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MATEMATICKO-FYZIK ALNY CASOPIS SAV, 16, 1. 1966

A GENESIS FOR COMBINATORIAL IDENTITIES

PAVOL BARTOS, Bratislava
JOSEF KAUCKY. Bratislava

The object of this article is to prove the following
Theorem. Let
ai, b= 0, 1,2, ..., n,

and .
X )= 12,3, 000 m

be the given complex numbers with the condition that the numbers a; are distinel.
If e denote

n

< a; — x1) (a; — @) . (ap —
N(m. n) \ ( ! ) (e : ) ] ) N
(i = ag) (g iy 1) (@ — aip) o (w; — ay)
then
" w1

(1) St bon) > a2y,

-0 -1
(2) S(n, n) == 1,
(3) S(m, n) =0, m < n.

The next sections contain two proofs of this Theorem. The first proof uses
the mathematical induction, the second proof is based on the calculus of
residues. By the method used in this proof we can evaluate also the sums
S+ 2, n0), S(n -+ 3, n), ...

Finally, using the above Theorem, we derive in the last section some com-
bhinatorial identities.

(&7

a) First, we can show that for S, ») the following recurrence holds
> o

(4) S, n) = Sm — 1, n — 1) -+ (ap — &p)S(m - 1, n),
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FFor this purpose we write successively
Or THIS purpose we write successively

0o
, e =) (ap ) (g 1) (dt Uy -y~ )
N, n) N : - : :
T (i ao) (i ) (g aga) (e )
(ety 1) (ay RISY I (70 )
(n (o) (rty wy) ...y Uy 1)
i 1
S (a; ) (ai ) o (g 1)
(g y) (g i) (W — aiq) (s 0y 1)
sl
N (l(,- .I'|) ((I,' - J'-_)) ((I,' Loy 1)
(1 ) c
1'_(, (et II()) (ll,' o ]) (ll,' i ) ... (et ()
(cty 1) (uy o) o (U = ) ,
(1, U - S(m l.n 1)
(¢t y) («y r) ... (ay Uy 1)
" \
s (((,‘ .l'l) (((,' )L (-‘/,‘ o ])
(et ) . o
T (ag y) ... (g i 1) («; i) . (g )
SN(m . n 1) b (e = IS L. n)
=0 that the required relation is proved.
IF'or the following we need also the expressions S(1on). w1
Denoting
o
A \ :
ol wy) o (a ag) (w i) o ay)
" |
By - '
— (a; ag) ... (a; ;) (a; i) ... (y)
we have
g
. o; -
Gy Sy -
o (ag o) ... (a; ;1) (a; Wi1) ... (a; )
Ay B
and
I
N p —
S(hon 1) \ : -
ol ag) oo ap ) e ) (g ap)(d o ag)
" '
\\ (L = Uyl -+ Ay — 2 ‘y
ool ag) o i) (e ) () (e )



(R £) - I
(i r o) (v ar) oo (@i dy)

wil
N :

T y) . (et ;) (g Wiz1) oo (i — tyiy)

i

By o (a0 B A4 1)
<0 that
{6) Nl 1)y = B) A (g — 2)Bne +1).
h) Now we prove that
7 S(ow)y 000 o L
We proceed by induction. Because
S(1.2)
(o -0 ay (g — X1
- - . S - *, n _—

. — 0,
(¢t ay) (g (i) (et o) ((r - ) (tt2 — ap) (a2 — ay)

Ui assertion is true for o = 2. We suppose further that (7) holds for some
Pi
y 2. Because oy is an arbitrary number, this assumption says, with respect

{o (D), that
o) (n) 0.

Let us now cansider the equation in the variable xy
) S - 1) - 0.
IFron (6) with use of (8) we have

S(hw | 1) (agr )B4 1)

<o that thix equation has the root ay - vy, o But S(1, 2% -1+ 1) is & symmetric
function in «; so that (9) has also the roots a;, ¢ == 0, 1, ..., ». The equation (9)
ol degree Tin the variable p has more than T roots, therefore it is an identity.

