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MATEMATICKO-FYZIKALNY CASOPIS SAV, 14, 2, 1964

LINEAR FACTORS IN LATTICE GRAPHS

ANTON KOTZIG, Bratislava

Letall &, &5, ..., &, be integers > 1, n a positive integer. Similarly as in paper [1]
we mean by a lattice graph G(¢,, &,, ..., £,) a graph(') wherein: a) the set of the
vertices of the graph is the set V of the points of the Euclidian space E,, defined in
the following way: point x with the co-ordinetes x, x,, ..., x, belongs to V if and
only if for all i = 1,2, ..., n, x; is the positive integer <¢&;; b) two vertices from '
are in the graph G(¢,, &,, ..., £,) joined by one single edge if and only if their distance
is 1. If the edge & in the lattice graph G(&,, &,, ..., &,) joins the vertices x = (v,.
Xas oo %), ¥ = (¥1, V2, - ¥y @and x; £ y;, the edge will be said to be parallel to the
axis X;. It is evident that after the removal of all edges from the graph G(¢,,¢,, ..., &)
parallel to the axis X;, we shall have a graph with &, components. All these components
are isomorphic and are called layers of the graph G(&,, &,, ..., &) in the direction of
the axis X;. Let us define the k-th layer in the direction of the axis X, thus: the vertex
x = (xy, X, ..., x,) belongs to the k-th layer of the graph G(&,, &,, ..., &,) in the
direction of the axis X; if and only if x; = k. It is evident that the edge joining the
vertex a = (a,, d,, ..., a,) with the vertex b = (by, b,, ..., b,) belongs to the k-th
layer in the direction of the axis X; if and only if a; = b; = k.

We shall say that the vertices x = (x{, X5, ..., X,), ¥ = (¥, V2. ..., »,) have
a common projection in the direction of the axis X;, if x; = y; forall j #+ i.je {1, 2.
...,n} and we shall say that the edges g, h from G(¢,, &,, ..., £,) have a common
projection in the direction of the axis X; if neither the edge g nor the edge / are
parallel to X; and if the statement holds that both the one and the other vertex
incident at the edge g have a common projection with the vertex incident at the
edge h. Similarly: a subgraph or a partial graph or a partial subgraph(?) G; of

(') The difference is that now we admit also n = 1, while in paper [1] we assume n > 1.

(®) I introduce, analogously with Berge's distinction in the theory of (oriented) graphs, the
following distinction between a graph and a subgraph: if I delcte from a certain graph G only some
of its edges, I shall have the partial graph G'; if 1 delete from the graph G some of its vertices and
besides only the edges incident at those vertices, I shall have the subgraph of the graph (see [2].
If 1 do not delete anything, I shall have both the subgraph and the partial graph.
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the j-th layer in the direction of the axis X; has a common projection in the direction
of the axis X; with the subgraph or the partial graph or subgraph G, of the k-th layer
in the direction of the same axis if and only if there exists such a simple mapping
of the graph G; on the graph G, that an element in G; and its image in G, have
the same projection in the direction of the axis X;.

Let in the lattice graph G(¢,, &,, ... £,) the edge g join the vertex x with the
vertex y and let the edge g join the vertex x with the vertex y. The vertices g, g are
said to be near if (1) {x,»} n {x, y} = 0;(2) in the graph G(&,,¢&, ..., &,) there
exists a quadrilateral including the edges g, g. The remaining two edges of the
mentioned quadrilateral will be called the “rungs” of the near edges g, g. It is evident
that for every pair of the near edges there exist in the lattice graph exactly two
“rungs” that are near edges, and that the “rungs® of the ‘“rungs” are the two
original near edges.

Lemma 1. Any component of the finite graph with a linear factor has an even
number of vertices.

The proof (which is very simple and can be easily established by the reader
himself) is given in paper [3] (see lemma 1).

Theorem 1. In the lattice graph G(&,,¢&,, ..., &,) with an even number of vertices
there exist n and only n such linear factors no two of which have a common edge.

Proof. That in the graph G(&,, &,, ..., &,) there can exist at most n such linear
factors no two of which have a common edge is evident from the fact that the vertex
x = (x{, X5, ..., X,,), for which x;, = x, = ... = x, = lis incident at exactly n edges.

Let us prove that there exist n such linear factors of the graph G(¢,, &,, ..., &,).
For n = | the theorem evidently holds, for in the lattice graph G(&,], where &, = 2p,
the set of all such edges of the graph that join the vertex (2i — 1) with the vertex
(2i);i = 1,2, ..., pis the set of the edges of the linear factor of the graph G(¢&,).
Suppose that the theorem holds for alln < m; n = 1 (where m is an integer > 1) and
let us prove that from the aforesaid assumption there follows also the validity of the
theorem for n = m + 1.

Let G(¢y, &5, --os €0 1) be an arbitrary (m+ 1)-dimensional lattice graph with an
even number of vertices. As the form of the graph does not depend on the order by
which we ‘denote the axes of the co-ordinates, we may suppose without loss of
generality that &, is an even number (¢; = 2p). Let us put £,,,; = s for the sake of
simplification and denote by the symbols G, G,, ..., G the first, second, ..., s-th
layer of the graph G(¢,, &,, ..., &,,1) in the direction of the axis X,,, . Each of
these layers is isomorphic with the lattice graph G, = G(¢,,&,, ..., &, Since & = 2p.
G, has an even number of vertices and according to our assumption there exist such
linear factors L, (1), L,(1), ..., L,,(1) of the graph G, no two of which have a common
edge. Let us denote by the symbol L;(k) such a linear factor of the graph G, that has
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a common projection in the direction of the axis X,,.; with the linear factor L(1)
(the existence of such a factor follows from the aforesaid isomorphism of layers). Let
us further denote by the symbol F(k) (k = 1,2, ..., s — 1) the set of all such edges
from G(&,, &, ..., &, 1) that join the vertex from G, with the vertex from G, .

A. Let s be an even number (s = 2r). Let us denote by the symbol L) +1 a partial
graph of the graph G(¢,, &,, ..., £, ) including all edges and only edges of the set

f_) FQ2k — 1)

and let us put Lf = U Ljk) for all j =1, 2, ..., m. 1t is evident that for any k =
k=1

=1,2,...,m+ 1 Lf is a linear factor of the graph G(¢,, &,, ..., &, 1) and no two
different linear factors from the aforesaid m + 1 linear factors have a common edge.
Hence in the case of s = 2r there follows from the validity of the theorem for all
n < m its validity for n = m + 1.

B. Let s be an odd number; s = 2r + 1. Let us denote by the symbol LY the

partial graph of the graph G(¢,,¢,, ..., &, 1), including all edges from L, (1) as well
as all the edges and only edges of the set

L] F(2K).
k=1

Let us denote by the symbol L,’:+ 1 the partial graph of the same graph containing
such and only such edges: all edges from L, (s) and the edges of the set

l:j F(2k — 1).
k=1

Let it further be true for all j = 1,2, ....,m — 1:
L} = U Ljk).
k=1

Each of the partial graphs Li, Ly, ... L:“ of the graph G(&,, &,, ..., Enyy) I8
evidently a linear factor of the graph G(¢,, &,, ..., ,4+1) and no two of them have
a common edge. Hence, even in the case of an odd s there follows from the validity
of the theorem for n < m its validity for n = m + 1. The proof of the theorem is
herewith accomplished.

Theorem 2. Let G(&,, &5, ..., &) be a lattice graph with an even number of vertices
and let L be any of its linear factors. For the number 0,(i) of edges from L, joining
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a vertex from the k-th layer with a vertex of the (k + 1)-th layer in the direction of the
axis X;, the following statement evidently holds:

kl:l1 ¢; = 0,(i) (mod 2).
i
Proof. Let us denote by the symbol #; the number of vertices in one of the layers
of the graph G(&,, &,, ..., &,) in the direction of the axis X;. We evidently have:

Let us denote by the symbol M (i) the set of such edges from L that belong to the
k-th layer of the graph G(§,, &,, ..., £,) in the direction of the axis X; and by the
symboi (i) their number. Let us further denote by the symbol R, (i) the set of such
edges from L that join the vertex from the k-th layer with a vertex of the (k + 1)-th
layer of the graph G(¢,, &,, ..., £,) in the direction of the axis X;; ¢,(i) is their number.
Let us put further g, = 0 for k = 0 and for k = ¢,.

