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MATEMATICKO-FYZIKALNY CASOPIN SAV. 16, 1. 1966

THE REPRESENTATION OF INERTIAL PARTICLES IN THE
LIE ALGEBRA OF THE LORENTZ GROUP

JURAJ VIRSIK. Bratislava

Some Lie properties of the general Lorentz group are investigated and an
application of them to the space-time structure of the special velativity theor
is given.

All the matrices dealt with are supposed to be real. The Lie group of regula
(n < n)-matrices X . |2*] is denoted by GL(n, R). Let G [gan] be a tixed
regular diagonal (n > n)-matrix. The matrices X with elements «/F satisfving

n(n -+ 1)

the equations

(1) FRC gupatkpbl gl o] (h

form a subgroup O((/) of (/L (n, R). This can be casily established observing
that (1) is equivalent to X*G'X -~ (7, where X* denotes the transpose of X
[n other words, H((7) is the general Lorentz group of matrices X which leave

imvariant the quadratic form
(2) £ ErGE
’]

on R*. Note that O(F) (K the unity matrix) is the orthogonal group Tinj
and O(L). with L, the diagonal matrix of the form

(3) B s S8 (o),

is the usual full Lorentz group.
Next we shall explicitly show that (@) is a Lie subgroup of /[, (n. IV
and point out a concrete local chart of (H((7) containing the nunity clement £

Lemma. The Jacobian of (1). i. e.

(*) Summation over repeated indices. No geometvieal™ difference ixomade hetween
upper and lower indices.
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Py
(4) det ( with k-2 1,4 =3

el

laken al the point I, is non-zero.
Proof. Direct differentiation of (1) gives

alk!
(5) B gndie A gridn
el
. . e . n(n 1)
(0 15 the usual Kronecker symbol). This is a matrix of order for
: »

¢ J. k1 Let us suppose there exists a non-trivial svstem of numbers,

. U ‘
yR (ko 1) satisfving the - linear equations

(6) N (gudi - gridi) Yk 000
sl
If we detine 47 0 for i > 1 and denote Y - |y#!] then (6) asserts that the
matrix /(1% - V) has zero elements on its principal diagonal and above it.
Furthermore it is also symmetric and hence G(Y* 4 V) = 0 i, e. YV - 0.
Thux the determinant (4) is necessarily non-zero.
Applyving the implicit function theorem one can find a neighbourhood #,

: . . n(n - 1) _ . :
of the origin ¢ in RN [N = —-n ),un(xlghbourh()()d % (E) of the matrix £

D)

in G (O provided with the topology induced by the natural topology
in £2") and a homeomorphism ¢ #(K) -~ 9. This ¢y has the properties:

. . akt for ko> 1
-, S Vopidy Rl — ¢ -
(7a) N I E Y I(ai7) for k= |

where A8 (A -2 1) are the (analytic) functions obtained by |solving the equa-
tions (1) with respect to x# (b < ). and

(Tb) q [)(ﬁj) = (0,

Thus the pair (Z(F). ¢o) defines a local chart on (). It can be easily shown
that the family of charts (A4 . #(F). ¢4) for all 4 e 6((). where ¢4(X)

go(-1 '.X). provides () with the structure of an analytic submanifold of
(L(n. I). Moreover (O((7) is a topological group with the topology induced
by the topology in (/L(n, R). Henee it is an N-dimensional Lie subgroup of
(. ).

-

Lemma. 7The functions in (7a) satisfy the equations



cho

(O {Jinif o
cats
. . C . . b
for - hod g, widh Gey - O fJor a2 b G Jora 2. "
Hoa
Proof. Differentiation of (1) provides
Pey \. il ohab
T By ok =
il ”‘?7‘ oath il
1. e, using (H)
(" ivl/’/
(8) gud g L D (a1 gradr) | {C) 0.
W h aatt

Note here that gpoy 0 for all £ (07 = ). Given o fixed pair (70 - )

(i 1) ’
(8) is a svstem of cquations possessing aunique solution (¢f the lemme
A , ‘

above) Hence it suffices to show
(9) > (GaomginGia - Gradugindin)  didp

w=h
This, however. is evident: The first summand in the bracket is zero tor cach
k= land « < b. The second one is non-zero only if [ i. k- with both
« - b~ kandits value is g5 The same. of course. is true about the right
hand side. Thus the lemma is proved.

The Lie algebra gl(n. R) of (/L(n. R) consists of all the (1« w)-matrices
and the product is given by (. B) > AB - BA (multiplication of matrices).
Kach 1 =gL(n. R) can be written in the veetor form

A \ ekt ‘ (7).
m cokl
Let g((/) be the Lie algebra of B((/). It is a subalgebra of g/l(n. 1) and the

homeomorphism ¢ defines a canonical basis

. s
(10) Oiy= Dl (E) i
I cakt

where [7;; are the vectors in g(f7) associated with the coordinates given by the
mapping ¢o. i. e.
.y a(f- g, I) . .
Uij())(E) (). @+

ol

for cach function f differentiable in a neighbourhood of £ in (/L(n. R).
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Applving (7a) and the preceding lemma one finds

cf ~ o Oh*!
[‘i' E) . g h" . ‘ E - - (I/ -
HNE call (%) ST cakt ( oxti @
¢ S ;
T gudie (O, 0>
("."’7’] Py (,.UAI

Comparison with (10) gives

”/}",- "f"} for I > 1,
Kl ~ A
W g g for [ = 1.

