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MATEMATICKO-FYZIKÁLNY ČASOPIS SAV, 14, 2, 1964 

LINEAR FACTORS IN LATTICE GRAPHS 

A N T O N K O T Z I G , Bratislava 

1 

Let all £1? £2, ...,£„ be integers > 1, n a positive integer. Similarly as in paper [1] 
we mean by a lattice graph G(£t, £2, ..., £n) a graph(x) wherein: a) the set of the 
vertices of the graph is the set V of the points of the Euclidian space En, defined in 
the following way: point x with the co-ordinetes x1? x2, ...,xn belongs to V if and 
only if for all i = 1, 2, ..., n, xt is the positive integer f^; b) two vertices from V 
are in the graph G(^, £2, ••-, O joined by one single edge if and only if their distance 
is 1. If the edge h in the lattice graph G(<^, £2, ..., £„) joins the vertices x = (x{ . 
i 2 5 •••, *„),y = (yijy2 9 •••jyn) andx ; =j= j f , the edge will be said to be parallel to the 
axis X;. It is evident that after the removal of all edges from the graph G(f t , £2, ..., £„) 
parallel to the axis Xf, we shall have a graph with £f components. All these components 
are isomorphic and are called layers of the graph G(<^ , £2, ..., £n) in the direction of 
the axis Xf. Let us define the k-th layer in the direction of the axis Xt thus: the vertex 
x = (x1? x2, ..., xn) belongs to the k-th layer of the graph G(£x , <;2, ..., <;n) in the 
direction of the axis Xt if and only if xt = k. It is evident that the edge joining the 
vertex a = (al, a2, ..., an) with the vertex b = (b1? b2, ••-, b„) belongs to the k-th 
layer in the direction of the axis Xt if and only if at = bt = k. 

We shall say that the vertices x = ( x t , x 2 , ..., xn), y = (yi,y2^ ••••y„) ha\e 
a common projection in the direction of the axis Xi9 if x} = y7 for all j 4= i, j e {1, 2, 
..., n} and we shall say that the edges g, h from G(^, C2, ••- £„) have a common 
projection in the direction of the axis Xt if neither the edge g nor the edge // are 
parallel to Xt and if the statement holds that both the one and the other vertex 
incident at the edge g have a common projection with the vertex incident at the 
edge h. Similarly: a subgraph or a partial graph or a partial subgraph^2) Gj of 

(1) The difference is that now we admit also n — 1, while in paper [ll we assume n > 1. 

(2) I introduce, analogously with Berge's distinction in the theory of (oriented) graphs, the 
following distinction between a graph and a subgraph: if I delete from a certain graph G only some 
of its edges, I shall have the partial graph G'; if I delete from the graph G some of its vertices and 
besides only the edges incident at those vertices, I shall have the subgraph of the graph (see [2]>. 
If I do not delete anything, I shall have both the subgraph and the partial graph. 
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thef-th layer in the direction of the axis Xt has a common projection in the direction 
of the axis Xt with the subgraph or the partial graph or subgraph Gk of the k-th layer 
in the direction of the same axis if and only if there exists such a simple mapping 
of the graph Gj on the graph Gk that an element in Gj and its image in Gk have 
the same projection in the direction of the axis Xt. 

Let in the lattice graph G(^l5 £2, ... £„) the edge g join the vertex x with the 
vertex y and let the edge g join the vertex x with the vertex y. The vertices g, g are 
said to be near if (1) {x,y} n {x, y} = 0;(2) in the graph G(£1? £2 ..., £„) there 
exists a quadrilateral including the edges g, g. The remaining two edges of the 
mentioned quadrilateral will be called the "rungs" of the near edges g, g. It is evident 
that for every pair of the near edges there exist in the lattice graph exactly two 
"rungs" that are near edges, and that the "rungs" of the "rungs" are the two 
original near edges. 

Lemma 1. Any component of the finite graph with a linear factor has an even 
number of vertices. 

The proof (which is very simple and can be easily established by the reader 
himself) is given in paper [3] (see lemma 1). 

Theorem 1. In the lattice graph G(£1? £2, •••,£„) with an even number of vertices 
there exist n and only n such linear factors no two of which have a common edge. 

Proof. That in the graph GO^, £2, ..., £n) there can exist at most n such linear 
factors no two of which have a common edge is evident from the fact that the vertex 
x = (xt, x2, ..., xn), for which xX = x2 = ... = xn = 1 is incident at exactly n edges. 

Let us prove that there exist n such linear factors of the graph G(^1? £2, ..., ^n). 
For n = 1 the theorem evidently holds, for in the lattice graph G(£J, where £>1 = 2p, 
the set of all such edges of the graph that join the vertex (2/ — 1) with the vertex 
(2i); / = 1, 2, ...,/? is the set of the edges of the linear factor of the graph G(£,). 
Suppose that the theorem holds for all n ^ m; n ^ 1 (where m is an integer > 1) and 
let us prove that from the aforesaid assumption there follows also the validity of the 
theorem for n = m + 1. 

Let G(^l5 £2, ..., £m+i) be an arbitrary (m+ l)-dirnensional lattice graph with an 
even number of vertices. As the form of the graph does not depend on the order by 
which we denote the axes of the co-ordinates, we may suppose without loss of 
generality that ^ is an even number '(£i = 2p). Let us put £m+1 = s for the sake of 
simplification and denote by the symbols G1? G2, ..., Gs the first, second, ..., s-th 
layer of the graph G(£1? £2, ..., £m + 1) in the direction of the axis Xm+1. Each of 
these layers is isomorphic with the lattice graph G0 = G(£ l 9£2 , ...,£mr Since ^ = 2p, 
Gi has an even number of vertices and according to our assumption there exist such 
linear factors L1(1),L2(1), ...,Lm(l) of the graph G l5 no two of which have a common 
edge. Let us denote by the symbol Lt(k) such a linear factor of the graph Gk that has 
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a common projection in the direction of the axis Xm+i with the linear factor L,(l) 
(the existence of such a factor follows from the aforesaid isomorphism of layers). Let 
us further denote by the symbol F(k) (k = 1, 2, ..., s — 1) the set of all such edges 
from G(£l9 £2, ..., £w+1) that join the vertex from Gk with the vertex from Gfc+1. 

A. Let s be an even number (s = 2r). Let us denote by the symbol L* + 1 a partial 
graph of the graph G(£l9 f2, ..., £m+1) including all edges and only edges of the set 

r 

U F(2k - 1) 
k = l 

Г * and let us put L, = \J L/k) for ally = 1, 2, ..., m. It is evident that for any k = 
k=l 

r * 
= 1, 2, ..., m + 1 Lk is a linear factor of the graph G(£l9 £2, ..., £m+1) and no two 
different linear factors from the aforesaid m + 1 linear factors have a common edge. 
Hence in the case of s = 2r there follows from the validity of the theorem for all 
n ^ m its validity for n = m + 1. 

B. Let s be an odd number; s = 2r + 1. Let us denote by the symbol L* the 
partial graph of the graph G^, £2, ..., £m + 1) , including all edges from Lm(l) as well 
as all the edges and only edges of the set 

U F(2k). 
k=l 

г * 
Let us denote by the symbol Lm+i the partial graph of the same graph containing 

such and only such edges: all edges from Lm(s) and the edges of the set 

r 

U F(2k - 1). 
* = i 

Let it further be true for all j = 1, 2, ..., m — 1: 

L* = U Lj(k). 

Г * Each of the partial graphs Ll9 L'l9 ..., Lm+1 of the graph G({1? £2, ..., £m+1) is 
evidently a linear factor of the graph G(^, £2, ..... £m+1) and no two of them have 
a common edge. Hence, even in the case of an odd .? there follows from the validity 
of the theorem for n ^ m its validity for n = m + 1. The proof of the theorem is 
herewith accomplished. 

Theorem 2. Let G(Esl, £2, ..,, £,.) be a lattice graph with an even number of vertices 
and let L be any of its linear factors. For the number Qk(i) of edges from L, joining 
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a vertex from the k-th layer with a vertex of the (k + l)-th layer in the direction of the 
axis X(, the following statement evidently holds: 

kflSj = Qk(i) (mod 2). 
7 = 1 

Proof. Let us denote by the symbol rjt the number of vertices in one of the layers 
of the graph G(£1? £2, ..., £„) in the direction of the axis Xt. We evidently have: 

•.. = rU-
7 = 1 

Let us denote by the symbol Mk(i) the set of such edges from L that belong to the 
k-th layer of the graph G(£l9 £2, ..., £B) in the direction of the axis Xt and by the 
symbol fik(i) their number. Let us further denote by the symbol Rk(i) the set of such 
edges from L that join the vertex from the k-th layer with a vertex of the (k + l)-th 
layer of the graph G(^t, £2, ..., £n) in the direction of the axis X{; Qk(i) is their number. 
Let us put further Qk = 0 for k = 0 and for k = ££. 