We have shown that if (7) holds for some n == 2) then this relation holds
also for n + 1. henee it holds generally.

¢) To prove the correctness of (3), we proceed by induction with respect
to m. Beeause (7) holds generally, the relation (3) holds for m == 1. We suppose
now that (3) holds for a given ne = m’ = 1 and all n > m” and we will prove

that also

110) S’ bol,n) 0, 0 >m' 1.



But in virtue of the recurrence (4) we have

’

Sin' v bon)y o Sn'on 1 & (a X, N )

" n

and both the sums on the right side of this cquation are zeros in aceordanc
with the assumption because from » " o it follows that w - on” and
" [T

Thus the relation (10) holds, the induction is finished and the relation o3
established.

d) It remains to prove the equations (1) and (2). Beeause

'y A oy 2
NINE g
1y oy " tl
the equation (2) is true for o Lo Supposing that 1t holds for some »oowe can
show that also
(1) S o o) .

But according to the recurrence (4) we have

A7 AT B S(rony v () L) S m 1) N{sioosi) |

hecanse i virtue of (3) N, w1 0. Therefore (2) helds aenerally,
In the same wayv we prove the equation (1), For » Fothe relation holds
hecause
' (g ey (o 2y o) ()
Se2oh) 1 oo Ly )
2 “y i N

Now we sitppose that for some w
NICTEEE )| N N 2

and we will show that

But using again the recurrence (4) we obtain

N o 2on 0 D) St b ooe) o (a0 L 2) S (Y 1)
" w1 " .?
N, \ B B R DV RN L R } -
i o P S
because i virtue of (2) S(wo bow (1) 1. (1) holds therctore gencraniy



3
Lt
) (v ) (e o) (i 2 A gttt 1 gt 2
and
(L) (v ag) () L () == at il TRt e Toat

he the given polynomials and let the numbers «; be distinet.
We wish to find the values of the integrals in the equation

A / !
o) l I “\y |
(13 da dy .
) o | oglr) omi | (’l
: y%y
e ¥

where ¢ s any cirele with the center at - 0 having the radius so large that
the points a; are all inside ¢ and ¢ is a civele with the center in the origin.

The value of the left-hand expression is equal to the sum of residues of the
function

J)
q()

F(.)

at the simple poles oo I we denote by o the residuum of F)y at a;. then

i, - lim (1 ”/) /(1) o 'f(””

o glo)  y'(a)
(g ) (e we) ()
(rt; o) <o (- ) (i i) o g )

=0 that the left-hand side expression of (13) equals S, w).

To cvatuate the expression on the vight side of this equation, we denote

1
J p
(<(y)

B J

- -

Y

and after some moditications we have

(1) R I R aly b (o2 - TI“ — T10] 72) > !

We are now in the condition to prove the requirved relations (1), (



If for example w = wothen w o w T 0and G(y) s an anvivtie funcetion

inside ¢ and the mentioned integral ix zera, We have the relation (3)
SN i) O
[For o p the origin s a simple pole for 70p) with the residuan 10 Thus

S{nom) 1
and this i the equation (2).

Finally, tor o b othe poit 0 s a double pole for Giy) with
the respective residuum 7 a1 so that
[t
A‘\'(N ! 1. )i) T (AT _\_( o; : £
HE) je

As we have adready mentioned, we can evalnate by the sanie method the

sums SOn.on) for every o = on In foeto it we have s - 2 for example,
the origin is a pole of order 3 for /() with the residanm

7

[ Tl(Tl I:']) T
=0 that
Sino 20n) oo 17y oy} 7o
and so on.
)

On the basis of the Theorem we con now derive any binonsiad tormulas,
a) We put

ol fLoa N

£ being an arbitrary complex number, Then

() () () e
(i ) (g ay) ooy i) i
(rts i) (= dp ) o g ) [ D LAY A
s0 that

, ‘ i
S, n) ‘ N Ly /)"’( )
e ¢
Morcover
u\ " N(N N ”
Z a; : £y e : -
i 0 ! 2

The equations (1). (2), (3) ive the following results:

5 < i b gt (1 np - ' | "
(15) St s () e e
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D (D) =iy (n) (- Lrw!

o0 v,

\( 1),(( - {~)m (”) 0, ),(1)
0 \ 2

With & instead of @ the last two equations (15) give

! I

(157 N e - z))»(?.) = nl,
n
N i o f 1 ‘ B
S (D)W o L) == 0, om <D
S~ ]

(1) The first equation of (15) ix a simple consequence of the second. In fact, it we denoto

" .
N e, ) == 3 (1w L d)m (n)

(-0

" \ " .
Soc = ey N (e hie - D - ;)( f’) Y (1) (e - i,w(’?)
(0 “ Q=0 ¢
" 1 I no— 1
W N (e /),,()? ) (et - Y (D@ b L e ( ) ) =
i v i S
(=-1)ynen! - SO, -~ 1, a - 1)
<o that for the sums SOn, n, ») the following recurrence holds
S 3= 1oy w) = (== 1) ent wSG, - 1,2 4 1).
Now putting » -~ Toe = 2, ... 2,1.0 instead of nand 2 - 1, @+ 2, ..., 2 4 ninstead
ot . we obtain from here
S(n, 0 e ) - - Dred(e - 1)y (n - I)
- (- 1S (ro-- 1, m — 2,¢ -~ 2),

N = 1o - 20w - 2) e (c- )2 (e - 2) (- 2)) —
(n--2)Sm--2,n— 3,0 3),

S 00 - n) £ R
Finally, multiplying these relations successively by
1, o, n(i ), ooos (=Dt
and adding the thus obtained results we have
SN0 == 1) (- Dren! (G B R (YL B V73 B SN
(GO D Lo 2 V78 B G D EAZR IR O NG nwin b D} o=

( D m(.f ”).
-}’

The tirst equation of (15) is thus derived from the second.

-



FFor arbitrary real integer @ these formulas are well-known. Nee for example
(1] (p. 65, formula 4).
bh) We put

oy i Ay Az /

v being an arbitrary complex number. Introducing the svmbol

e uly - V)i D
we have

(et Y (e ) (g ) (. " Do -
Further we bhave ax in the preceeding case

(i o) (@i a) ol =)

(r oy ) (i - e e) (w0 D) i i)
<o that

' "
m- . AN T !
N, n)y (1) Ny ( ) )
n!o— ! w
0
m! e oo ) ;
) \( l)i(l,}) (.I 1 " /).
N! et ] ) 1
1 ()
Morcover
" " 1
DR ST R /A D N VA O R
i i

The equations (1), (2) and (3) give the following results:

m! {.( by (n) (» ot

i "

{( D 4+ n b0 1) for woa b

(16) (- Ly tor m n.
l 0 for w7 .
or
(167) m! . . 'n) (; moton 1)
; (] N
0
[ P for - w1
1 for m n.
\ 0 for m <" n.
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These formulas are all special cases of the combinatorial relation

Y { : n) G by ; [ )
6 ~ ')(‘; ( C) ')(/ )
Nee |2,

) We put

R T N E X
a4 and e being arbitrary complex numbers. Then

(et ) (e e (e ) o (el el ar ),
(ct; o) (ar ) oo (@i i) a2 ),
(¢t; i 1) (it () o (0 = ay)
( Dy in OV b - )
<o that

o . (v Ao a2,
N(ni. n) SR DL (R U ) )
— in ONa -+ 20 D)ilee =20 ),
n\Z (e om ol - et
oDt ) ('i M
Ny \

(n!)? =~ ((I 20 — l) (u 4 n 4 ¢) '
, i ‘ no— 14

Morcover

nol { an n2 - 2 3
Nap Ny (o e 1- .
o i ] 2 3 J

The equations (1), (2). (3) give the following results:

(nf 2 b L4 an -2
(17 Ny l)( nt 1 )
o w20 1 fad-m -

( { ) ( n—1 )

/

an - on o Znof
ca (- l)un! X [ . i el S
2 3

(7/,)‘3('.1' A iz)

Ny A )

o a 21 — l) @+ n 41
1 ) n -1

N
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