[t is evident that: each of the 5, vertices of the k-th layer is incident at exactly one
edge of the linear factor L. The number of such these vertices incident at the edge
of L belonging to the k-th layer in the direction of the axis X is evidently 2u,(i). Any
of the remaining n; — 2u,(i) vertices is either incident at the edge belonging to
R, _ () or at the edge belonging to R,(i). Hence it is true for every k = 1, 2, ..., §;:

Q1) + 2, (0) + 0,(0) = ;-
Whence it follows (consider that g(i) = 0):
¢1(¥) = n; (mod 2),
01()) + 02(9) = n; (mod 2),
02() + 03(9) = n; (mod 2),

Q{i—Z(i) + Qgi_l(i) =n; (mOd 2),
+Q€i—1(i) =1; (mod 2)

I
—

If n; = 0 (mod 2), then all numbers g,(i), 0,(i), -, 0s,_1(i) are even, if n; =
(mod 2), then we have:

0:(0) = 1 (mod 2); 0,(i) = 0 (mod 2);
05()) = 1 (mod 2); 24(i) = 0 (mod 2);

generally: ¢,(i) = k(mod 2) forall k = 1,2, ..., & — 1.
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Hence the number ¢,(i) is odd if and only if both the number k and the number #;
are odd; or: if the product

is an odd number.
This proves the theorem.

Let L be any linear factor of the lattice graph G(¢,, &,, ..., &,) and let i be any
number from {1,2, ..., n}. We shall say that two different layers of this graph in
the direction of the axis X; are connected by L if there exists at least one edge from L,
joining a vertex of one layer with a vertex of the second layer.

Several well-known problems and their generalizations lead to the concept of
the connecting of layers of the lattice graph by its linear factors; these problems
will be dealt with subsequently.

Let us consider a chess-board (with its squares of the sides of the length 1)
arranged into m columns and n rows. In the case when mmn is an even number. we
can partition the whole chess-board into £mn 1 x 2 rectangles so that each rectangle
includes exactly two squares of the chess-board and each square belongs to exactly
one rectangle. The question we shall try to answer is: what conditions must the
numbers m, n (giving the dimensions of the chess-board S) fulfil that there exist the
above dissection of the chess-board R into 1 X 2 rectangles in such a way that at
each dissection of the chess-board into two oblong chess-boards S, S,, there exists
at least one such rectangle of the dissection R that one of its squares belongs to S|,
the other to S,. Such a dissection will be called the significant dissection of the
chess-board into rectangles.

Before solving the above question, we shall express the mentioned problems
in the language of the theory of graphs. Let S be an m X% n chess-board. Let us.
with respect to the chess-board S, construct the following graph Gy: the vertices
of the graph are formed by the squares of the chess-board S and two vertices in Gg
are joined by the edge if and only if the respective squares of the chess-board are
adjacent, i.e., if they have a common edge. Evidently, Gy is isomorphic with the
two-dimensional lattice graph G(m, n).

Lemma 2. Let S be an m X n chess-board and let R be such its dissection into
1 x 2 rectangles that any square in S belongs to exactly one rectangle of the dissection R.
Let G(m, n) be a lattice graph whose vertices are the squares oft the chess-board S.
and the vertices in G(m, n) are joined by an edge if and only if the respective squares
of the chess-board are adjacent. Let us assign to the dissection R the partial graph Lg
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of the graph G(m, n) in the following way: the edge from G(m, n), joining the vertices a, b,
belongs to Ly if and only if the squares a, b kelong to the same rectangle of the
dissection R. Then we have: Ly is the linear factor of the graph G(m, n) and it is true
that: the described correspondence of the linear factor of the graph G(m,n) with
the dissection of the chess-board into rectangles is a one-to-one map of the set of all
dissections of the chess-board S with the required properties on the set of all linear
factors of the graph G(m, n).
The proof is evident.

Lemma 3. Let S be an m % n chess-board. Let R be its dissection into 1 x 2
rectangles and let Ly be the corresponding linear factor of the lattice graph G(m, n).
The dissection R is the significant dissection of the chess-board S into rectangles if
and only if every two adjacent layers of the lattice graph G(m,n) both in the
direction of the axis X, and the direction of the axis X, are connected by Ly.

Proof. The squares of the m x n chess-board S are arranged so as to form m
columns and n rows. It is possible to cut S into two oblong chess-boards S, S,
either in such a way that all squares of the first p columns (1. £ p < m) are included
in S; and the other squares in S, (i.e. we cut the chess-board vertically in two),
or in such a way that we include all squares of the first ¢ rows (I < ¢ < n) in S,
and the other squares in S, (“horizontal cut”). In the first case there correspond
to the chess-boards S, S, two components of the graph that arises from the graph
G(m, n) after we remove all edges joining the vertex of the p-th layer with the
vertex of the (p + 1)-th layer in the direction of the axis X;. In the other case we
have the components of the graph which arises from G(m, n) after the removal
of all edges joining the vertex of the g-th layer with the vertex of the (¢ + 1)-th
layer in the direction of the axis X,.

Let us, once more, denote by the symbol ¢,(i) the number of edges from L,
joining the vertex of the k-th layer with the vertex of the (k 4+ 1)-th layer in the
direction of the axis X; (i = 1, 2). Evidently, the following is true: R is the singificant
dissection of the chess-board into rectangles if and only if ¢;(1) # 0 for all
j=L2...,m—=1; 02 £0 for all k=1,2,..,n— 1. The aforesaid con-
ditions are, however, fulfilled if and only if every two adjacent layers of the graph
G(m, n) both in the direction of the axis X, and the direction of the axis X, are
connected by Lg. This proves the lemma.

Lemma 4. Let S be an m X n chess-board, R its dissection into 1 x 2 rectangles
and let Ly be the linear factor of the lattice graph G(m, n), corresponding to the
dissection R. Let us denote by the symbol 9,(i) the number of such edges from Ly that
connect the vertex of the k-th layer with the vertex of the (k + 1) —th layer of the
graph G(m, n) in the direction of the axis X; (i=1,2).
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We then have:

m—1 n—1
. 1
Y oo) + Y ef2) = mn, )
k=1 k=1
0,(1) = kn (mod 2) for all k=1,2,...m—1, 2)
0(2) = km (mod 2)  for all k=1,2,...,n— 1. 3

Proof. The validity of the statement (1) of the lemma is evident from the fact
that any edge from Ly joins two vertices belonging to different layers either in the
direction of the axis X, or in the direction of the axis X,. Statements (2), (3) are
a direct consequence of theorem 2.

Let us nowdeduce this theorem about the significant dissections of the chess-board
into rectangles.(®)

Theorem 3. The significant dissection of the m X n chess-board (mn > 2) exists

if and only if: (1) the chess-board has an even number of squares; 2y m 25, (3)n = 5:
m = n = 6 does not hold.

Proof. Let m = 2p and let R be a dissection of the chess-board into 1 x 2
rectangles. Let Ly be the linear corresponding factor of the lattice graph G(m, n).
Let us again denote by the symbol ¢;(1), resp. ¢;(2) the number of edges from Ly
joining the vertex of the j-th layer with the vertex of the (j + 1)-th layer of the
graph G(m, n) in the direction of the axis X or the axis X,. According to lemma 3,
R is a significant dissection of the chess-board into rectangles if and only if:

e/ (1) 0 forall j=1,2,...m— 1,
and

0, *0 foral j=12,..,n—1
1. Suppose that 7 is on odd number. According to lemma 4 we then have:

e;(1) =j (mod 2) for all j=1,2,..,2p — 1,
2:(2) = 0 (mod 2) for all k=12, ..,n—1.

If R is a significant dissection of the chessboard S into rectangles, then
necessarily:

01 =1 for all i=1,3..,2p -1,
0;() =22 forall =24, ..,2p—-2
0(2) =2 for all k=12,..,n—1.

(3) S. W. Golomb obtained the same results in paper {4] in a different way.
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Hence, as regards the number of edges from Ly (which is np), it is true (see
lemma 4):

4 p—1 n—1
pn =~ZI(?21'—1(1) + _ZIQZj(l) +klek(2)-
i= ji= =

Therefore:
pnzp+2p—1)+2n-1),

P-2)(r-3 =2

According to the supposition » is an odd number.

It is evident that n + 1, n 3= 3. But then necessarily n = 5.

The term (n — 3) is always positive; hence it follows that p — 2 > 0 and
therefore 2p > 5. The conditions of theorem m = 5 and n = 5 with an odd »n are
therefore necessary conditions.

II. Suppose n to be an even number; n = 2q.
According to lemma 4 we have:

¢;(1) = 0 (mod 2) for all j=12,..,m—-1,
0:(2) = 0 (mod 2) for all k=1,2,..,n—1.

From the condition ¢;(1) # 0; 0,(2) = 4 it follows:

o;() =2 for all i=1,2,....,m—1,
0.(2) =2 for all k=12,...,n—1,

consequently: 2pg = 2(2p + 1) + 2(2q — 1), therefore: (p — 2) (¢ — 2) = 2. Where-
from it evidently follows that p = 3, ¢ = 3 andsom = 6, n > 6. It is further evident
that we cannot have at the same time p = 3, ¢ = 3. Each of the conditions (2),
(3), (4) of theorem 3 with even m, n is a necessary condition.