It is evident that: each of the nt vertices of the k-th layer is incident at exactly one 
edge of the linear factor L. The number of such these vertices incident at the edge 
of L belonging to the k-th layer in the direction of the axis Xt is evidently 2fik(i). Any 
of the remaining r\{ — 2\ik(i) vertices is either incident at the edge belonging to 
Rk-i(i) or at the edge belonging to Rk(i). Hence it is true for every k = 1, 2, ..., £.-: 

0k+i(O + 2J"*(0 + £*(0 = >/.• 

Whence it follows (consider that Q(i) = 0): 

Qi(i) = ni (mod 2), 

£i(0 + Qi(i) = m (mod 2), 

^2(0 + £3(0 = »/«(mod 2), 

QSi-zii) + ^ , - i ( 0 = ^/i(mod2), 

+ £$.-1(0 = ^i(mod2). 

If >7f = 0(mod2), then all numbers Qx(i), Q2(i\ • •• ?^ i- 1(0 ai*e even, if r\x = I 
(mod 2), then we have: 

0i(O = 1 (mod 2); ^2(i) = 0 (mod 2); 

g3(0 = 1 (mod 2); O4(0 = 0 (mod 2); 

generally: Qk(i) = k (mod 2) for all k = 1, 2, ..., & - 1. 
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Hence the number Ofc(0 1s °dd if and only if both the number k and the number t]t 

are odd; or: if the product 

kïltj 
1=1 
jфi 

is an odd number. 
This proves the theorem. 

Let L be any linear factor of the lattice graph G(£1? £2, ..., £„) and let i be any 
number from {V 2, . . . ,n}. We shall say that two different layers of this graph in 
the direction of the axis Xt are connected by L if there exists at least one edge from L, 
joining a vertex of one layer with a vertex of the second layer. 

Several well-known problems and their generalizations lead to the concept of 
the connecting of layers of the lattice graph by its linear factors; these problems 
will be dealt with subsequently. 
. Let us consider a chess-board (with its squares of the sides of the length 1) 
arranged into m columns and n rows. In the case when mn is an even number, we 
can partition the whole chess-board into \mn 1 x 2 rectangles so that each rectangle 
includes exactly two squares of the chess-board and each square belongs to exactly 
one rectangle. The question we shall try to answer is: what conditions must the 
numbers m, n (giving the dimensions of the chess-board S) fulfil that there exist the 
above dissection of the chess-board R into 1 x 2 rectangles in such a way that at 
each dissection of the chess-board into two oblong chess-boards Sx, S2, there exists 
at least one such rectangle of the dissection R that one of its squares belongs to SL, 
the other to S2. Such a dissection will be called the significant dissection of the 
chess-board into rectangles. 

Before solving the above question, we shall express the mentioned problems 
in the language of the theory of graphs. Let S be an m x n chess-board. Let us. 
with respect to the chess-board S, construct the following graph Gs: the vertices 
of the graph are formed by the squares of the chess-board Sand two vertices in Gs 

are joined by the edge if and only if the respective squares of the chess-board are 
adjacent, i.e., if they have a common edge. Evidently, Gs is isomorphic with the 
two-dimensional lattice graph G(m, n). 

Lemma 2. Let S be an m x n chess-board and let R be such its dissection into 
1x2 rectangles that any square in S belongs to exactly one rectangle of the dissection R. 
Let G(m, n) be a lattice graph whose vertices are the squares oft the chess-board S. 
and the vertices in G(m, n) are joined by an edge if and only if the respective squares 
of the chess-board are adjacent. Let us assign to the dissection R the partial graph LR 
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of the graph G(m, n) in the following way: the edge from G(m, n) Joining the vertices a, b, 
belongs to LR if and only if the squares a, b belong to the same rectangle of the 
dissection R. Then we have: LR is the linear factor of the graph G(m, n) and it is true 
that: the described correspondence of the linear factor of the graph G(m, n) with 
the dissection of the chess-board into rectangles is a one-to-one map of the set of all 
dissections of the chess-board S with the required properties on the set of all linear 
factors of the graph G(m, n). 

The proof is evident. 

Lemma 3. Let S be an m x n chess-board. Let R be its dissection into I x 2 
rectangles and let LR be the corresponding linear factor of the lattice graph G(m, n). 
The dissection R is the significant dissection of the chess-board S into rectangles if 
and only if every two adjacent layers of the lattice graph G(m, n) both in the 
direction of the axis Xx and the direction of the axis X2 are connected by LR. 

Proof. The squares of the m x n chess-board S are arranged so as to form m 
columns and n rows. It is possible to cut S into two oblong chess-boards Sl9 S2 

either in such a way that all squares of the first p columns (I ^ p < m) are included 
in S! and the other squares in S2 (i.e. we cut the chess-board vertically in two), 
or in such a way that we include all square.s of the first, q rows (1 _ a < n) in SL 

and the other squares in S2 ("horizontaVcut"). In the first case there correspond 
to the chess-boards .Sx, S2 two components of the graph that arises from the graph 
G(/H, n) after we remove all edges joining the vertex of the p-th layer with the 
vertex of the (p + l)-th layer in the direction of the axis Xt. In the other case we 
have the components of the graph which arises from G(m, n) after the removal 
of all edges joining the vertex of the q-th layer with the vertex of the (q + l)-th 
layer in the direction of the axis X2. 

Let us, once more, denote by the symbol Qk(i) the number of edges from LR, 
joining the vertex of the k-th layer with the vertex of the (k + l)-th layer in the 
direction of the axis Xi (i = 1, 2). Evidently, the following is true: R is the singificant 
dissection of the chess-board into rectangles if and only if Qj(l) 4= 0 for all 
j = 1, 2, ..., m — i; Qk(2) + 0 for all k = V 2, ..., n — 1. The aforesaid con­
ditions are, however, fulfilled if and only if every two adjacent layers of the graph 
G(m, n) both in the direction of the axis Xx and the direction of the axis X2 are 
connected by LR. This proves the lemma. 

Lemma 4. Let S be an m x n chess-board, R its dissection into I x 2 rectangles 
and let LR be the linear factor of the lattice graph G(m, n), corresponding to the 
dissection R. Let us denote by the symbol Qk(i) the number of such edges from LR that 
connect the vertex of the k-th layer with the vertex of the (k + 1) —th layer of the 
graph G(m, n) in the direction of the axis XL (i = 1,2). 
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We then have: 
m—l n- 1 ^ 

E.?*(i) + Iet(2) = -5-»«i, (l) 
fc=l fc=l z 

gk(l) = kn (mod 2) for all k = 1/2, ..., m - 1, (2) 

#k(2) = km (mod 2) for all k = 1, 2, ..., n - 1. (3) 

Proof. The validity of the statement (1) of the lemma is evident from the fact 
that any edge from LR joins two vertices belonging to different layers either in the 
direction of the axis X1? or in the direction of the axis X2. Statements (2), (3) are 
a direct consequence of theorem 2. 

Let us now deduce this theorem about the significant dissections of the chess-board 
into rectangles.(3) 

Theorem 3. The significant dissection of the m x n chess-board (mn > 2) exists 
if and only if: (1) the chess-board has an even number of squares; (2) m = 5; (3) n _ 5; 
m = n = 6 does not hold. 

Proof. Let m = 2p and let R be a dissection of the chess-board into 1 x 2 
rectangles. Let LR be the linear corresponding factor of the lattice graph G(m, n). 
Let us again denote by the symbol O/l), resp. O/2) the number of edges from LR 

joining the vertex of the f-th layer with the vertex of the (j + l)-th layer of the 
graph G(m, ri) in the direction of the axis Xt or the axis X2. According to lemma 3, 
R is a significant dissection of the chess-board into rectangles if and only if: 

£.(1) =|- 0 for all j = 1, 2, ..., m - 1, 

and 

Qj(2) * 0 for all j = 1, 2, ..., n - 1. 

I. Suppose that n is on odd number. According to lemma 4 we then have: 

Qj(\) = j (mod 2) for all j = 1, 2, ..., 2p - 1, 

Qk(2) = 0 (mod 2) for all k = 1, 2, ..., n - \. 

If R is a significant dissection of the chessboard S into rectangles, then 
necessarily: 

Qt(l) = 1 for all i = 1, 3, ..., 2p - 1, 

Oj(l) = 2 for all j = 2, 4, ..., 2p - 2, 

Qk(2) = 2 for all k = 1, 2, ..., n - 1. 

