system of those sets
Ge ¥ ®oT, for which G CE x F, is the c-algebra of the subsets in £ X F.
Again we can proceed as in the case of c-algebras. The proof is terminated.

It is known that for any topology & on the algebraic tensor product X @ ¥
we have for 2ze X ® Y (X ® Y is the completion of X ® Y under &)

|z|(~;‘ﬂ) é Izl(:z,ﬁ)7 (“: /3) EA X B

(see [2], IV. § 2 (2)). Hence we have immediately

Proposition 2. Let X be an admissible factor and Y any locally convex space.
Let & and T be o-algebras- (o-rings, o-rings) and pu: > X, v: I > Y
vector-valued measures. Then on & R T (L Qs T ) there exists a unique
vector-valued measure A with values in X & Y such that the relation (1) holds.

Proposition 3. 4 subspace X1 of an admissible factor is an admissible factor.
The proof is evident.

Proposition 4. Let locally convex spaces X and X, be topologically isomorphic.
If X is an admissible factor, so is X;.

Proof. Let T': X - X; be the topological isomorphism of the space X
onto the space X;. Then there exists the topological isomorphism U of the
space X & Y onto X1 & Y such that U®y) = (T2)®y for all ze X,
yel.

T-10 u is the vector-valued measure [5, IV. 10.8] defined on & with values
in X. T*ouE)=T"YuE)), Ee&). Form the vector-valued measure
M LRI —X& Y in order that

ME X F)=T1oulE)®»F).

Then we take A= U oA (i.e. AG) = UM(F)), Ge L ®RsT) and 1 takes
its values in X & Y and A& X F) = u(E) ® »(F).

4.

Theorem 1. A space 11(I) is an admissible factor.

The space 11(I) is the Banach space of all unconditionally (in this case also.
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absolutely) summable numerical functions [£;, I] defined on an index set I,
where the norm is

&2, 10 = 2 1.

iel
Proof. Since p is the (countably additive) vector-valued measure defined
on the g-algebra & with values in I1(I), thus for every £ € & the element
WE) e I(I) has the form '

ul) = [&(E), 1],
i.e. ,,components‘ of the function u are the set scalar functions defined on
the o-algebra &, additive, for u(£, U E2) = [§i(E1 U Es), I = u(E1) + u(B2)=
= [Ei(El), I] + [Ei(Ez), I] = [fi(E]_) —+ fi(EQ), I],El NEy, = O,El, Ese SP, con-
tinuous in an empty set (hence countably additive), for if we have K, C E,,

NE,=0, E,e &, so |u(lln)]—0,n—> oo, means that
n=1
> |&i(Bn)| > 0,0 — o0,

el
i.e. all ,,components |&;(E,)| - 0, n - o0, uniformly in 4.
For the sets of the form

k
(3) G=UE; X Fy,

i=1
where the union in (3) is disjoint and E;e &, F;e 7, with regard to the
additivity and the condition (1) we put

k
4) NG = _Zl w(Ei) ® v(Fy).

It is easy to see that the function A is in this way unambiguously defined on
the algebra & ® Z of the sets of the form (3) and is additive (ef. [8] § 36 (8)).

We must prove that the function 4 is countably additive and that it can
be extended to a countably additive function defined on the c-algebra & ®q I~
with valuesin 1 § Y.

We will show that for every § € B there exists the finite positive measure m#8
defined on & ®,; 7 with the property that if mf(G)— 0, then [A(G)|; >0,
GeSRT. ‘

In proving this Theorem we use the fact that ([2], IV. 3.5 or [14], 7.2.3)
for every complete locally convex space Y the projective tensor product
PN & Y can be identified with the complete locally convex space 11(I, Y)
of all absolutely summable functions [y;, I] with values in Y, where the
locally convex topology is given by the system of the seminorms

[yi, 111s = leyilf” BeB.
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By the isomorphism H: I}(I) & Y —1(I, Y) we have for Ge ¥ Q@ T

HA®) = ZM(Er v(Fy))=H Z[EiEr I1® »(Fy) )—[zfz Ey)v(Fy), I].
r=1

Since for every 7 € I the function &; is the scalar measure defined on & and »

is the vector-valued measure, thus by [3] for every ¢ € I there exists one and

only one vector-valued measure & X v: & ®¢J — Y such that & X

X B X F) = &EWPF), E€ ¥, FeJ. Whence it follows for Ge ¥ ® I

HUG)) = [2 EdErp(Fy), I] = [& X »(@), 11,
r=1
where (see e. g. [14], 7.2.3) [& X »((), I] is the absolutely summable function
with values in Y, defined on I, i. e. for every g € B we have for Ge ¥ ® I

& X »(@), I]ls = ;Iéz X »(@)]p < + 0.

It is known that ([5], IV. 10.5, [9], 4.2, [6], 3.2) to every vector-valued measure
defined on the o- algebra, hence also for &; X », 4 €1, there exists the finite
positive measure m?, defined on & ®, 7', for every f € B such that mf(Q) <
= & X v(@)|g, Ge .SPQ,, , €1, and further, |& X »(G)|g— 0, t€l, for
mf (@) - 0.