[II. We can easily see from fig. 1 that with an even m and an odd » the condition
m = 6,n = 5is asufficient condition. Fig. 1 illustrates schematically the construction
method of significant chess-board dissections with admissible dimensions into rec-
tangles. To set off the method of construction, the ‘horizontal” rectangles are
hatched.

A similar case, where m and n are even numbers, is illustrated in fig. 2, here the

“vertical” rectangles are hatched.

Note. The condition that mn > 2 in theorem 3 cannot be omitted, since the
chess-board 1 x 2 can be uniquely partitioned into 1 X 2 rectangles and this dissection
is significant.

3

The considerations discussed in part 2 can be generalized from two-dimensional
to n-dimensional chessboards. )
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Here we shall have an n-dimensional 1 x 1 X ... x 1 cube and the pair of
adjacent 1 x 1 x ... X 1 cubes will correspond to the edge of the linear factor.
Two such n-dimenional cubes are said to be adjacent if they differ and have
a common (n — 1)-dimensional cube whose edges are all of the length 1 as well.

Let us deduce the theorem about the existence of the linear factor, by which
any two adjacent layers in a lattice graph of more than two dimensions are connected.

Theorem 4. In the three-dimensional lattice graph G(&,, &, , &3) there exists a linear
factor by which any two adjacent layers are connected if and only if the number of
its vertices is even and at least two of the numbers &, , &, , &5 are greater than 2.

Proof. I. Let &, =&, = 2; & = n = 2. The number of vertices of the graph
G(2, 2, n) is 4n and its arbitrary linear factor L has exactly 2n edges. Any layer
of the graph G(2, 2, n) has evidently an even number of vertices. According to
thcorem 2 the number of edges from L, connecting any two layers, must be even.

Suppose that any two adjacent layers from G(2, 2, n) are connected by L. Let
us denote by the symbol p; (i = 1, 2, 3) the number of such edges from L that are
parallel to the axis X;. As there exists both in the direction of the axis X; and the
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axis X, one and only one pair of adjacent layers, we have p, = 2; p, = 2. In the
direction of the axis X there exist n — 1 pairs of adjacent layers and each of them
is connected by at least two edges from L parallel to the axis X;. Therefore:
py = 2(n — 1). Hence p, + p, + p3 =2+ 2 + 2(n — 1). This is a contradiction,
since p, + p, + p3 = 2n. To suppose the existence of the linear factor, by which
any two adjacent layers of the graph G(2, 2, n) are connected, leads to a contra-
diction. The condition that at least two numbers from &, , &,, &; be greater than 2

1S necessary.

II. Let us now prove the following: if at least one number of the numbers &,
&,, &5 is even and at least two of them are greater than 2, then there exists such
a linear factor of the graph G(&,, &,, £;), by which any two of its adjacent layers
are connected. ‘

A Leté, =26 =2p+1;& =29+ 1;p=1; qg= 1. Fig. 3 illustrates how
to find for such a case the linear factor with the required properties. This figure
shows the edges of such a linear factor; they belong to the first layer of the graph
G(&,,&,,&5) in the direction of the axis X; and have a common projection with
the edges of the linear factor of the other layer in the direction of the axis X;.
The vertices of this layer, adjacent at such an edge of the linear factor that is parallel

p-t  p-2 p-3 Pt
o—o o0 0—0 00 0—0 0—0 00 00 0—0 00
Q=’ .i ooog eecooe ®0 00000
o—0 o—0 00 0—0 0—0 O~O 0-0 0-0 0—0 00
o—oo—oi 0—0 0—0 0—0 00 ©—p 00 00
LI ) CIC I ) LIRS Y I )
g=2 i...i -oooog goo.ooocg c . a
e o0 e 0o e 00 ® 000000
o—0 -0 0—0 0—0 00 00 00 00 0—©
o0 00 0o 0—0 0—p 0—0 00
oo eo0o ioo..ooo
eeov oo 2000000
(Z=3 Zooooog oo.o‘ooi
oo oo ®eo0 0900
oo oo e0 ®eegeo0o0e
00 00 00 0-0 o0 0—0 00

HEEH

o0 00 0
o0 00 o
e 0 00
e 000
e e 00
e 6 00
0o 00
o—0 0—0

!
f
!

O~0

?
I
!

Fig. 3.

with the axis X are represented by full rings, while the other vertices are represented
by empty rings. The figure shows the cases where p = 1,2,3,4and ¢ = 1,2, 3,4
in a way which facilitates the solution of any p, ¢.

113



B. Let & =2; &, = 2p; (p > 1); &5 = q be any integer greater than 2. Fig. 4
shows, as in A, how to find the linear factor with the required properties.

C. Let all three numbers &, , &,, £; be greater than 2 and let &, be an even number,
£, = 2p. The linear factor L*, by which any two adjacent layers of the graph

p=2 p=3 p=é
oo e 00 00 @ 00 00 00 ®
q-J o-0 Zo—-oo—o 00 00 00
@ 00 ® e 0 00 cee®ee 00
oo e o000 e o0 o000 e
oo 00 0-0 0—0 00 00
9-‘ ZZ.Q g ce oe E ®© o0 000
oo

o—oni 0—00—0.8 Mo—oo—oog
o0
e

(l'5 LN Y oeoenoe
gles gleaes glatenes
el gl

SR LIt Fetols
e ghiiogliiinopliniin

fooo Tevecs footses

Fig. 4.

G(¢,,¢&,, ;) are connected, will be determined in the following way: We shall find
first the linear factor L, by which any two adjacent layers of the graph G(2, &,, &;) (%)
are connected and let us denote by the symbol H; the set of such edges from L that
belong to the i-th (i = 1, 2) layer of the graph G(2,¢&,, &;) in the direction of the
axis X,. By the symbol V, (or V) there will be denoted the set of vertices of this
layer, incident (or not incident) at the edge from H;. The symbol H,, will denote
the set of edges from the last layer of the graph G(&,, &,, &3) in the direction of the
axis X; which has a common projection with the set H, in the direction of the axis X, .
Let us form the sets Py, P,, ..., P,,_; of the edges from G(¢,,¢&,, ;) thus: the
edge joining the vertex x from the k-th layer with the vertex belonging to the
(k + 1)-th layer in the direction of the axis X; belongs to P, if and only if x has
a common projection in the direction of the axis X; with the vertex belonging to V;

(j=0,1), where j = k (mod 2) and P, is formed only of such vertices. The set

H*=H 0Py UP,U ..UP,_; UH,,

(4) According to A and B such a linear factor evidently exists.
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is evidently the set of edges of a certain linear factor L* of the graph G(¢,, &,, &3),
by which any two adjacent layers of the graph are coniected. This proves the
theorem.

Theorem 5. In every such an n-dimensional lattice graph G(&,,&,, ..., &), wherein
the number of vertices is even and n greater than 3, there exists a linear factor, by
which any two adjacent layers of the graph are connected.

Proof. I. Let us describe first the construction of the linear factor, by which
any two adjacent layers of a four-dimensional lattice graph are connected.

A. Let &, =&, =& = &4 = 2. Let the linear factor L of the graph G(2, 2, 2, 2)
consist of the edges 0000—1000, 0111—1111, 0001 —0101, 1010—1110, 0100—0110,
1001 —1011, 0010—0011, 1100—1101, whereby the symbol abcd—efgh denotes the
edge connecting the vertex (a, b, ¢, d) with the vertex (e, f, g, h) (fig. 5). Since in
the direction of any axis the graph G(2, 2, 2, 2) has exactly two layers and for any
ie{l,2,3,4} L contains two edges parallel with the axis X, it necessarily follows:
any two adjacent layers of the graph G(2, 2, 2, 2) are connected by L.

o110 0111
\»\ 110 1111
/
0010 0011
<_ / —
I ~
i \f/ - Iy
1010 1011

i 0100 0101

I a ST /’\

| / ~ ‘

| NG

| ~_1 1100 | 1101

// b 9!
4 s
% % Z
OOOO\_ - 0001

1000 1001

Fig. 5.

B. Let &, =&, = &3 = 2; & = k = 3. The way to find the linear factor of the
graph G(2, 2, 2, k) by which any two adjacent layers of this graph are connected
is given schematically in fig. 6.