(3) S. W. Golomb obtained the same results in paper [4] in a different way. 
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Hence, as regards the number of edges from LR (which is np), it is true (see 
lemma 4): 

pn = t Q2,-i(i) + I e2j<i) + I ek(2). 
i = l j=l k=l 

Therefore: 
pn = p + 2(p - 1) + 2(n - 1), 

(p - 2) (n - 3) _ 2. 

According to the supposition n is an odd number. 
It is evident that n + 1, n + 3. But then necessarily n = 5. 
The term (n — 3) is always positive; hence it follows that p — 2 > 0 and 

therefore 2p > 5. The conditions of theorem m = 5 and n = 5 with an odd n are 
therefore necessary conditions. 

II. Suppose n to be an even number; n = 2q. 
According to lemma 4 we have: 

Qj(\) = 0 (mod 2) for all j = 1, 2, ..., m - 1, 

O,(2) = 0 (mod 2) for all k = 1, 2, ..., n - 1. 

From the condition O/l) + 0; £fc(2) + u it follows: 

O/l) = 2 for all J = 1 , 2 , . . . , m - l , 

Ofc(2) = 2 for all k = 1, 2, ..., n - V 

consequently: 2pq = 2(2p + 1) + 2(2q - 1), therefore: (p - 2) (# - 2) = 2. Where-
from it evidently follows that p _ 3, g _ 3 and so rn = 6, n = 6. It is further evident 
that we cannot have at the same time p = 3, q = 3. Each of the conditions (2), 
(3), (4) of theorem 3 with even m, n is a necessary condition. 

III. We can easily see from fig. 1 that with an even m and an odd n the condition 
n? _ 6, n = 5 is a sufficient condition. Fig. 1 illustrates schematically the construction 
method of significant chess-board dissections with admissible dimensions into rec­
tangles. To set off the method of construction, the "horizontal" rectangles are 
hatched. 

A similar case, where m and n are even numbers, is illustrated in fig. 2, here the 
''vertical" rectangles are hatched. 

Note. The condition that mn > 2 in theorem 3 cannot be omitted, since the 
chess-board 1 x 2 can be uniquely partitioned into 1 x 2 rectangles and this dissection 
is significant. 

3 

The considerations discussed in part 2 can be generalized from two-dimensional 
to n-dimensional chessboards. \ 
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Here we shall have an n-dimensional 1 x 1 x ... x 1 cube and the pair of 
adjacent 1 x 1 x ... x 1 cubes will correspond to the edge of the linear factor. 
Two such n-dimenional cubes are said to be adjacent if they differ and have 
a common (n — l)-dimensional cube whose edges are all of the length 1 as well. 

Let us deduce the theorem about the existence of the linear factor, by which 
any two adjacent layers in a lattice graph of more than two dimensions are connected. 

Theorem 4. In the three-dimensional lattice graph G{^1, £2, £3) there exists a linear 
factor by which any two adjacent layers are connected if and only if the number of 
its vertices is even and at least two of the numbers £l9 £2, £3 cire greater than 2. 

Proof. I. Let ^ = £2 = 2; £3 = w _ 2. The number of vertices of the graph 
G(2, 2, n) is 4n and its arbitrary linear factor L has exactly 2n edges. Any layer 
of the graph G(2, 2, n) has evidently an even number of vertices. According to 
theorem 2 the number of edges from L, connecting any two layers, must be even. 

Suppose that any two adjacent layers from G(2, 2, n) are connected by L. Let 
us denote by the symbol pt (i = 1, 2, 3) the number of such edges from L that are 
parallel to the axis Xt. As there exists both in the direction of the axis Xt and the 
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axis X2 one and only one pair of adjacent layers, we have px = 2; p2 = 2. In the 
direction of the axis X3 there exist n — 1 pairs of adjacent layers and each of them 
is connected by at least two edges from L parallel to the axis X3. Therefore: 
p3 ^ 2(n — 1). Hence px + p2 + p3 ^ 2 + 2 + 2(n — 1). This is a contradiction, 
since px + p2 + p3 = 2n. To suppose the existence of the linear factor, by which 
any two adjacent layers of the graph G(2, 2, n) are connected, leads to a contra­
diction. The condition that at least two numbers from £l9 £2, £3 be greater than 2 
is necessary. 

II. Let us now prove the following: if at least one number of the numbers £l9 

<:2, £3 is even and at least two of them are greater than 2, then there exists such 
a linear factor of the graph G(£1? £2, £3), by which any two of its adjacent layers 
are connected. 

A. Let £i = 2, £2 = 2p + 1; £3 = 2q + 1; p = 1; q = 1. Fig. 3 illustrates how 
to find for such a case the linear factor with the required properties. This figure 
shows the edges of such a linear factor; they belong to the first layer of the graph 
GO^, £2'£3) m l n e direction of the axis Xt and have a common projection with 
the edges of the linear factor of the other layer in the direction of the axis X1. 
The vertices of this layer, adjacent at such an edge of the linear factor that is parallel 

/?«/ p-2 P'3 p* + 

î-
0—0 0—o o o—o o—o o—o O 0—0 0—0 0—0 o—o o 
p • • • o o • • • » в o o э © » « » Ф # o 
o o—o o—o o o—o o—o o—o o 0-0 0—0 o—o 0—0 

o—o o—o o o—o o—o o—o o o—o o—ç 0-0 0—0 p 

0—0 0-0 ô o—o o—o o—o ó o—o o—o o—o o—o 

o—o o—o o—o 9 °—° °—o o—o o—o o 

• © • o 

© O • Ó 
o—o o—o o—o o o—o o—o- o—o o—o 

o—o 0—0 o—o o—o 

ó o—o o—° °—° °—° 

Fig. 3. 

with the axis Xx are represented by full rings, while the other vertices are represented 
by empty rings. The figure shows the cases where p = 1, 2, 3, 4 and q = I, 2, 3, 4 
in a way which facilitates the solution of any p, q. 

113 



B. Let <*! = 2; £2 = 2p; (p > I); £3 = q be any integer greater than 2. Fig. 4 
shows, as in A, how to find the linear factor with the required properties. 

C. Let all three numbers ^ , £2, £3 be greater than 2 and let ^ be an even number, 
4i = 2p. The linear factor L*, by which any two adjacent layers of the graph 

V3 

0 »< 

V 

0 - Й 
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Pig. 4. 

G^!, £2, £3) are connected, will be determined in the following way: We shall find 
first the linear factor L, by which any two adjacent layers of the graph G(2, £2, c3) (4) 
are connected and let us denote by the symbol Ht the set of such edges from L that 
belong to the i-th (i = 1, 2) layer of the graph G(2, <i;2, £3) in the direction of the 
axis Xi. By the symbol V0 (or Vx) there will be denoted the set of vertices of this 
layer, incident (or not incident) at the edge from Hj. The symbol H2p will denote 
the set of edges from the last layer of the graph G(^x, £2, £3) in the direction of the 
axis X1 which has a common projection with the set H2 in the direction of the axis XL. 
Let us form the sets P1?P2, ••-,P2p_1 of the edges from G(£l9 £2, £3) thus: the 
edge joining the vertex x from the k-th layer with the vertex belonging to the 
(k + l)-th layer in the direction of the axis Xx belongs to Pk if and only if x has 
a common projection in the direction of the axis X1 with the vertex belonging to Vy 

(j = 0, 1), where j = k (mod 2) and Pk is formed only of such vertices. The set 

H* = Җ U P! U P2 U ... U P2_! U Њ 2p 

(4) According to A and B such a linear factor evidently exists. 
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is evidently the set of edges of a certain linear factor L* of the graph G(^, £2, f3), 
by which any two adjacent layers of the graph are connected. This proves the 
theorem. 

Theorem 5. In every such an n-dimensional lattice graph G(£x ,£2, ..., £w), wherein 
the number of vertices is even and n greater than 3, there exists a linear factor, by 
which any two adjacent layers of the graph are connected. 

Proof. I. Let us describe first the construction of the linear factor, by which 
any two adjacent layers of a four-dimensional lattice graph are connected. 

A. Let £i = €2 = £3 = U =: 2- Let the linear factor L of the graph G(2, 2, 2, 2) 
consist of the edges 0000-1000, 0111-1111, 0001-0101, 1010-1110, 0100-0110, 
1001-1011, 0010-0011, 1100-1101, whereby the symbol abcd-efgh denotes the 
edge connecting the vertex (a, b, c, d) with the vertex (e,f g, h) (fig. 5). Since in 
the direction of any axis the graph G(2, 2, 2, 2) has exactly two layers and for any 
i e {V 2, 3, 4} L contains two edges parallel with the axis Xi9 it necessarily follows: 
any two adjacent layers of the graph G(2, 2, 2, 2) are connected by L. 