Let o C I be an arbitrary finite subset. Take for every f € B the finite sum
for Ge ¥ Qe T ‘
Smi(G) < S miS X T) < 3 [ X oS X Dlp =
= 2 [E@®IMT)ls = W(D)ls 2, 168 = W(T)|s . K < + o0 (K const.)

t1€0 1€0C

Define for every § € B the set function m# on & ®s.J by the relation:
mb(@) = > mi(G) = sup {> mf(G) : ¢ C I}.

tel i€0
The function m#4 is the finite positive measure [1, I . 10] with this property: |
If mA(G)—> 0, then sup {> mi(@):0CI}—>0, i.e. m{(G)—> 0 uniformly

1€0

with respect to ¢, i. e. |& X »(G)|s - 0 also uniformly with respect to ¢, hence
also > |& X »(G)|g — 0 for an arbitrary o C I, and thus also

- > & X v(@)g >0,

tel

i.e. for every f € B there holds |[& X »(G), Iz — 0 for m8(GQ)— 0. Since,
as we have remarked, we can identify I1(I) & Y with 11(Z, Y), it follows that
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for every fe B there exists the finite positive measure mf such that for
mb(@) >0, Ge S ® T, we have |A(G)|; > 0.

We have proved that A is the set function, continuous in an empty set,
on & ® 7, hence countably additive on & ® J, and further it can be
extended [9](4.2) to the function A on the ¢-algebra & ®s Z such that the
relation (1) holds, and 1 takes its v values in I{(I) Y, A(Q) = A(@),Ge S R T
The proof is completed.

From Theorem 1 we obtain

Theorem 2. A Banach space with an absolute basis is an admissible factor.
A Banach space X has an absolute basis [e;, ¢ € I], where I is an index
set if every element x € X can be written in the form

= e,

rel
lledll = 1, and the scalar function [£;, I] is absolutely summable, i.e.

D&l <+ oo

tel
in the sense as in Theorem 1. In other words, the function [&;e;, I] with values
in X is absolutely summable (cf. [2], IV. §1. 6 or [14], 1.4.1).

Proof. Since [e;, I] is an absolute basis of the space X with |les|| = 1, then
the mapping 7T I(I) > X, defined by the formula T[xz;, I] = > xe; is the
tel

topological isomorphism of the space I1(I) with the space X (cf. [2], IV. §4 (1)).
The result now follows from Proposition 4 and Theorem 1.

'Theorem 3. A perfect space of sequences A is an admissible factor.

A denotes the space of sequences &, = [&y, n € N] (I is the set of positive
integers) of complex numbers, where the locally convex topology is defined
by the system of seminorms 4 = {«}

“(En) = Elltxnfnl ’ &n eA*

where A* is the dual space of sequences which consists of all sequences a,

for which 3 |anés| < + oo holds for an arbitrary &, €A. We suppose that A

n=1
is perfect, i.e. A = A**, where A** is the dual space for A* (see [11] and [15]).
Let us remark that for example the space I, p = 1, is the perfect space, other
examples can be found in [11].

On the space Y we use the system of seminorms B = {8} (see e.g. [12],
1I. 4. 13)

yls=sup{{<y, ¥ >y e,y =1}
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Proof. Similarly as in Theorem 1 we have for every E € & u(E) = £.(E) €
€4, &, n € N being the scalar measures defined on &.

As in Theorem 1 we define the function A on the algebra & ® J with
valuesin 4 & Y.

We must show that 1 is countably additive on & ® < and it can be extended
to the function 1 defined on & ®, 7, A(G) = AG), G = S R T

In proving the Theorem we use the fact that by [16] for every complete
locally convex space Y the projective tensor product 4 & Y can be identified
with the complete locally convex space A(Y) of all sequences 7a, yne Y,
with the property that all series > ouyn, &y € A* are absolutely convergent.
The locally convex topology on A(Y) is defined by the system of the seminorms

|§n|;ﬂ,ﬁ = Z loca| |ynls, an € A*, BeB.
n=1

To the element A(#), Ge ¥ ® I, G = U E; X Fy,

i=1

k k .
MG) = Zlu(Ef) ® v(Fy) = Zlfn(Ei) RvF)ed Y,

——
there corresponds the element ZEn(Ei) () € A(Y). By [3] we can write

i=1

-

& X ¥(Q) = Zén (Bq) v(Fy).
1=1

We have
Ién X v(G)Iam 8 — Z |“nl [5” X V(G)Iﬁ < + 0, &n EA*, ﬂEB.
-1

For every ne N and every f € B there exists by [9] the finite positive
measure mf such that

mi(@) < 1n X ¥(D)s, Ge S @ T
and
l&s X #(@)s >0, if mf(G) 0.

Consider for every f e B the sequence of measures mB. For an arbitrary
on € A* we have

oo

S Jaal mi(@ gi Joal m2(S X T) <z Joal [ X #(S X T)g =

n=1

oo

= 2, lau| &n(S)] (T)|g = M(D)Is ill“ul £a(S)] = (T)|sK < + co.
n=1 n=



Define for an arbitrary oy € A* the function m# for every fe B on & Q¢ T
by the formula

mA(G) = 3 laalmi(G).

The function m# is the finite positive measure defined on & Qs 7 with the
property: If mé(G@) - 0, then

sup szn|mﬁ(G‘) -0, ie. sup |og||én X »(@)|g—0,
n

hence also

> lan| | En X ¥(@)|g = 1&n X ¥(@)z, 5> 0 for mb(G) >0, e ¥ ® T .

n=1
It follows that the function £, X » is countably additive, hence the function 1
is also coutably additive on & ® < and it can be by [9] extended to the
function 2 on & ®s J with values in 4 & Y such that the relation (1) holds.
The proof is completed.
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