C.Llet & =¢,=2; & =p=3; ¢ =q=3. Let G (or G,) be the first
(or the second) layer of the graph G(2, 2, p, ) in the direction of the axis X;. Both
these layers are isomorphic with the graph G(2, p, g). According to theorem 4 there

exists also a linear factor L; of the graph G; by which any two adjacenf layers of
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the graph G; are connected (i = 1, 2), whereby L, and L, have a common projection
in the direction of the axis X,. The union L, U L, is evidently the linear factor
of the graph G(2, 2, p, 9). Let h; be such an edge from L,, by which the first layer

e

direction of the axis X,

first layer in the direction j even j odd
of the axis X Jj-th layer (1 < j < k) in the direction of the axis X
k even k odd

k-th layer in the direction of the axis X,

Fig. 6.

of the graph G, is connected with the second layer in the direction of the axis X,.
According to theorem 2 there exists an even number of such edges, since the number
of vertices of each of the aforesaid layers is 2p. Hence there exists, besides the edge 4, ,
at least another edge from L, by which the mentioned layers arc connected. The
linear factor L, contains the edge h,, which has a common projection with the
edge A, in the direction of the axis X, . The edges &, /i, belong to adjacent layers:
from the above it follows that they are two near edges. If, in the union L, U L,
we replace the edges h,, h, by their “rungs®, we obtain the linear factor of the
graph G(2, 2, p, g), by which any two of its adjacent layers are connected.
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D.Let §&, =2, ¢, =p=3; &35=9g=23; &, =r = 3. Let us denote by the
symbols G,, G,, ..., G, the first, second, ..., r-th layer of the graph G(2, p, q, r)
in the direction of the axis X,. For all i = 1,2, ..., r the graph G; is isomorphic
with the graph G(2, p, ¢) and according to theorem 4 there exists a linear factor L;
of the graph G;, by which any two adjacent layers of the graph G; are connected.
The linear factors L,, L,, ..., L, may, with regard to the aforesaid isomorphism,
be chosen in such a way that all have a common projection in the direction of the
axis X,. The union Ly = L, w L, U ...u L, is evidently the linear factor of the
graph G(2, p, q,r), by which every two adjacent layers are connected with the
exception of the adjacent layers in the direction of the axis X,. The number of
vertices in any layer of the graph G; (i = 1,2, ..., r) in the direction of the axis
X, is cvidently 2¢ and in the layer of graph G;in the direction of the axis X; this
number is 2p. Hence according to theorem 2 it follows that the number of such
edges from L;, by which any two adjacent layers of the graph G; are connected in
the direction of both the axis X, and the axis X5, is even. Also, this number is
greater than zero. It is possible, therefore, to find the edge g; (or 4;) from L; for
every i€ {l,2, .., r} suchthat the edges g,, g,, ..., g, (or the edges hy, h,, ..., h,)
have a common projection in the direction of the axis X, and that by the edge
g; (or h;), the first and second layer of the graph G, in the direction of the axis
X, (or in the dircction of the axis X3) are connected. Hereby g; (or #;) is not the
only edge by which the above layers are connected. It is evident that the edges g;,
gio1 as well as the edges 4;, h;, ; are near. If, therefore, in the union L, we replace
all the pairs of the near edges g,,_1, 24 (k = 1,2, ...; kK < %r) by their “rungs*
ard if we replace also all pairs of the near edges h,,, h,,, ¢ (Where k =1,2, ...;
k < tr) by their “‘rungs*, we shall then evidently have the linear factor of the
graph G(2, p, q, r), by which any two of its adjacent layers are connected. (All
aforesaid “rungs* are namely parallel with the axis X, and the pairs of the adjacent
layers in the direction of the axis X, are connected by them.)

E. Leté, =2m>2;¢, =p=23;& =q=3;¢ =r= 3. If we removed from
the graph G@2m, p, g, r) such edges parallel with X, by which the vertex from the
2k-th layer is joined with the vertex of the (2k + 1)-th layer in the direction of
the axis X, (k=1,2,...,m — 1), the graph G(@2m, p, q,r) would split into m
components, each of which would be isomorphic with the graph G(2, p, ¢, r). Let
us denote by the symbol G; such of these components that includes the (2i — 1)-th
and the 2i-th layer of the graph G(2m, p. ¢, r) in the direction of the axis Xj.
According to D there exists in the graph G; a linear factor L;, by which any two
adjacent layers of the graph G, are connected. With respect to the aforesaid
isomorphism and with regard to D, we can find the linear factors L, L,, ..., L,
so that we have: if the edge & from the first layer in the direction of the axis X
belongs to L,. then all edges having a common projection with 7/ in the direction
of the axis X, belong to Ly =L, ul,u ..ul,. Let g, be an arbitrary edge

m*
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from L,, belonging to the k-th layer in the direction of the axis X, (we shall denote
this layer by the symbol F,) and parallel with the axis X, and by which, consequently,
the two aforesaid adjacent layers of the graph F, are connected in the direction of
the axis X, . Besides the edge g, there exists according to theorem 2 at least another
edge from F, belonging to L, by which the two mentioned layers of the graph F,
are connected in the direction of the axis X,. Then, of course, if we replace in L,
the near edges g, , g5 by their “rungs®, further the near edges g,, g5 by their “rungs,
etc. ..., the near edges g,._2, &am_10Y their “rungs®, we obtain thus the linear
factor of the graph G(2m, p, g, r), by which any two of its adjacent edges are
connected.

Since at least one of the numbers &,, &,, &5, &, must be even and all are greater
than 1; and, since by the change of the order by which we denote the axes of the
coordinates nothing is being modified, all cases for n = 4 in the cases A, B, C, D. E
are included.

II. Let us suppose that the theorem holds for all integers n fulfilling the condition
4 < n <t (where ¢ is a certain positive integer) and let us prove that it then holds
forn =1t + 1 as well.

Let n =1+ 1 and let G(¢,, &, ..., &,) be any n-dimensional lattice graph with
an even number of vertices. Taking into account the isomorphism, we can assume
without loss of generality that the number &, is an even number ¢ = 2m.

Each of the &, = s layers of the graph G(&,, ¢&,, ..., ¢,) in the direction of the
axis X, (let us denote them by the symbols G, G, ..., G; the k-th layer will be
denoted by the symbol G,) is isomorphic with the graph G(¢,, ¢,, ..., &, ;) having
an even number of vertices and being at least four-dimensional. Then there exists,
according to the assumption, such a linear factor L, in G, by which any two
adjacent layers of the graph G, (k = 1, 2, ..., s) are connected. The lincar factors
L,L,,...,L; can evidently be such that they have a common projection in the
direction of the axis X,.

Since &; = 2m, it necessarily follows that: any layer of the graph G, in the
direction of both the axis X, and X; has an even number of vertices. According
to theorem 2 it then follows that the number of edges from L., by which the
first and second layer of the graph G, are connected in the direction of the axis X,
(as well as in the direction of the axis X3) is even and > 0. Let us denote by the
symbol g, (or &) one of such edges parallel to the axis X, (or X3). A consideration,
similar to the one of part I. D will convince us that if in then union L, v L, U ... U L,
we replace the near edges g;, g, by their “rungs®, further the edges /1,, /i3 by their
“rungs‘, next the edges g5, g4 by their “rungs®, etc., we shall finally obtain the
linear factor of the graph G(¢,,¢&,, ..., &,), by which any two adjacent layers of

~

this graph are connected. Consequently, if the theorem holds for 4 < n < 1, it

holds for n =1 + 1 as well; because it holds for n = 4, it holds also for all
n = 4. This proves the theorem.
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4

In this part we shall especially consider near edges in linear factors and a certain
transformation of such a linear factor of the lattice graph that includes a pair of
near edges.

Lemma 5. Let L be any such linear factor of the lattice graph G(&y,¢&,, ..., &),
containing two near edges g, h. Let L' be the partial graph of the graph G(&,,&,, ...,E,)
that arises from L, if we replace the edges g, h by their “‘rungs*, g’', h'. Hence: L' is
the linear factor of the graph G(&,,¢&,, ..., E,).

The proof is evident.

If the linear factor L’ of the lattice graph arises from the linear factor L of this
graph in such a way that we replace certain two near edges g, & by their “‘rungs* g’, #’,
we say that L’ arises by a x-transformation of L on the edges g, A.

Lemma 6. Let the linear factor L' of a certain lattice graph arise by the x-trans-
formation of the linear factor L of the graph G on its edges g, h, and let g', h' be the
“rungs of the edges g, h. In that case the following is true: The linear factor L is
obtained by the x-transformation of L' on the edges g', h'.

The proof is evident.

Lemma 7. Any linear factor of a two-dimensional lattice graph contains at least
one pair of near edges.

Proof. If in the graph G(m, n) there exists a linear factor L not including ary
pair of near edges, then there belongs to L from each of the (m — 1) (n — 1)
quadrilaterals of the graph G(m, n) at most one side. Let s quadrilaterals contain
a boundary edge (i.c., an edge from the first or last layer in the direction of some
axis) belonging to L. Let us count the number of edges from L considering the
individual quadrilaterals. Since all edges from L with the exception of the S boundary
cdges will be included in exactly two quadrilaterals, we count these edges with
the cocfficient 1. Since the total number of edges from L is 3mn, we obtain:

sH3m=1D@—1) -5z }mn,
i.e.s+m—1)@m—1) = mn and since evidently (m — 1) + (n — 1) = s then

a fortiori (m — 1) + (n — 1) + (m — 1) (m — 1) = mn whence after adjustment we
have —1 = 0, which is a contradiction. This proves the lemma.