0111 

1111 

0010 

1001 

Fig. 5. 

B. Let ^ = £2 = £3 = 2; £4 = k _ 3. The way to find the linear factor of the 
graph G(2, 2, 2, k) by which any two adjacent layers of this graph are connected 
is given schematically in fig. 6. 

C. Let f! = £2 = 2; £3 = p = 3; U = q = 3. Let Gx (or G2) be the first 
(or the second) layer of the graph G(2, 2,p, q) in the direction of the axis X1 • Both 
these layers are isomorphic with the graph G(2, p, q). According to theorem 4 there 
exists also a linear factor L{ of the graph Gt by which any two adjacenf layers of 
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the graph Gt are connected (i = 1, 2), whereby L± and L2 have a common projection 
in the direction of the axis X1. The union Lx u L2 is evidently the linear factor 
of the graph G(2, 2,p, q). Let ht be such an edge from Lx, by which the first layer 

direction of the axis X* 

first layer in the direction 
of the axis X4 

j even j odd 

j-th layer (1 < j < k) in the direction of the axis X* 

k even kodd 

k-th layer in the direction of the axis X4 

Fig. 6. 

of the graph Gx is connected with the second layer in the direction of the axis X4. 
According to theorem 2 there exists an even number of such edges, since the number 
of vertices of each of the aforesaid layers is 2p. Hence there exists, besides the edge ht, 
at least another edge from L±, by which the mentioned layers arc connected. The 
linear factor L2 contains the edge h2, which has a common projection with the 
edge ht in the direction of the axis X±. The edges ht, h2 belong to adjacent layers: 
from the above it follows that they are two near edges. If, in the union Ll u L2 

we replace the edges A1? h2 by their "rungs", we obtain the linear factor of the 
graph G(2, 2,p, q), by which any two of its adjacent layers are connected. 
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D. Let Ci = 2; £2 = p _ 3; £3 = q _ 3; £4 = r _ 3. Let us denote by the 
symbols Gx, G2, ..., Gr the first, second, ..., r-th layer of the graph G(2,p, r/, r) 
in the direction of the axis X4. For all i = I, 2, ..., r the graph Gt is isomorphic 
with the graph G(2,p, a) and according to theorem 4 there exists a linear factor L-
of the graph G/? by which any two adjacent layers of the graph Gt are connected. 
The linear factors L1?L2, ..., Lr may, with regard to the aforesaid isomorphism, 
be chosen in such a way that all have a common projection in the direction of the 
axis X4. The union L0 = Lx u L2 u ... u Lr is evidently the linear factor of the 
graph G(2, p, q, r), by which every two adjacent layers are connected with the 
exception of the adjacent layers in the direction of the axis X4. The number of 
vertices in any layer of the graph Gt (i = I, 2, ..., r) in the direction of the axis 
X2 is evidently 2q and in the layer of graph Gt in the direction of the axis X3 this 
number is 2p. Hence according to theorem 2 it follows that the number of such 
edges from L{, by which any two adjacent layers of the graph Gt are connected in 
the direction of both the axis X2 and the axis X3, is even. Also, this number is 
greater than zero. It is possible, therefore, to find the edge gt (or h-) from Li for 
every ie{l,2, ..., r} such that the edges gx,g2, ..-,gr (or the edges hx,h2, ...,hr) 
have a common projection in the direction of the axis X4 and that by the edge 
gi (or h^, the first and second layer of the graph Gt in the direction of the axis 
X-> (or in the direction of the axis X3) are connected. Hereby gt (or h^ is not the 
only edge by which the above layers are connected. It is evident that the edges gi9 

gi+x as well as the edges hh hi+x are near. If, therefore, in the union L0 we replace 
all the pairs of the near edges g2k_x, g2k (k = V 2, ...; k _ lr) by their "rungs" 
and if we replace also all pairs of the near edges h2fc, h2k+1 (where k = 1, 2, ...; 
k < ]r) by their "rungs", we shall then evidently have the linear factor of the 
graph G(2, p, q, r), by which any two of its adjacent layers are connected. (All 
aforesaid "rungs" are namely parallel with the axis X4 and the pairs of the adjacent 
layers in the direction of the axis X4 are connected by them.) 

E. Let £i = 2w > 2; f2 = p = 3; £3 = q _ 3; £4 = r _ 3. If we removed from 
the graph G(2m, p, q, r) such edges parallel with Xx by which the vertex from the 
2k-th layer is joined with the vertex of the (2k + l)-th layer in the direction of 
the axis Xx (k = 1,2, ...,m — 1), the graph G(2m,p,q,r) would split into m 
components, each of which would be isomorphic with the graph G(2,p, q, r). Let 
us denote by the symbol G; such of these components that includes the (2/ — l)-lh 
and the 2i-th layer of the graph G(2m,/?, q, r) in the direction of the axis Xx. 
According to D there exists in the graph Gt a linear factor L/? by which any two 
adjacent layers of the graph G£ are connected. With respect to the aforesaid 
isomorphism and with regard to D, we can find the linear factors L1?L2, . . . ,Lm 

so that we have: if the edge h from the first layer in the direction of the axis Xx 

belongs to Lx. then all edges having a common projection with h in the direction 
of the axis Xx , belong to L0 = Lt u L2 u ... u Lm. Let gk be an arbitrary edge 
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from L0, belonging to the k-th layer in the direction of the axis Xi (we shall denote 
this layer by the symbol Fk) and parallel with the axis X2 and by which, consequently, 
the two aforesaid adjacent layers of the graph Fk are connected in the direction of 
the axis X2. Besides the edge gk there exists according to theorem 2 at least another 
edge from Fk belonging to L0 by which the two mentioned layers of the graph Fk 

are connected in the direction of the axis X2. Then, of course, if we replace in L0 

the near edges g2, g3 by their "rungs", further the near edges g4, g5 by their "rungs", 
etc. ..., the near edges g2m_2, g2m-iby their "rungs", we obtain thus the linear 
factor of the graph G(2m, p, q, r), by which any two of its adjacent edges are 
connected. 

Since at least one of the numbers £1, £2, £3, C4 must be even and all are greater 
than 1; and, since by the change of the order by which we denote the axes of the 
coordinates nothing is being modified, all cases for n = 4 in the cases A, B, C, D, E 
are included. 

II. Let us suppose that the theorem holds for all integers n fulfilling the condition 
4 __ n __ t (where t is a certain positive integer) and let us prove that it then holds 
for n = t + 1 as well. 

Let n = t + 1 and let G(cl{, £2, ..., £,,) be any ti-dimensional lattice graph with 
an even number of vertices. Taking into account the isomorphism, we can assume 
without loss of generality that the number ^ is an even number £ = 2m. 

Each of the £n = s layers of the graph G(£1? Q2, ..., £n) in the direction of the 
axis Xn (let us denote them by the symbols Gx, G2, ..., Gs; the k-th layer will be 
denoted by the symbol Gk) is isomorphic with the graph G(£t, <!;_, ..., £„_i) having 
an even number of vertices and being at least four-dimensional. Then there exists, 
according to the assumption, such a linear factor Lk in G^, by which any two 
adjacent layers of the graph Gk (k = 1, 2, .... s) are connected. The linear factors 
Li,L2, ...,LS can evidently be such that they have a common projection in the 
direction of the axis Xn. 

Since £_ = 2m, it necessarily follows that: any layer of the graph Gk in the 
direction of both the axis X2 and X3 has an even number of vertices. According 
to theorem 2 it then follows that the number of edges from Lk, by which the 
first and second layer of the graph Gk are connected in the direction of the axis X2 

(as well as in the direction of the axis X3) is even and > 0. Let us denote by the 
symbol gk (or hk) one of such edges parallel to the axis X2 (or X3). A consideration, 
similar to the one of part I. D will convince us that if in then union L{ u L2 u ... u Ls 

we replace the near edges gx, g2 by their "rungs", further the edges h2, h3 by their 
"rungs", next the edges _r3, g4 by their "rungs", etc., we shall finally obtain the 
linear factor of the graph G(£i,£2, ...,£„), by which any two adjacent layers of 
this graph are connected. Consequently, if the theorem holds for 4 __ n __ t, it 
holds for n = t + 1 as well; because it holds for n = 4, it holds also for all 
n __ 4. This proves the theorem. 
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In this part we shall especially consider near edges in linear factors and a certain 
transformation of such a linear factor of the lattice graph that includes a pair of 
near edges. 

Lemma 5. Let L be any such linear factor of the lattice graph G(£ l 5£2 , ••••£/,)> 
containing two near edges g, h. Let L' be the partial graph of the graph G(^x, £2, ...,£„) 
that arises from L, if we replace the edges g, h by their "rungs", g', h. Hence: L' is 
the linear factor of the graph G(£l9 £2, ..., £„). 