The elements T 1] e q((¥) can be expressed in the form

I for kb > 1
S gugud for k1.
-

B N )i A

(I t ,A—«.I) w;
! J

G

Note that the last expression is zero if L= L

Proposition. The matric T e gl (n. R) is an element of the Lie alyebra g{()
if and only if
(12) TE GG 0,

Proof. Let 7" ¢ g((7). Then the (a, b) clement of the matrix on the lett
hand side of (12) is
(l;;) i , (/(.rifij{7jll B Gt | ,(](mtah!ihh- (‘.?)
b o a thisis equal to

it GJaaforaa??Gor, = 0.
10w (13) gives
.(/flﬂ,(iml’()ub i .’qu”""{}l»h == 0,

The case « his evident.

Conversely det (0 satisfv (13), A similar consideration vields (11) . e. d.

Fach clement 7 of the Lic algebra gl(n, R) generates a one-parameter

d -
subgroup [y S0y of G L0, ) with -1°(0) Toice dp(0)y e,
do Jo-o
Particulavly 7" ¢ q(@) induces ¢ = () for all 0 e R. The basis {7;(0 -~ j)
) n{n 1) o
ot q(f/) generates one-parameter subgroups [ - St

() No =unmnation applied in the rest of the proof.



The exponential mapping exp: q(¥) -~ B(((7) given by exp 7 (1)  oF
provides a homecomomorphism of a neighbourhood of the origin in (/) onte
a neighbourhood of £ in G{(7) (cf. |1]).

FFor the sake of simplicity and physical interpretation we shall restrict onr
following considerations to the case (f = L . % - will denote the proper Lorentz
group.i. ¢. the component in (L) containing £. 1t consists of space and time
orientation preserving Lorentz transformations. The matrices 1755(0) can be
given now an explicit form. We have I5(0) - " or. after having solved
the corresponding differential cquations,

cos ) sin 0 0 O
sin ) cos ) 0 0

() 0 o 1 o "
() (8] 0 i
cosh 0/¢ 0 0 e sinh ¢
. 0 ] 0 0
Fa(0) 0 01 0
/¢ . sinh /e 0 0 cosh O/¢

respectively, with similar expresions for £(0). sa(0). or for o). ()

respeetively. Henee the one-parameter group [ (4 = ¢ - )) represents all
the space rotations in the (¢, j)-coordinate plane while 17 ( 1.2, 3) cor

respond to parallel frames moving along the j-th axis. (%)
The subgroup of 6+ consisting of matrices of the tvne

v )

where Py is a (3~ 3)-orthogonal matrix with det Pz > 0. is denoted by O
It is clearly a Lie subgroup of 5+ its Lie algebra being the vector subspace v
of q(L) generated by the veetors {7, Uy as. The veetors (7 (e 1y
generate a vector subspace m <= g(L) so that q(L) — v+ m. Clearly v
is a subalgebra of g(/) but this is not true about m. Nevertheless there ix
a (local) homecomorphism of a neighbourhood of the origin in nt onto a neigh-
bourhood of the unity class in the space /O of right cosets TN This
homeomorphism is a restriction of the mapping

(14) Texpint- - GO,

where 7 is the projection in G+/O and 6 /O is provided with the induced
coset topology (cf. [1] Ch. T1. Lemma 4.1).

(*) ..Parallel”™ means here always including orvientation.
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Our next task is to show that in this special case the mapping (14) is a homeo-
morphism on the whole of ut onto & /0. We shall first prove that (14) is
a one-to-one mapping of m onto /0.

One can give a physical interpretation to the space 6 /0. The matrices of
O+ represent inertial observers of the special relativity theory. one observer
heing pointed out as corresponding to the unity matrix £. We shall call him
the original observer. Each  coset of 51/O represents a class of observers
moving with a common 3-velocity vector but their frames (of orthogonal space
coordinates) arbitrarily turned. Thus a coset of $+/O can be characterized by
inertial observers without frames: we shall identify them with inertial mate-
rial particles and call them simply particles. A right coset of G+/O will be
called an 1P-coset.

An inertial particle can be equipped with a canonical frame — a frame with
its axes parallel to those of the original observer. This canonical frame of the
particle defines a Lorventz matrix of special kind. Let us call it an IP-matrix.
I'rom the intuitive point of view it is quite natural that the correspondence
hetween TP-cosets and 1P-matrices is a one-to-one. Nevertheless we shall give
a mathematically strict proof of this statement (cf. the proposition beilow).