Theorem 6. Let G(&,, E,) be any two-dimensional lattice graph and let L, L' be
any two its linear factors, then L' is obtained from L by the finite number of
K-transformations.
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Proof. Since the product &, £, is an even number, we may suppose without
loss of generality &; to be an even number. Let us put, for the sake of simplification
of notation &, = 2m; &, = n. From lemma 6 it follows that: To prove the validity
of the theorem, it is sufficient to prove that for any linear factor L of the graph
G(2m, n) there exists a finite sequence Ly, L,, ..., L; of linear factors of the graph
G(2m, n) so that L, = L and that L is a linear factor, containing such and only
such edges that join the vertex (2j — 1, k) with the vertex (2j, k), where j =
=1,2,...,m; k=1,2,...,n; and where the following holds: L;,, is obtained by
k-transformations of the linear factor L; on certain of its near edges.

We shall prove the statement by induction with respect to n (with m fixed). Before
carrying on our discussion, we shall prove the validity of the statement for all graphs
G(2m, 2).

I. Suppose that any linear factor of the graph G(2m, n) (where m is a positive
integer; n > 1; n < p and where p is an integer >1) can by a repeated x-transfor-
mation be converted into a linear factor, whose edges are all parallel with the axis X, .
Let L be any linear factor of the graph G2m, p + 1).

Denote by the symbol W(L) the set of the vertices of the (p + 1)-th layer of the
graph G(2m, p + 1) in the direction of the axis X, that are incident at an edge
from L parallel with the axis X,. If W(L) were a void set, it would not be necessary
to prove anything, since in that case all edges from L, incident at the vertex of the
(p + 1)-th layer of the graph G(2m, p + 1) in the direction of the axis X, are parallel
with the axis X, and the edges from L, incident at other vertices, form the lincar
factor L, of the graph G(2m, p), which, according to the supposition, can be converted
by repeated x-transformations into the linear factor of the graph G(2m, p) containing
only edges parallel with X .

Let W(L) be a non-empty set, W(L) = {(a;.p + 1), (a3, p + 1), ..., (a,, p + D},
where ¢ > 0 and where a; < a, < ... < a,.

A. I maintain that: by k-transformations, L can be converted into such a linear
factor L*, for which it is true: W(L*) does not contain any of the vertices (1, p + 1),
@2,p+1),..,(ay,p + 1). Let us prove the validity of this assertion. Let us form
the sequence V = {v{, v,, ..., v,} of the vertices from G(2m, p + 1) such that:
v,=( +k—1,p—k+2)forall k =1,2, ...,¢ where 7 is chosen so as to be
the greatest integer fulfilling the following two conditions:

t<2m+2—ay; t<p+2.

The following statement holds: in the sequence V there exists at least one such
vertex, from which we cannot proceed downward along the edge from L. Let us
suppose, conversely, that from each vertex from J we can proceed downward along
the edge from L (i.e., to the vertex, belonging to the lower layer of the graph in the
direc tion of the axis X,). Then evidently the vertex from the first layer in the
direction of the axis X, does not belong to ¥ and the vertex v, belongs to the last
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(2m-th) layer of the graph G(2m, p + 1) in the direction of the axis X, (t = 2m +
+ 1 —ay).

Let f; be an edge from L incident at the vertex v;. It follows from the above
supposition that the vertex w, = (a; + 1, p + 1) is joined by an edge from L with
the vertex (a; + 2, p + 1), since it cannot be joined by such an edge either with the
vertex v, (incident at the edge f; € L) or the vertex v,, incident at the edge f, € L.
But in such a case the vertex w, = (a; + 2,p)
is joined by an edge from L with the vertex
(a, + 3, p) (there is no other possibility —
fig. 7).
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Fig. 7. Fig. 8.

Carrying on the above discussion, we find that for any k = 1,2, ...,¢t — 2 it is
true: the vertex w, = (¢, + k, p — k + 2) is joined by an edge from L with the
vertex (a; + k + 1,p — k + 2). But then the vertex w,_; = Q2m,p — t + 3)
cannot be incident at any edge from L (fig. 8).

The supposition that from each vertex of the sequence V we reach along the edge
from L the lower layer of the graph G(2m, p + 1) in the direction of the axis X,
leads to a contradiction.

Let v, be the first such vertex of the sequence ¥ from which we cannot reach along
the edge from L the lower layer of the graph in the direction of the axis X,. It is
evident that for each linear factor F of the graph G(2m, p + 1), for which W(F) + 0,
the number c is uniquely determined; let us denote this number by the symbol y(F),
if W(F) = ¢ and let us put y(F) = 0, if W(F) = 0.

In this case it is evidently true that y(L) = ¢ > 1 and that: from the vertex v, we
reach along the edge from L either the higher layers in the direction of the axis X,
(the first type of linear factor), or the higher layer in the direction of the axis X, (the
second type). A consideration similar to the one above will convince us easily that
the position of the edges from L, incident at the vertices v, , v,, ..., v, and the vertices
w, = (@, + k,p — k + 2), in case of the first (or the second) type of the linear
factor of the graph G(2m, p + 1) is that given in fig. 9a (or fig. 9b).
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Whether we have the first or the second type of the linear factor, it is always true
that: for an edge from L (let us denote it by /), incident at the vertex v, there exists
such an edge g € L that is near to the edge 4. Besides, we have for the second type
g = f.. Let L° be a linear factor of the graph G(2m, p + 1), which arises by an
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Fig. 9.

k-transformation of the linear factor L on the edges g, 4. The following is true:
if L is the first type of the linear factor, then L° is the second type and y(L) = y(L°);
if L is the second type of the linear factor, then L° is the first type and we have:
y(L°) = y(L) — 1 (fig. 9 a, b). Whence it follows: by x-transformations on near
edges from which one is always incident at the vertex v, we can change the type
of the linear factor and successively reduce the value of the function y(L) so that we
finally have a linear factor L*, for which is it true that: an edge from L*, incident
at the vertex v, , is incident at the vertex (a, + 1, p + 1) (i.e., horizontal — fig. 10).
But then the set W(L*) evidently does not contain any of the vertices (k, p + 1),
where k = 1, 2, ..., a;, which proves the validity of statement A.

B. I maintain: by x-transformations the linear factor L can be converted into such
a linear factor L**, for which it is true: W(L**) is a void set. Let us prove it! Let L,
be any linear factor of the graph G(2m, p + 1). Letus use, for the sake of simplifica-
tion, the symbol b; to denote the vertex (i, p + 1) and let us denote by B(L,) such
a smallest index j from {1, 2, ..., 2m} for which it is true: b; belongs to W{(L). Accord-
ing to point A any linear factor L = L(0), for which W(L(0)) =% 0, can by x-transfor-
mations be converted into the linear factor L(1) in such a way that we either have
W(L(1)) = @ or BIL(0)] < BIL(1)]. Generally: if for the linear factor L(k) it is true
that W(L(k)) % ), we can convert this linear factor by k-transformations into the
linear factor L(k + 1) so that we either have W(L(k + 1)) = 0, or that it is true:
BIL(k)] < BIL(k + 1)]. Hence there always exists a finite sequence of the linear
factors L(0), L(1), ..., L(r) so that L(i + 1) arises by x-transformations from L(i)
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and it is true: S[L(0)] < BIL(D] < ... < BIL(r — 1)]; W(L(r)) = 0. But then L** — ,_
is the required linear factor. This proves the validity of the assertion B.

C. From the validity of the assertion B there follows — as mentioned at the
beginning — that: if our theorem is valid for all lattice graphs G(2m, n) with a given
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Fig. 10.

m > 0 and any n > 1; n £ p, then the theorem holds for the graph G(2m, p + 1)
as well. To complete the proof of the theorem, it is sufficient to prove merely that
the theorem holds for every graph G(2m, 2), where m is any positive integer.

II. Let L be an arbitrary linear factor of the graph G(2m, 2), where m is any
integer >0. According to theorem 2 the number of edges from L that are joining
the vertex from the k-th layer (k = 1,2, ..., 2m — 1) of the graph G(2m, 2) in the
direction of the axis X, with the vertex of the (k + 1)-th layer of this graph in the
direction of the axis X, is an even number. Hence the vertices of the considered two
layers are either not joined by any edge from, or are joined by exactly two edges
from L. Then necessarily: for each such edge from L that is parallel with the axis X
and belongs to the first layer in the direction of the axis X,, there exists a near edge
in the second layer of the graph G(2m, 2) in the direction of the axis X,. Whence it
immediately follows that by x-transformation on each of such pairs of near edges of
the linear factor L that are parallel with the axis X, we can obtain the linear factor E,
all edges of which are parallel with the axis X,. Let us denote by the symbol ¢, the
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edge from E that connects the vertices (k, 1), (k,2); k = 1,2, ..., 2m. If we perform
the x-transformation first on the edges e, , e,, then on the edges e;, ¢,, and so on, ...,
on the edges e,,,_;, €,,,, We obtain the linear factor L, all edges of which are parallel

with the axis X, . The theorem then holds for all graphs
G(2m, 2), where m is a positive integer.