The proof is evident. 
If the linear factor L' of the lattice graph arises from the linear factor L of this 

graph in such a way that we replace certain two near edges g, h by their "rungs" g', h', 
we say that L' arises by a fc-transformation of L on the edges g, h. 

Lemma 6. Let the linear factor L' of a certain lattice graph arise by the ^trans­
formation of the linear factor L of the graph G on its edges g, h, and let g', h' be the 
"rungs" of the edges g, h. In that case the following is true: The linear factor L is 
obtained by the K-transformation of L' on the edges g', h!. 

The proof is evident. 

Lemma 7. Any linear factor of a two-dimensional lattice graph contains at least 
one pair of near edges. 

Proof. If in the graph G(m, n) there exists a linear factor L not including any 
pair of near edges, then there belongs to L from each of the (m — 1) (n — 1) 
quadrilaterals of the graph G(m, n) at most one side. Let s quadrilaterals contain 
a boundary edge (i.e., an edge from the first or last layer in the direction of some 
axis) belonging to L. Let us count the number of edges from L considering the 
individual quadrilaterals. Since all edges from L with the exception of the S boundary 
edges will be included in exactly two quadrilaterals, we count these edges with 
the coefficient 2. Since the total number of edges from L is \mn, we obtain: 

s + \ \(m — 1) (n — 1) — s] ^ \ mn, 

i. e. s -V (m — 1) (n — 1) ^ mn and since evidently (m — 1) + (n — 1) ^ s then 
a fortiori (m — 1) + (n — 1) + (m — 1) (n — 1 ) ^ mn whence after adjustment we 
have — l ^ 0, which is a contradiction. This proves the lemma. 

Theorem 6. Let G(<^, £2) be any two-dimensional lattice graph and let L, L' be 
any two its linear factors, then L' is obtained from L by the finite number of 
K-transformations. 
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Proof. Since the product £ l 5 £2 is an even number, we may suppose without 
loss of generality ^ to be an even number. Let us put, for the sake of simplification 
of notation ^ = 2m; £2 = n. From lemma 6 it follows that: To prove the validity 
of the theorem, it is sufficient to prove that for any linear factor L of the graph 
G(2m, n) there exists a finite sequence L1? L2, ..., Ls of linear factors of the graph 
G(2m, n) so that L1 = L and that Ls is a linear factor, containing such and only 
such edges that join the vertex (2/ — 1, k) with the vertex (2/, k), where j = 
= 1, 2, ..., m; k = 1,2, ..., n; and where the following holds: Li+l is obtained by 
^-transformations of the linear factor Lt on certain of its near edges. 

We shall prove the statement by induction with respect to n (with m fixed). Before 
carrying on our discussion, we shall prove the validity of the statement for all graphs 
G(2m, 2). 

I. Suppose that any linear factor of the graph G(2m, n) (where m is a positive 
integer; n > 1; n _ p and where p is an integer :>1) can by a repeated /c-transfor-
mation be converted into a linear factor, whose edges are all parallel with the axis X.. 
Let L be any linear factor of the graph G(2m,p + 1). 

Denote by the symbol W(L) the set of the vertices of the (p + l)-th layer of the 
graph G(2m, p + 1) in the direction of the axis X2 that are incident at an edge 
from L parallel with the axis X2. If W(L) were a void set, it would not be necessary 
to prove anything, since in that case all edges from L, incident at the vertex of the 
(p + l)-th layer of the graph G(2m, p + 1) in the direction of the axis X2 are parallel 
with the axis Xl9 and the edges from L, incident at other vertices, form the linear 
factor L0 of the graph G(2ra, p), which, according to the supposition, can be converted 
by repeated ^-transformations into the linear factor of the graph G(2m, p) containing 
only edges parallel with Xt. 

Let W(L) be a non-empty set, W(L) = {(a^p + 1), (a2,p + 1), ..., (aq,p + l)}, 
where q > 0 and where a1 < a2 < : . . . < aq. 

A. I maintain that: by ^-transformations, L can be converted into such a linear 
factor L*, for which it is true: W(L*) does not contain any of the vertices (V p + 1), 
(2,p + 1), ..., (a1?p + 1). Let us prove the validity of this assertion. Let us form 
the sequence V = {f1 ?v2 , ...,v,} of the vertices from G(2m,p + 1) such that: 
vk — (ax + k — 1, p — k + 2) for all k = 1, 2, .,., t where t is chosen so as to be 
the greatest integer fulfilling the following two conditions: 

t < 2m + 2 - a1; t < p + 2. 

The following statement holds: in the sequence V there exists at least one such 
vertex, from which we cannot proceed downward along the edge from L. Let us 
suppose, conversely, that from each vertex from V we can proceed downward along 
the edge from L (i.e., to the vertex, belonging to the lower layer of the graph in the 
direc tion of the axis X2). Then evidently the vertex from the first layer in the 
direction of the axis X2 does not belong to V and the vertex vt belongs to the last 
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(2m-th) layer of the graph G(2m,p + 1) in the direction of the axis Xx (t = 2m + 

+ 1 - *i). 
L e t f be an edge from L incident at the vertex vt. It follows from the above 

supposition that the vertex wt = (at + l ,p + 1) is joined by an edge from L with 

the vertex (ax + 2, p + 1), since it cannot be joined by such an edge either with the 

vertex vt (incident at the edge f± e L) or the vertex v2, incident at the edge f2 e L. 

But in such a case the vertex w2 = (a1 + 2,p) 

is joined by an edge from L with the vertex 

(at + 3, p) (there is no other possibility — ! . ! ! . " 

% . 7). 'Ѓ-4 

ь 

t~з t-з 

Гt-2 t-2 

1-i *7-f 

Fig. 7. Fig. 8. 

Carrying on the above discussion, we find that for any fc=l,2, . . . , t — 2 it is 
true: the vertex wk = (ax + fc,p — fc + 2) is joined by an edge from L with the 
vertex (a1 + fc + l ,p — fc + 2). But then the vertex wt_t = (2m, p — t + 3) 
cannot be incident at any edge from L (fig. 8). 

The supposition that from each vertex of the sequence V we reach along the edge 
from L the lower layer of the graph G(2m, p + 1) in the direction of the axis X2, 
leads to a contradiction. 

Let vc be the first such vertex of the sequence Vfrom which we cannot reach along 
the edge from L the lower layer of the graph in the direction of the axis X2. It is 
evident that for each linear factor F of the graph G(2m, p + 1), for which W(F) + 0, 
the number c is uniquely determined; let us denote this number by the symbol 7(F), 
if W(F) + 0 and let us put y(F) = 0, if W(F) = 0. 

In this case it is evidently true that y(L) = c > 1 and that: from the vertex vc we 
reach along the edge from L either the higher layers in the direction of the axis XL 

(the first type of linear factor), or the higher layer in the direction of the axis X2 ( l n e 

second type). A consideration similar to the one above will convince us easily that 
the position of the edges from L, incident at the vertices vt, v2, ..., vc and the vertices 
wk = (ai + fc,p — fc + 2), in case of the first (or the second) type of the linear 
factor of the graph G(2m,p + 1) is that given in fig. 9a (or fig. 9b). 
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Whether we have the first or the second type of the linear factor, it is always true 
that: for an edge from L (let us denote it by h), incident at the vertex vc there exists 
such an edge g e L that is near to the edge h. Besides, we have for the second type 
g =fc. Let L° be a linear factor of the graph G(2m,p + 1), which arises by an 

c-2 c-2 

^c-З *І-J 

ò 

Fig. 9. 

K-transformation of the linear factor L on the edges g, h. The following is true: 
if L is the first type of the linear factor, then L° is the second type and y(L) = y(L°); 
if L is the second type of the linear factor, then L° is the first type and we have: 
y(L°) = y(L) - 1 (fig. 9 a, b). Whence it follows: by ^-transformations on near 
edges from which one is always incident at the vertex vy{Lx) we can change the type 
of the linear factor and successively reduce the value of the function y(L) so that we 
finally have a linear factor L*, for which is it true that: an edge from L*, incident 
at the vertex vl9 is incident at the vertex (ax + l ,p + 1) (i.e., horizontal — fig. 10). 
But then the set W(L*) evidently does not contain any of the vertices (k, p + 1), 
where k = 1, 2, ..., al9 which proves the validity of statement A. 