It is known that cach X e &' can be written as X = 2.8, where P e D
and N is an 1P-matrix. Morcover each TP-matrix (5 F) has the form (cf [2])

q 1 )

fs -l Wy A
9
o2

/ =~
gl v q
. . > 9 R
with o - R e R S A LR s Wa == [vwy],
2

where ey, vz, vy are the components of the velocity vector v of the particle
with respeet to the coordinate system of the original observer.

Proposition. Kach 1P-coset contains one and only one IP-malriz.

Proof. As stated above, cach coset of O contains an IP-matrix. Suppose
a coset contains two IP-matrices, 1. e. Se — PS8, for some IP-matrices Sy,
No:o 2¢O, Then direet caleulation gives

, q — 1
s o\ (B Wy g

(15) rs, (03 l)‘ ’ ey /

) ' =/ q

q 1
P PalVs - qPav®
= 2
-qfciv q

and comparing the lower rows of P8 and of Sz one gets S, —= S,.
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Hence there is a once-to-one correspondence between the points of the open
hall 23 & 2% + o5 = ¢ and the [P-cosets. (15) gives an explicit expression of
this correspondence: If X [xi7] e ', the triple (¢, 20 7)) corresponding 1o
the class of X is given by

2

16 ;
(16) .

Now one can find the explicit form of the mapping (1+4) simply by computing
the elements of the fourth row of the matrix exp 7, 7" e ni. For this purpose
let T /]('.;1 ! f«_)[ ' o /:;('.13 . The matrix

exp 10 [0y (0e I

i~ the solution of the system of differential equations

d
ety ). T
dn
with I'#(0) K. Denoting I'0(0) [y and 1~ |5t 15 one gets
e
() sinhete b4 1 0

¢l
) o cosh et

or. with respect to (16) and e K.

¢l X
. ") - tghedt fort 0
e 0 fort o

Thix formulac can be inverted in a unigue way

(S i
: I : arceosh ¢ for » -~ 0
(lx) cr

I 0 for e 0

Thus the mapping (I4) is a one-to-one. It is also a homcomorphism asx one
can casily sce from (17) and (I8) realizing that the topology in 0 O ix such

~

that 7 isx continuous and open. We may sumn this up in the
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Theorem. The mapping . cexp is a homeomorphism of the linear subspace
m o q(L) owto the space OO of I P-coscts. This homeomorphism is given by
(17) resp. (18) and maps 1 P-coscts corresponding to particles moving along he
k-th axis onto vectors in m colinear with U .. Morcover it represents the  [u-
mily of particles moving in @ given direction as a subspace of colinear veclors in .

Note that in our considerations the inertial particle is completely characteriz-
ed by its 3-velocity vector and no attention is payed to its position sayv in the
zero moment of the original observer. So we can always suppose the particle
passing the origin of the original obsevver (and also of the others) at this
moment.

Up to this time we have used the one-to-one correspondence hetween particles
and 1P-cosets provided all the measurings have been made with respect to
the original observer. If p denotes the particle in view and & (p, /) the cor-
responding coset of 0/ then A(p. F) is given by the triple (v, o, v3) des-
cribing the 3-velocity vector components of the particle from the point of
view of the original observer. Caleulating the velocity vector with respect
to another observer. say given by the matrix Xg € 57, one obtains in general
an other triple (¢, 25 #3) defining an another 1P-coset. In order to get expli-
citly this new triple it suffices to caleulate the lower row in the matrix YX, '
where Vi an arbitrary matrix of the [P-coset given by the triple (v1, 22, #3).
FFormally it can be shown that the homeomorphism (14) defines a unique
analytic structure on /O with the property that 51 is a Lie transformation
aroup of /O (cf. [1] Th. 4.2).

We may connect with each particle p and cach observer given by XNy ¢ ()
an I P-cosct I(p, Xy) defined by

hip., Xo) = hip, K). X, .

In accordance with the considerations above the triple (e, 72, 3) corresporud-
ing to the TP-coset 2(p, Xo) is nothing else but the 3-velocity components of
the particle with respect to the observer represented by the matrix X.

On the other hand the lincar subspace nt oz g(/12) may be considered as a li-
near space of right invariant vector fields on . Henee there is a canonical
one-to-one correspondence 77 Xo(7T) between the vectors of nt and  the
veetors of a linear subspace ni(XXNy) of the tangent space to O at Xy. Let
log: O*/C > denote the inverse of the homeomorphism (14). Given a fixed
particle p one can define a continuous vector field on ¢ by

No- = BNy (Xo log) E(p, Xo).

It ix not difficult to see that this is even an analytic vector tield on 5+,
The field Xg ~F,(Xo) is uniquely defined by F(F) = log hip, &) and for
a fixed Ny o 7 the correspondence p -~ F (Xy) is a one-to-one. The physical

SY



meaning of this ficld can be found in the following: Given F_(.Xy) one calculates
its components /- with respeet to the basis Xo (M) (& 1.2, 3), uses (17)
and gets the components of the 3-velocity of the particle measured by the
observer connected with the matrix Xo. In particular Fo(Xo) 0 means that

the particle pis in rest with respect to X,
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