Then, according to part I the theorem holds for
all G(2m, n), where m, n are integers, m > 0, n > 1.
This was to be proved.

I must make clear that the theorem analogous to
theorem 6 for n-dimensional lattice graphs does not
hold any more for n = 3. Thus for instance in the
graph G(3, 3, 2) there exists a linear factor L that
does not contain any pair of near edges (fig. 11; the
edges from L are set off by bold lines).

The graph of the four-dimensional cube G(2, 2, 2, 2)
may even be decomposed into four linear factors L,
L,,L,,L,so that there does not exist in any of these

four linear factors a pair of near edges. Let us demonstrate at least one example of
such a decomposition (fig. 12):

Theorem 7. Let p be any positive integer. The graph of the 4p-dimensional cube can
be decomposed into 4p linear factors so that not one of the linear factors of this
decomposition contains a pair of near edges. If there exists the decomposition of the
graph of an n-dimensional cube (n > 1) into n-linear factors, not one of which contains
the pair of near edges, then there exists also the decomposition of the graph of the
(n + 4p)-dimensional cube into (n + 4p) linear factors, not one of which contains two

near edges.(’)

Edges from the linear factor
Ly L, Ly 1 L,
\ . s
join these pairs of vertices
0000,1000 0000,0100 0000,0010 0000,0001
0100,0110 1000,1001 1000,1100 1000,1010
0010,0011 0010,1010 0100,0101 0100,1100
0001,0101 0001,0011 | 0001,1001 0010,0110
1110,1010 1110,1100 [, 1110,0110 ‘ 1101,1001
1101,1100 1101,0101 " 1011,1010 \ 1011,0011
1011,1001 | 0111,0110 l 0111,0011 ' 0111,0101
1111,0111 | 1111,1011 | 1111,1101 1111,1110
| |
(®) When speaking of the graph of an n-dimensional cube we mean the graph G(2,2,....2)

(n twos).
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Proof. Let C(n) be the graph of an n-dimensional cube and let there exist such
its decomposition R(n) = {L,(n), L,(n), ..., L,(n)} into linear factors that no linear
factor of this decomposition contains a pair of near edges. Let R(4) = {L,(4),

0110 o111

L,(4), Ly(4), Ly(4)} be the decomposition of the graph of the four-dimensional cube
C@) = G(2,2,2,2) described in table 1 and illustrated in fig. 12. Let V be the set
of all vertices of the n + 4-dimensional cube C(n + 4) and let V= {Voos Vo1 Vios
V1) be the decomposition of the set ¥ into classes, defined in the following way:
the vertex (x, X5, ..., X,;4) = X belongs to the class V; ;€ V(E=0,1;j=0,1)
if and only if it is true:

n 4
Y x; = i(mod 2); Y Xipn = j(mod 2).
k=1 k=1

Let H be the set of all edges from C(n + 4) and let H = {Hox, Hix, Hyo, Hy )
be its decomposition thus defined: the edge # from H, joining the vertex x with the
vertex y belongs (fig. 13) to the class:

Hoy ifand only if {x, y} 0 Voo *+ 05 {x,y} n Vo1 £ 0,
Hyy ifandonlyif {x,y} n Vo % 0; {x,y} 0 Vi1 *+ 0,
Hyoifand onlyif {x, ¥} n Voo + 0; {x,¥} 0 Vio * 0.
H, ifand onlyif {x,y} n Vo, + 0; {x,y} n Vi1 + 0.
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1t is evident that H is a partition, i.e., any edge from C(n + 4) belongs to exactly
one set from H and each set from the sets Hoy , H,,, Hyy, Hyq is 2 non-empty sct.

Let us denote the already defined linear factors of the graph C(n) (or C(4)) in the
following way: Ly(n) = L;_;(n), where Lo(n) = L,(n) and Li(4) = L;_,(4) and where
similarly Ly(4) = L,(4).

Let R* = {LY, L}, ..., L),,} be the decomposition of the graph C(n + 4) into
linear factors, defined in the following way:

1. the edge from Hos joining the vertex x = (x;, X,, ..., X, 4) € Vo, with the
vertex ¥ = (1, Y2, -+ Yasa) € Vo, belongs to Ly ; if and only if the edge from C(4)
Joining the vertex x = (x,, 1, X,,2. X, 3, X,,4) With
the vertex ,.V = (,Vn+ 1>Vns2> Yut3s Vara) belongs to
L4);

2. the edge from H,, connecting the vertex x with
the vertex y belongs to L,’f+1 if and only if the edge
from C(4) joining the vertex x with the vertex ¥
belongs to Li(4);

3. the edge from H,, joining the vertex x with the
vertex y belongs to Ljf if and only if the edge from

Fig. 13. C(n) joining the vertex X = (xy, x5, ..., x,) With the
vertex y = (yy, ¥, ..» ¥,) belongs to L (n).

4. the edge from Hy, joining the vertex x with the vertex y belongs to L7 if and
only if the edge from C(n) joining the vertex x with the vertex y belongs to Lj(n).

From the above description it is evident that R* is a decomposition into linear
factors and that no linear factor from R* contains a pair of near edges.

Hence, if by the required way the graph C(n) can be decomposed into linear
factors, the graph C(n + 4) can be decomposed in this way as well. Whence there
instantly follows the validity of both statements of the theorem.

I wish to make clear that the requirement expressed in theorem 7 with respect to
the linear factors of the decomposition, i.e. the requirement that not one of them
contain a pair of near edges, can be made more conspicuous and we can postulate
that it be true: each of the four edges of any quadrilateral of the graph belongs to
a different linear factor of the decomposition (we have omitted in our considerations
the case n = 1, it being a trivial case). Hence it is clear that the required decomposition
cannot exist for n = 2, n = 3. We can prove that such a decomposition does not
exist for n = 5 either (I did not succeed in symplifying the rather complicated proof
I established). The problem of the existence of these decompositions for such n > 5
that are not divisible by 4 remains to be solved.

5

In this part we shall deal with certain properties of the sets of edges in infinite
n-dimensional lattice graphs and we shall deduce, with respect to them, a theorem,
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whose deductions have an importance also when we consider linear factors in finite
lattice graphs. When speaking of an n-dimensional infinite lattice graph we
think — as in paper [5] — of a graph, whose vetices are all the points from E,, each
coordinate of which is an integer; any two vertices in the graph are joined by an
edge if and only if their distance is 1. We use the symbol G[x] to denote it.

Let us define the set of Y[n] vertices from G[n] thus: the vertex x = (x;, X5, ..., X,)
from G[n] belongs to Y[x] if and only if

Y x; = 0(mod 2).
i=1

Lemma 8. Any edge from G[n] joins a vertex from Y[n] with a vertex not belonging
to Y[nl].

The proof is evident (the statement in the lemma follows directly from the
definition of the graph Gln]).

The partial graph F of the graph G[n] will be said to be a A-graph in G[x], if it
is true: any vertex from G[n] is incident at most with one edge from F. We evidently
have: any linear factor (hence also the partial graph of the linear factor) of the graph
G[n] is its A-graph.

Let g, /1 be any two edges from G[n] and let the edge g connect the vertices v, w;
the edge /i the vertices x, y. The edges g, & will be said to be adjacent if g + & and
if it is true that {v, w} n {x, y} = 0 and almost adjacent if g # h; g, h are not
adjacent edges and if in the graph G[n] there exists such an edge f that both (f, g)
and (f, /) are pairs of adjacent edges.

Lemma 9. Let g, h be any 1two almost adjacent edges from G{n] and let v = (v,
Ugy ooy Uy), OF W = (Wi, Wo, ..., W,) be the vertex from Y[n) at which the edge g, or the
cdge I is incident. In such a case we have:

n
Z‘Ui—wi|=2-
i=1

Proof. Let v (or w) be the vertex from G[n] not belonging to Y[n], at which the
cdge g (or edge /) is incident — see lemma 8 — and let f be the edge joining the
vertex from {v, v} with the vertex from {w, w}. We may suppose without loss of
generality that the edge f joins the vertex v with the vertex w. Taking the definition
of the graph G[n] as a starting point, we have, after a simple consideration:

i=1 i=1
Whence it follows that there exist such numbers r, s€ {1, 2, ..., n} that:

— w;,foralli=+r;ie{l,2, .., n}
= w;foralli=+s;ie{l,2, ..,n}

lvr—wrl’:l; U;

|

|W\_Wsl=l’ "‘vi
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According to our assumption v, w are two different vertices. Whence it follows
that: if r = s, then necessarily |v, — w, | = 2;v; = w;foralli £+ r;ie{l,2, .., n};
and if r % s, then it is true: |v, — w, | = 1; | v, — wy| = 1; v; = w; for all ie {I,
2, ..., n} not belonging to {r, s}. The validity of the lemma from the the aforesaid
is evident.