B. I maintain: by ^-transformations the linear factor L can be converted into such 
a linear factor L**, for which it is true: W(L**) is a void set. Let us prove it! Let Lx 

be any linear factor of the graph G(2m, p + 1). Let us use, for the sake of simplifica­
tion, the symbol bt to denote the vertex (i,p + 1) and let us denote by P(LX) such 
a smallest index f from {1, 2, ..., 2m} for which it is true: bj belongs to W(L). Accord­
ing to point A any linear factor L = L(0), for which W(L(0)) =j= 0, can by /c-transfor-
mations be converted into the linear factor L(l) in such a way that we either have 
W(L(1)) = 0 or j8[L(0)] < P[L(l)]. Generally: if for the linear factor L(k) it is true 
that W(L(k)) + 0, we can convert this linear factor by K-transformations into the 
linear factor L(k + 1) so that we either have W(L(k + 1)) = 0, or that it is true: 
P[L(k)] < P[L(k + 1)]. Hence there always exists a finite sequence of the linear 
factors L(0), L(l), ...,L(r) so that L(i + 1) arises by K-transformations from L(i) 

122 



andit istrue: j8[L(0)] < £[L(1)] < ... < fi[L(r - 1)]; W(L(r)) = 0. But thenL** =Lr 

is the required linear factor. This proves the validity of the assertion B. 
C. From the validity of the assertion B there follows — as mentioned at the 

beginning — that: if our theorem is valid for all lattice graphs G(2m, n) with a given 
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Fig. 10. 

m > 0 and any n > 1; n ^ p, then the theorem holds for the graph G(2m,p + 1) 
as well. To complete the proof of the theorem, it is sufficient to prove merely that 
the theorem holds for every graph G(2m, 2), where m is any positive integer. 

II. Let L be an arbitrary linear factor of the graph G(2m, 2), where m is any 
integer >0. According to theorem 2 the number of edges from L that are joining 
the vertex from the k-th layer (k — 1, 2, ..., 2m — 1) of the graph G(2m, 2) in the 
direction of the axis X± with the vertex of the (k + l)-th layer of this graph in the 
direction of the axis Xx is an even number. Hence the vertices of the considered two 
layers are either not joined by any edge from, or are joined by exactly two edges 
from L. Then necessarily: for each such edge from L that is parallel with the axis Xx 

and belongs to the first layer in the direction of the axis X2, there exists a near edge 
in the second layer of the graph G(2m, 2) in the direction of the axis X2. Whence it 
immediately follows that by ^-transformation on each of such pairs of near edges of 
the linear factor L that are parallel with the axis Xx, we can obtain the linear factor E, 
all edges of which are parallel with the axis X2. Let us denote by the symbol ek the 
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edge from E that connects the vertices (k, 1), (k, 2); k = 1? 2, ..., 2m. If we perform 
the K-transformation first on the edges e1, e2, then on the edges e3, e4, and so on, 
on the edges e2m_ t , e2m9 we obtain the linear factor LS9 all edges of which are parallel 

with the axis Xx. The theorem then holds for all graphs 
G(2m9 2), where m is a positive integer. 

Then, according to part I the theorem holds for 
all G(2m9 n)9 where m9 n are integers, m > 0, n > 1. 
This was to be proved. 

I must make clear that the theorem analogous to 
theorem 6 for ^-dimensional lattice graphs does not 
hold any more for n = 3. Thus for instance in the 
graph G(3, 3, 2) there exists a linear factor L that 
does not contain any pair of near edges (fig. 11; the 
edges from L are set off by bold lines). 

The graph of the four-dimensional cube G(2, 2, 2, 2) 
may even be decomposed into four linear factors Ll9 

L2,L3,L4so that there does not exist in any of these 
four linear factors a pair of near edges. Let us demonstrate at least one example of 

such a decomposition (fig. 12): 

Theorem 7. Let p be any positive integer. The graph of the Ap-dimensional cube can 
be decomposed into 4p linear factors so that not one of the linear factors of this 
decomposition contains a pair of near edges. If there exists the decomposition of the 
graph of an n-dimensional cube (n > 1) into n-linear factors, not one of which contains 
the pair of near edges, then there exists also the decomposition of the graph of the 
(n + Ap)-dimensional cube into (n + 4p) linear factors, not one of which contains two 
near edges.(5) 

Fig.ll. 

Edges from the linear factor 

join these рairs of vertices 

0000,1000 0000,0100 0000,0010 0000,0001 

0100,0110 1000,1001 1000,1100 1000,1010 

0010,0011 0010,1010 0100,0101 0100,1100 

0001,0101 0001,0011 0001,1001 0010,0110 

1110,1010 1110,1100 1110,0110 1101,1001 

1101,1100 1101,0101 1011,1010 1011,0011 

1011,1001 0111,0110 0111,0011 0111,0101 

1111,0111 1111,1011 1111,1101 1111,1110 

( ) When speaking of the graph of an n-dimensional cube we mean the graph G(2, 2, 
(n twos). 
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Proof. Let C(n) be the graph of an n-dimensional cube and let there exist such 
its decomposition K(n) = {Lt(n), L2(n), ...,Ln(n)} into linear factors that no linear 
factor of this decomposition contains a pair of near edges. Let R(4) = {Lt(4), 

0110 0111 

0010 0011 

\. s \ l / / 0 

" " • • : 

1010 

\oюo 
юн< : 

S '0101 

0001 

1100 
^̂ A^ ^ ^ ^ 

1000 

1-1 

L 2 *"< 

Fig. 12. 

1101 

1001 

L2(4), L3(4), L4(4)} be the decomposition of the graph of the four-dimensional cube 
C(4) = G(2, 2, 2, 2) described in table 1 and illustrated in fig. J 2 . Let V be the set 
of all vertices of the n + 4-dimensional cube C(n + 4) and let V = {V00, V01, Vl0, 
Vn} be the decomposition of the set V into classes, defined in the following way: 
the vertex (x 1 ? x2, ..., xn+4) == x belongs to the class Vuje V (i = 0, 1; j = 0, 1) 
if and only if it is true: 

£x f c = i(mod2); 
k=í 

YJ
xk+n ---J (mod 2). 

Let H be the set of all edges from C(n + 4) and let H = {H0* - Hi* > H*o? II* 1} 
be its decomposition thus defined: the edge h from H, joining the vertex x with the 
vertex y belongs (fig. 13) to the class: 

Ho* if and only if {x,y} n V00 4= 0; {x,y} n V01 4= 0, 

H1H: if and only if {x,y} n V10 4= 0; {x,y} n Vtl 4= 0. 

H^o if and only if {x,y} n V00 4= 0; {x, y} n V10 4= 0? 

H^iifandonlyif^^n V01 + 0; {x ,y}n Vlt 4=0. 
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It is evident that H is a partition, i.e., any edge from C(n + 4) belongs to exactly 
one set from H and each set from the sets H0* , H1HJ, H*0, H*x is a non-empty set. 

Let us denote the already defined linear factors of the graph C(n) (or C(4)) in the 
following way: L[(n) = L^^n), where L0(n) = L„(n) and L^(4) = L;_i(4) and where 
similarly L0(4) = L4(4). 

Let K* = {L1 ?L2 , . . . ,Ln + 4} be the decomposition of the graph C(n + 4) into 
linear factors, defined in the following way: 

1. the edge from H0* joining the vertex x = (xl9x29 . . . ,x n + 4 ) e V00 with the 
vertex y = (yx, y2, ..., yn+4) e V01 belongs to L*+ f if and only if the edge from C(4) 

joining the vertex k = (xn+l9 xn + l9 x,J + 3 , xn+4) with 
V01) ^ (Vn) the vertex y = (yn+l9 yn + 29 yn+5,yn + 4) belongs to 

^ o * 

L(4); 
2. the edge from HliJc connecting the vertex x with 

^1 * the vertex y belongs to Ln+ x if and only if the edge 
from C(4) joining the vertex x with the vertex y 

-x belongs to LK4); 
nn ' n ( 10 J 3. the edge from H*0 joining the vertex x with the 

*° — ^ vertex y belongs to L* if and only if the edge from 
Fig. 13. C(n) joining the vertex x = (xl9 x2, ..., xj with the 

vertex y = (yl9y2, • ••,y„) belongs to L/n). 
4. the edge from H*t joining the vertex x with the vertex y belongs to L* if and 

only if the edge from C(n) joining the vertex x with the vertex y belongs to LJ(n). 
From the above description it is evident that R* is a decomposition into linear 

factors and that no linear factor from P* contains a pair of near edges. 
Hence, if by the required way the graph C(n) can be decomposed into linear 

factors, the graph C(n + 4) can be decomposed in this way as well. Whence there 
instantly follows the validity of both statements of the theorem. 

I wish to make clear that the requirement expressed in theorem 7 with respect to 
the linear factors of the decomposition, i.e. the requirement that not one of them 
contain a pair of near edges, can be made more conspicuous and we can postulate 
that it be true: each of the four edges of any quadrilateral of the graph belongs to 
a different linear factor of the decomposition (we have omitted in our considerations 
the case n = 1, it being a trivial case). Hence it is clear that the required decomposition 
cannot exist for n = 2, n = 3. We can prove that such a decomposition does no 
exist for n = 5 either (I did not succeed in symplifying the rather complicated proo 
I established). The problem of the existence of these decompositions for such n > 5 
that are not divisible by 4 remains to be solved. 

In this part we shall deal with certain properties of the sets of edges in infinite 
n-dimensional lattice graphs and we shall deduce, with respect to them, a theorem, 
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whose deductions have an importance also when we consider linear factors in finite 
lattice graphs. When speaking of an n-dimensional infinite lattice graph we 
think — as in paper [5] — of a graph, whose vetices are all the points from En, each 
coordinate of which is an integer; any two vertices in the graph are joined by an 
edge if and only if their distance is 1. We use the symbol G[n] to denote it. 

Let us define the set of Y[n] vertices from G[n] thus: the vertex x = (x1 , x 2 , . . . , x j 
from G[n] belongs to Y[n] if and only if 

n 

X *,- = 0 (mod 2). 
i=l 

Lemma 8. Any edge from G[n] joins a vertex from Y[n] with a vertex not belonging 
to Y[n]. 

The proof is evident (the statement in the lemma follows directly from the 
definition of the graph G[n]). 

The partial graph F of the graph G[n] will be said to be a A-graph in G[n], if it 
is true: any vertex from G[n] is incident at most with one edge from F. We evidently 
have: any linear factor (hence also the partial graph of the linear factor) of the graph 
G[n] is its A-graph. 

Let g, h be any two edges from G[n] and let the edge g connect the vertices v, w; 
the edge // the vertices x, y. The edges g, h will be said to be adjacent if g 4= h and 
if it is true that {v, w} n {x,y} — 0 and almost adjacent if g 4= h\ g, h are not 
adjacent edges and if in the graph G[n] there exists such an edge f that both (f g) 
and (f h) are pairs of adjacent edges. 

Lemma 9. Let g, h be any iwo almost adjacent edges from G[n] and let v = (v1? 

v2, ..., vlt), or IV = (H'X, W2, ..., wn) be the vertex from Y[n] at which the edge g, or the 
edge h is incident. In such a case we have: 

11 ». - wt | = 2. 
i = l 

Proof. Let v (or w) be the vertex from G[n] not belonging to Y[n], at which the 
edge g (or edge //) is incident — see lemma 8 — and let f be the edge joining the 
vertex from {v, v} with the vertex from {w, w}. We may suppose without loss of 
generality that the edge f joins the vertex v with the vertex w. Taking the definition 
of the graph G[n] as a starting point, we have, after a simple consideration: 

n n 

XI vt - wt | - 1; XI Wi - Wi\ = 1. 
i=i i=i 

Whence it follows that there exist such numbers r, s e {\, 2, ..., n} that: 

I vr- wr\ = I; vt = wt for al i i 4= r; ie{\,2, ...,n}, 

| vv, - ws I = 1; wt = wt for all i 4= s; ie {I, 2, ..., n}. 
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According to our assumption v, w are two different vertices. Whence it follows 
that: if r = s, then necessarily \ vr — wr\ = 2; vt = wt for all i + r; i e {1, 2, ..., /?}; 
and if r + s, then it is true: | vr — wr \ = 1; | vs — ws | = 1; vt = wt- for all / e {1, 
2, ..., n} not belonging to {r, s}. The validity of the lemma from the the aforesaid 
is evident. 

Let F be any/[-graph in G[n]. Wre say that F can be coloured by p colours (p is 
a positive integer), if to each edge from Fa number from {1,2, ..., p} cen be assigned 
(this number will be called the colour of the edge) so that any two almost adjacent 
edges will have a different colour.(5) 

Theorem 8. Every A-graph in the graph G[n] can be coloured by p colours, where 
p :g 2n. 

Proof. Let F be any A-graph in the graph G[n]. Let M = {Ml9 M2, ..., M2n} 
be the partition of the set Y[n] into classes thus defined: the vertex x = (xx, x2, ..., xn) 
from Y[n] belongs to the class Mi (i = 1, 2, ..., n) of the partition M if and only if: 

p(x) = — [x! + 3x2 + ... + (2n - 1) xn] = i(mod 2n). 

A. I assert: if it is true for the vertices x, y from Y[n] that: 

1 1 x, - y> I = 2, (*) 
i=l 

then the vertices x, y belong to different classes of the partition M. Let us prove it! 
Let (*) hold for the vertices x, y e Y[n]. It is evident that only the following two cases 
are possible: 

Case I. There exists such a number qe{l,2, ...,n} that | xq - yq \ = 2 and 
xt = yt holds for all i + q; ie {1, 2, ..., «}. 

Case II. There exist numbers r < s belonging to {1, 2, ...,«} so that | xr — yr \ = 1; 
I -v.* — ys\ = 1? xi == yt holds for all i + r; i + s. 

In the first case we have: 

My) = y [yi + 3 j 2 + ... + (2n - l)yn] = 

= y [±( 4q - 2) + xx + 3x2 + ... + (2H - 1) xj 

or fi(y) = n(x) ± (2q - 1) 

and since the number 2q — I cannot be the integer multiple of the number 2n it 
follows: the vertices x, y belong to different classes of the partition M. 

(6) It follows directly from the definition of the A-graph that F cannot contain two adjacent 
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In the second case we have: 

fi(y) = p(x) + y [±(2r - 1) ± (2s - 1)] = 

= li(x) + \± (r - y j ± (s - y j = n(x) + v. 

The term in brackets (denoted by the symbol v) cannot be equal to zero since, 
according to the assumption, r < s. Since r < s = n, it is necessarily true that 
v < 2n. Hence v is not the integer multiple of the number 2n and so the vertices x, y 
must belong to different classes of the partition M. This proves the validity of our 
assertion. 

Let h be any edge from F and let y(h) be such of the vertices incident at the edge h 
that belongs to Y[n] (see lemma 8). The edges from Fshall be coloured in the following 
way: the edge h has the colour i(i = 1,2, ..., 2n) if and only if the vertex y(h) belongs 
to the class Mt of the partition M. 

B. I assert: With the above colouring of edges from F any two almost adjacent 
edges from F are coloured differently. Let us prove the validity of the assertion! 
Let g, h be any two almost adjacent adges from F. Let v -= y(g), or w = y(h) be the 
vertex from Y[n], at which the edge g, or the edge h, is incident. According to lemma 9 
it is true: 

i\v,-wt\=2 
i - 1 

whence it follows according to A that: the vertices v = y(g)l w = y(h) belong to 
different classes of the decomposition M. Hence it bocomes evident that with the 
mentioned colouring of the edges from F, the edges g, h are differently coloured. 
This proves the theorem. 

A direct consequence of theorem 8 is the following theorem: 

Theorem 9. Each linear factor of the lattice graph G(£1? £>2-> •••> £») can be coloured 
by p colours, where p = 2n. 

Proof. Any linear factor of the lattice graph G(^L, £2, • •, <?,,) *s evidently a A-graph 
in the graph G[n]. According to theorem 8, it can be coloured by p = 2n colours. 

Let us turn once more to the dissections of the two-dimensional chess-board into 
1 x 2 quadrilaterals, or to the dissections of the n-dimensional chess-board into pairs 
of adjacent n-dimensional cubes with edges of the length 1. Two n-dimensional 
cubes with edges of the length 1, i. e., two cubes of the n-dimensional chess-board, 
are adjacent if they are different and if their intersection in an (n — l)-dimensional 
cube with edges of the length 1. 

Let S be an n-dimensional £x x £2 x ... x £n chess-board and let D = 
= . Di •> D2, ..., i)m] be such a dissection of the chess-board S into pairs of adjacent 
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n-dimensional cubes with edges of the length 1 that we have: each cube of the 
chess-board S belongs to exactly one pair fromD. LetL be the linear factor of the 
lattice graph G(£1? £2, ..^ £n) corresponding to the dissection D. Let further Dt- 4= D, 
be any two pairs from D and let hi9 hj be their corresponding edges from L. 

Lemma 10. The cube of the chess-board S belonging to Dt and adjacent at a certain 
cube from Dj exists if and only if the edges hi9 hi are almost adjacent. 

The proof follows directly from the definition of the almost adjacent edges and 
from the correspondence between an n-dimensional 
lattice graph and an n-dimensional chess-board. 

From lemma 10 it immediately follows: The problem 
to colour the cubes of an n-dimensional chess-board 
with the given dissection D with p colours (so that 
both cubes belonging to the pair have the same 
colour and that each two pairs from D, the inter­
section of which is at least a (n — l)-dimensional 
cube with edges of the length 1, have a different 
colour) is therefore equivalent to the problem how 
to colour the edges of the linear factor L with p colours 

(so that each two almost adjacent edges have a different colour). The following 
theorem then holds, which may be called the small four-colour theorem. 