Let F be any A-graph in G[n]. We say that F can be coloured by p colours (p is
a positive integer), if to each edge from F a number from {1, 2, ..., p} cen be assigned
(this number will be called the colour of the edge) so that any two almost adjacent
edges will have a different colour.(°)

Theorem 8. Every A-graph in the graph G[n] can be coloured by p colours, where
p = 2n.

Proof. Let F be any A-graph in the graph G[n]. Let M = {M,, M,. ..., M,,}

be the partition of the set Y[n] into classes thus defined: the vertex x = (xy, x5, ..., x,)
from Y[n] belongs to the class M, (i = 1, 2, ..., n) of the partition M if and only if:

ulx) = -—21—[):1 + 3x, + ... + (2n — 1) x,] = i(mod 2n).
A. I assert: if it is true for the vertices x, y from Y[n] that:
Yix-vil=2, *)
then the vertices x, y belong to different classes of the partition M. Let us prove it!

Let (*) hold for the vertices x, y € Y[n]. It is evident that only the following two cases
are possible:

Case I. There exists such a number ge{l,2, ...,n} that [y, - »,| =2 and
x; = y; holds for all i & ¢; ie {l,2, ..., n}.
Case 1. There exist numbers r < s belongingto {1, 2, ..., n} sothat| x, — v, | =1;

| xy —y| =1; x; = y; holds for all i & r; i & s.
In the first case we have:

1
u(y) = 5 i +3y,+ .. +@n—=1Dyl=

=%[ic(4q — 2D+ x +3x+ .+ Q- 1)x,)
or n() = px) £ 29 — 1

and since the number 2¢ — | cannot be the integer multiple of the number 2n it
follows: the vertices x, y belong to different classes of the partition M.

(®) It follows directly from the definition of the A-graph that £ cannot contain two adjacent

edgzs.
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In the second case we have:

HO) = 1) + o [£Qr — 1) £ (25 = 1] =

=u(X)+[i<r——;—>i<s—%>]=u(x)+V-

The term in brackets (denoted by the symbol v) cannot be equal to zero since,
according to the assumption, r < s. Since r < s < n, it is necessarily true that
v < 2n. Hence v is not the integer multiple of the number 2n and so the vertices x, y
must belong to different classes of the partition M. This proves the validity of our
assertion.

Let /1 bc any edge from F and let y(/) be such of the vertices incident at the edge A
that belongs to Y[r] (see lemma 8). The edges from Fshall be coloured in the following
way: the edge & has the colour i (i = 1, 2, ..., 2n) if and only if the vertex y(4) belongs
to the class M; of the partition M.

B. I assert: With the above colouring of edges from F any two almost adjacent
cdges from F are coloured differently. Let us prove the validity of the assertion!
Let g, 1 be any two almost adjacent adges from F. Let v = y(g), or w = p(h) be the
vertex from Y[n], at which the edge g, or the edge 4, is incident. According to lemma 9
it is true:

M=

[o;—w;| =2
1

it

i

whence it follows according to A that: the vertices v = y(g); w = y(h) belong to
different classes of the decomposition M. Hence it bocomes evident that with the
mentioned colouring of the edges from F, the edges g, A are differently coloured.
This proves the theorem.

A direct consequence of theorem 8 is the following theorem:

Theorem 9. Each linear factor of the lattice graph G(&,,&,, ..., E,) can be coloured
by p colours, where p<2n.

Proof. Any linear factor of the lattice graph G(&,, &,, ..., &) is evidently a A-graph
in the graph G[n]. According to theorem 8, it can be coloured by p < 2n colours.

Let us turn once more to the dissections of the two-dimensional chess-board into
1 x 2 quadrilaterals, or to the dissections of the n-dimensional chess-board into pairs
of adjacent n-dimensional cubes with edges of the length 1. Two n-dimensional
cubes with edges of the length 1, i. e., two cubes of the n-dimensicnal chess-board,
are adjacent if they are different and if their intersection in an (n — 1)-dimensional
cube with edges of the length 1.

Let S be an n-dimensional &, x &, x ... x &, chess-board and let D=

= 1{D;.D;, ..., D,} be such a dissection of the chess-board S into pairs of adjacent
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n-dimensional cubes with edges of the length 1 that we have: each cube of the
chess-board S belongs to exactly one pair from D. Let L be the linear factor of the
lattice graph G(&, &,, ..., &,) corresponding to the dissection D. Let further D; # D ;j
be any two pairs from D and let A, h; be their corresponding edges from L.

Lemma 10. The cube of the chess-board S belonging to D; and adjacent at a certain
cube from D; exists if and only if the edges h;, h; are almost adjacent.

The proof follows directly from the definition of the almost adjacent edges and
from the correspondence between an n-dimensional
lattice graph and an n-dimensional chess-board.
From lemma 10 it immediately follows: The problem
to colour the cubes of an n-dimensional chess-board
with the given dissection D with p colours (so that
- both cubes belonging to the pair have the same
colour and that each two pairs from D, the inter-
section of which is at least a (n — 1)-dimensional

cube with edges of the length 1, have a different
colour) is therefore equivalent to the problem how
to colour the edges of the linear factor L with p colours
(so that each two almost adjacent edges have a different colour). The following
theorem then holds, which may be called the small four-colour theorem.

Fig. 14.

Theorem 10. Let S be any two-dimensional chess-board and let D be any its dissection
into 1 x 2 rectangles. The rectangles from D can always be coloured with the help
of four colours so that any two rectangles, whose common boundary is formed by
a line-segment of the length of at least 1, have a different colour.

Proof. The theorem follows directly from theorem 9 for the special case n = 2.

If the chess-board S from theorem 10 is a 2m x n chess-board where m = 2, then
there exists such its dissection into 1 x 2 rectangles that we need for their colouring
with the required properties four colours. Fig. 14 shows an example of such
a dissection of a 4 x 3 chess-board (an elementary consideration will convince the
reader that three colours cannot suffice in this case).

Hence it is evident that for the case n = 2 the necessary number of 4 colours
generally cannot be reduced. It is not known to the author whether the number 2x
of colours, sufficient according to theorem 9, can be reduced. The author is not
acquainted even with such a dissection of a three-dimentional chess-board S into
I x 1 x 2 rectangular parallelepipeds that, when coloured, requires 6 colours. It
can easily be proved that: if we need for the colouring of the m x n x p chess-board S
with the dissection D 6 colours, all the three numbers m, n, p must be greater than 2.
The reader can see at once that to colour the linear factor of the graph G(2, 3, 3)
given in fig. 11, he must have 5 colours. Whence it follows: if the number of necessary
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colours in colouring a three-dimensional chess-board can be reduced, this lower
limit will generally not be less than 5. Even in this dissection of the 2 x 3 x 3
chess-board into 1 x 1 x 2 rectangles that corresponds to the linear factor from fig.
12, we require for the colouring of the considered chess-board 5 colours.
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O JIMHEMHBIX ®AKTOPAX B PEIIETYATHIX TPADPAX
Anton Komur
Pesrome

Mycts &, &,, ..., &, — nessle yucna > 1, n — neioe noaoxuTeabHoe uucio. Iloa peieTyaTsimM
rpadom G(&y, &5, ..., &) Mbl Oynem noHuMate rpad, B KOTOpoM: (a) MHOKECTBO BepluMH 06pa3o-
BAHO MHOXECTBOM V TOYEK IBKJIMIOBA IPOCTPAaHCTBA E,, ONpeneeHHbIM CIENyIOuuM o6pa3om:
TOYKA X C KOOPAMHATAMM X{, X5, .. ., X, OIPUHAIUIEKUT V TOrja U TOJIBKO TOIJA, KOraa 1jis BCEX
i= 1,2, ..., 1 BbINOJHACTCA: X; €CTh LEJI0E NONOXKHUTEIbHOE Yucao = &;; (6) mBe Bepwumubl M3 V
COCOMHCHBI PeOPOM (MPHUYEM €TUHCTBEHHBLIM PeOPOM) TOTIA M TOIBKO TOTAQ, KOrAa MX PACCTOsSIHUE
paBuo 1. Ocu xoopauHat B £, Mbl Oysem o603HauaTh yepes X, X,, ..., X,. Ecnu pebpo /i coenu-
nset B G(&y, &,, ..., &) BepumHbl X = (Xy, X5, ..., X,), ¥ = (¥1, V2, ..., ¥,), IPUUEM X; =+ y;,
TO 6yIeM TOBOPHUTS, 4TO pebpo /z napamnienso X;. [1ycTs i — mpousBosibHoe uicio us {1, 2, ..., n},
Ecin w3 rpada G(§y, &5, ..., &) yaanute Bce pebpa, nmapansienbHble X;, TO TojgyuuTcst Tpad.
MMCIOILMI §; KOMIIOHEHTOB. DTH KOMITOHEHTBI MbI GyJIEM Ha3bIBATh CIIOAMH B HAIIPABIICHUM OCH X;
TEPMUH k-Blit CJI0# B HampaBieHUM ocu X; Mbl OynemM ymoTpebiarh JUIst CNOsi, COMEPKALIETO BEp-

mMHy X = (X, X, ..., X,), B KOTOpOii x; = k, xj = 1nnsBeexie{1,2,...,n};j+1i
Jluneiinblii dakrop L peweryatoro rpada Mbl OyOeM Ha3bIBATH CYLIECTBEHHbIM JIMHCHHBIM
dakropom, ecnm st Beex [ € {1, 2, ..., n} BBITOJNHSACTCA: JJIsL BCIKUX JABYX COCEHUX CJIOEB B Ha-

MpaBJIcCHUU OCK X; CylIECTBYeT XOTsi Obl OJHO Takoe pedpo u3 L, KOTOPOEe COeAMHSET BEPLIMHY
M3 OAHOTO CJIOSI € BEPLIMHOW M3 BTOPOTO CJOs.
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Tlycth pebpo g coenuusieT B pelieTyaToM Irpade BEPLIMHBI X, ¥, a peOpO g — BEPLUMHBL X, ).
Bynem roBoputs, uTo pebpa g, & 6:mu3ku, ecau Buinonmsercs: (1) {x, vy} N {x,y} = 0; (2) B rpage
CYLIECTBYET YETHIPEXYIrOJIbHUK, coaepxaiuuii pebpa g, g. OcTapuecs aBa pedpa yKa3aHHOTO
YeThIPEXYFONIBHMKA HA30BEM I[ONEpPEeYHUKaMu OimM3Kkux pedep g, g. Ilyctb L — npou3BOSbHbIN
JIMHEHHbIH dakTop pelieTyaToro rpada, coaepxanii asa ero 6au3kux pebpa g, ¢, v nyctb L* —
noarpad TOro xe peweTyaTtoro rpada, KOTOpbiil MOMyYuTCs M3 L, eciii B MOC/EAHEM 3aMEHUTH
pebpa g, g NX nonepeYHMKamMu; Toraa L* Takxke sBASETCS JIMHEUHBIM (PAKTOPOM PacCMaTPUBAEMOTO
rpada. Byaem Taxxke roBopuTh, uTo L¥ nmomyuaetcs x-mpeobpa3oBaHuem L Ha pebpax g, g.

Tlon 6ecKOHEYHBIM n-MEPHBIM peuieTyaTeiM rpadom (o6o3nauyeHue G[n]) Mbl OyaemM MOHUMATH
rpad, BepIIMHAMM KOTOPOIO SBJIAIOTCS BCE TOUKM M3 E,, BCe KOOPIMHATBI KOTOPBIX CYTh LEJbIE
Yyucia, UpUYeM IPOU3BOJIbHBIE [BEC BEPLIMHBI COCAMHEHbI PEOPOM ONSATH TOrJa U TOJIBKO TOI/Ia,
Korna ux paccrosHue paBHo 1. O yactiuyHoM rpade F rpada G[n] 6ynemM roBopuTh, YTO OH ABJISAETCS
A-rpapom B G[n] ecnu cripaBelyTMBO: POU3BOJIbHAS BeplIMHA M3 G[n] MHUMAEHTHA MO GoJbluel
Mepe ¢ onHuM pedpom u3 F. Ilyctb g, h — mpousBoibHbe 1Ba pebpa w3 Gln] u nycrb pebpo g
COEMHSIET BEPUIMHBI v, W, a pebpo /1 — BepLuuHsbl X, v. Byaem roBoputs, 4to pebpa g, /f — cocennue,
ecm g & kv ecmu {v, w} N {x, y} + (J; pebpa g, k — noutu cocennue, ecau g + h, g u h — ue
cocennue v ecnu B G[n] cywecrsyeT pebpo f Takoe, uTO f, g — coceaHue, a Takxke f, h — cocennue

pebpa.
Bynem roeopurtsk, 4to A — rpad Frpada G[n] MOXKHO packpacuTh p UBETAMU (p — HATYpaIbHOE
YUCIIO0), ECIIA BCAKOMY peOpy U3 F MOXHO MOCTaBUTb B COOTBETCTBUE YMCIO (= uBeT) u3 {1, 2, ..., n}

TaK, 4TOOBl MPOU3BOJIBHBIE /1B [MOYTH COCeIHHE pedpa ObUIH OKpalleHbl B Pa3HbI LBET.

B paboTe HOKa3bIBAIOTCS CIIEYIOLLUE TEOPEMBbI:

1. B peweryatom rpade G(&,,&,, ..., §,) C YeTHBIM YUCIIOM BEPLUKH CYLIECTBYET H I TO.IbKO
n TakuX JIMHEHHBIX ()aKTOPOB, HUKAKHUE IBa U3 KOTOPBIX HE UMEIOT 00Luero pedpa.
2. Ilycts L — mpowu3BOJibHBLA JMHEHHbIH (akTop peweryaToro rpaga G(&,&,. ..., &) das

uncna 0,(i) pebep u3 L, COeTUHSIONMX HEKOTOPYIO BEPLIMHY U3 k-Or0 CJIOSi C HEKOTOPOI BEPLLUHHOIM

uz (k + 1)-oro cnosi B HANPABJICHAM OCH X, BBINONHACTCA:

k 11 & = g,(i) (mod 2)
=1

3. B rpade G(&;,&,) CymecTByeT CyHIECTBEHHbIH JIMHENHBIA (AKTOP TOrna M TOMABKO TOIJA,
xorga (1) §,&, =0 (mod 2); 2) &, = 5; (3) &, = 5; (4) He umeer mecTa & = &, = 6.

4. B TpexmepHoM peweryatoM rpade G(&y,&,,&3) CylecTBYeT CyLIECTBCHHbINA JIMHEHHbIH
(hakTOp TOrIa M TOJNBKO TOTHAA, KOrZAa OH UMEET YETHOE YMCIIO BEPIUMH M KOrAa XOTsi Obl IBE M3
uucen &y, &,, &3 Gonbiue yem 2.

5. Ilycts n > 3. B n-MepHOM peuieT4aToM rpade CymecTByeT CyUIeCTBEHHbIM THHEel bl GakTop
TOrga U TOMBKO TOrJAA, KOrJAa OH UMEET YCTHOE YHCIIO BEPILUHH.

6. Ilpou3BoibHbIA JIMHEHHBIH HaKkTOp AByXMepHOro peinerdaToro rpada G(&;, §,) comepxuT
XO0Tst ObE O/IHY ero napy 6u3kux pedep U IPOU3BOIIbHbIH JTMHEUHbI GAKTOP MOKET ObITh HEKOTOPHIM
KOHEYHbIM YMCIHOM #-IPeoOpa3oBaHuil MepeBelcH B MPOM3BOJIBbHbIA APYroi juHelHblil (axTop
TOro xc¢ rpada.

7. Ilycre p -—— NPOU3BOJILHOES HaTypasibHoe uucio. Pewetyarsit rpad G(&, &,, .. .,§4p),
B koTopom &; = 2 msa Beex i € {1, 2, ..., 4p}, MOXHO Pa3NOXKUTh Ha 4p IIMHEHHBIX GAaKTOPOB TaK,
YTO HUKAKOU W3 JIMHEHHBIX GAaKTOPOB 3TOrO Pa3IOKEHUs HE OyAeT COAePKaTh napbl OJIU3KHX pedep
(1. e. pebpa DPOU3BONBHOIO 4YeThIpexyrodbHuka u3 G(£;,§&,, ..., E4p) NPUHAIJICKAT YETbIPEM
OTJIMYHBIM JPYT OT APYra JIMHEHHbIM (akTOpaM 3TOTO Pa3yiokKeHUs ).

8. IMpowuseoneHsiit A-rpad B rpade G[1] MOXHO PacKpacuTh 2/ LIBETAMM.
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9. Bcesikuit JIMHEHHBIH (HAKTOP #-MEPHOTO peleTyaToro rpada Moxer ObITh pacKpalleH 2n1 uBe-
Tamu.

10. IMyctb S — npou3BoOJibHAS IBYXMEpHAsl IaXMaTHas AOCKAa U NMYCTb R — MPOU3BOJILHOE
ee pa3/lokKEeHHE Ha MPSMOYroJbHUKMA paszmepoB 1 x 2. [IpsiMOYrosibHUKHM M3 R MOXHO Bcerga
C [IOMOILLBIO YEThIPEX BETOB PACKPACUTD TAK, YTOOBI BCAKME ABA MPSAMOYTOJIbHUKA, OOLLY O TPAHULLY
KOTOPBIX 00pa3yeT OTPe30K IIMHON =1, ObUIM OKpalIeHbl B PA3HBIA 1[BET.
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