Fig. 14. 

Theorem 10. Let S be any two-dimensional chess-board and let D be any its dissection 
into 1x2 rectangles. The rectangles from D can always be coloured with the help 
of four colours so that any two rectangles, whose common boundary is formed by 
a line-segment of the length of at least 1, have a different colour. 

Proof. The theorem follows directly from theorem 9 for the special case n = 2. 
If the chess-board S from theorem 10 is a 2m x n chess-board where m _ 2, then 

there exists such its dissection into 1 x 2 rectangles that we need for their colouring 
with the required properties four colours. Fig. 14 shows an example of such 
a dissection of a 4 x 3 chess-board (an elementary consideration will convince the 
reader that three colours cannot suffice in this case). 

Hence it is evident that for the case n = 2 the necessary number of 4 colours 
generally cannot be reduced. It is not known to the author whether the number 2n 
of colours, sufficient according to theorem 9, can be reduced. The author is not 
acquainted even with such a dissection of a three-dimen:,ional chess-board S into 
1 x 1 x 2 rectangular parallelepipeds that, when coloured, requires 6 colours. It 
can easily be proved that: if we need for the colouring of the m x nx p chess-board S 
with the dissection D 6 colours, all the three numbers m, n, p must be greater than 2. 
The reader can see at once that to colour the linear factor of the graph G(2, 3, 3) 
given in fig. 11, he must have 5 colours. Whence it follows, if the number of necessary 
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colours in colouring a three-dimensional chess-board can be reduced, this lower 
limit will generally not be less than 5. Even in this dissection of the 2 x 3 x 3 
chess-board into 1 x 1 x 2 rectangles that corresponds to the linear factor from fig. 
12, we require for the colouring of the considered chess-board 5 colours. 
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Slovenskej akadémie vied 
v Bratislave 

О Л И Н Е Й Н Ы Х Ф А К Т О Р А Х В Р Е Ш Е Т Ч А Т Ы Х Г Р А Ф А Х 

АНТОН К О ц и г 

Резюме 

Пусть ь ! , 1 2 ' • • • * %п — целые числа > 1, п — целое положительное число. Под решетчатым 
графом С7(^"1, | 2 , . . . , | и ) мы будем понимать граф, в котором: (а) множество вершин образо­
вано множеством V точек эвклидова пространства Еп, определенным следующим образом: 
точка .V с координатами х1, х2, ., ., хп принадлежит V тогда и только тогда, когда для. всех 
/ = 1,2,...,// выполняется: X; есть целое положительное число ^ %(; (б) две вершины из V 

соединены ребром (причем единственным ребром) тогда и только тогда, когда их расстояние 
равно 1. Оси координат в Еп мы будем обозначать через ХХ,Х2, ..., Хп. Если ребро И соеди­
няет в С(^1, | 2 , . . ., | и ) вершины х = (х± , х2, . . ., хп), у = (ух , г 2 , . . ., уи), причем х1 Ф уь, 

то будем говорить, что ребро к параллельно X,-. Пусть 1 — произвольное число из (1, 2, . . . , п}, 

Если из графа С($19%2> •••><У удалить все ребра, параллельные Х{, то получится граф. 
имеющий $• компонентов. Эти компоненты мы будем называть слоями в направлении оси Х{\ 

термин к-ъш слой в направлении оси Х-х м ы будем употреблять для слоя, содержащего вер­
шину х = (хг, х2, . . ., хп), в которой х( = к, х- = 1 для всех /" е {1,2, . . . , я};у Ф / 

Линейный фактор Ь решетчатого графа мы будем называть существенным линейным 
фактором, если для всех 1 б {1, 2, . . . , п) выполняется: для всяких двух соседних слоев в на­
правлении оси Х{ существует хотя бы одно такое ребро из Ь, которое соединяет вершину 
из одного слоя с вершиной из второго слоя. 
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Пусть ребро % соединяет в решетчатом графе вершины х, у, а ребро § — вершины х, у. 

Будем говорить, что ребра §, & близки, если выполняется: (I) {х, у} п {х,у} = 0 ; (2) в графе 

существует четырехугольник, содержащий ребра $, §. Оставшиеся два ребра указанного 

четырехугольника назовем поперечниками близких ребер §, §. Пусть Ь — произвольный 

линейный фактор решетчатого графа, содержащий два его близких ребра #, #, и пусть Ь* — 

подграф того же решетчатого графа, который получится из Ь, если в последнем заменить 

ребра в>8 и* поперечниками; тогда Ь* также является линейным фактором рассматриваемого 

графа. Будем также говорить, что Ь* получается ^-преобразованием Ь на ребрах $, '§. 

Под бесконечным я-мерным решетчатым графом (обозначение С[п\) мы будем понимать 

граф, вершинами которого являются все точки из Еп, все координаты которых суть целые 

числа, причем произвольные две вершины соединены ребром опять тогда и только тогда, 

когда их расстояние равно 1. О частичном графе Аграфа С[п] будем говорить, что он является 

Л-графом в 0[п] если справедливо: произвольная вершина из С[п] инцидентна по большей 

мере с одним ребром из Р. Пусть %, к — произвольные два ребра из С[п] и пусть ребро § 

соединяет вершины V, IV, а ребро к — вершины х, у. Будем говорить, что ребра §, к — соседние, 

если # Ф к и если {У, И>} П {Х, у) Ф 0 ; ребра &, к — почти соседние, если § Ф к, § и к — не 

соседние и если в 0[п] существует ребро/такое, что/, $ —- соседние, а т а к ж е / к — соседние 

ребра. 

Будем говорить, что Л — граф Аграфа С[п] можно раскрасить р цветами (р — натуральное 

число), если всякому ребру из ^ м о ж н о поставить в соответствие число ( = цвет) из {1, 2, . . . ,«} 

так, чтобы произвольные два почти соседние ребра были окрашены в разный цвет. 

В работе доказываются следующие теоремы: 

1. В решетчатом графе С(%1, %2, . . . , |„) с четным числом вершин существует // и только 

п таких линейных факторов, никакие два из которых не имеют общего ребра. 

2. Пусть Ь — произвольный линейный фактор решетчатого графа С(^, | 2 , . . ., $п). Для 

числа дк(г) ребер из I,, соединяющих некоторую вершину из к-ото слоя с некоторой вершиной 

из (к 4- 1)-ого слоя в направлении оси Х{, выполняется: 

к П I,- ^ дк(0 (тос! 2) 
1=1 
1Ф1 

3. В графе ОМ\9^2^ существует существенный линейный фактор тогда и только тогда, 

когда (1) 1^2 == О (тоо* 2); (2) | х ^ 5; (3) | 2 = 5; (4) не имеет места ^ = | 2 = 6. 

4. В трехмерном решетчатом графе (7(1 х , | 2 , | 3 ) существует существенный линейный 

фактор тогда и только тогда, когда он имеет четное число вершин и когда хотя бы две из 

чисел | 1 , ^ 2 »^з больше чем 2. 

5. Пусть п > 3. В я-мерном решетчатом графе существует существенный линейный фактор 

тогда и только тогда, когда он имеет четное число вершин. 

6. Произвольный линейный фактор двухмерного решетчатого графа С(%г, | 2 ) содержит 

хотя бы одну его пару близких ребер и произвольный линейный фактор может быть некоторым 

конечным числом ^-преобразований переведен в произвольный другой линейный фактор 

того же графа. 

7. Пусть р — произвольное натуральное число. Решетчатый граф С 7 ( | 1 , | 2 , . . . , | 4 р ) > 

в котором ^ = 2 для всех * е {1, 2, .. .,4р}, можно разложить на Ар линейных факторов так, 

что никакой из линейных факторов этого разложения не будет содержать пары близких ребер 

(т. е. ребра произвольного четырехугольника из С(^х , | 2 , . . ., | 4 / 7 ) принадлежат четырем 

отличным друг' от друга линейным факторам этого разложения). 

8. Произвольный Л-граф в графе С[п] можно раскрасить Ъг цветами. 
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9. Всякий линейный фактор «-мерного решетчатого графа может быть раскрашен 2п цве­
тами. 

10. Пусть 51 — произвольная двухмерная шахматная доска и пусть 7? — произвольное 
ее разложение на прямоугольники размеров 1 x 2 . Прямоугольники из Я можно всегда 
с помощью четырех цветов раскрасить так, чтобы всякие два прямоугольника, общую границу 
которых образует отрезок длиной ^ 1 , были окрашены в разный цвет. 
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