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MATEMATICKO-FYZIKALNY CASOPIS SAV, 15, 3 ,1965

ON TOPOLOGICAL REPRESENTATION OF SEMIGROUPS
AND SMALL CATEGORIES

LEV BUKOVSKY, ZDENEK HEDRLIN, ALES PULTR, Praha

A category K is called small if its morphisms form a set. The cardinal
of this set is called the cardinal of &, and is denoted by |K]|. Every semigroup S!
with a unity element may be considered in a natural way as a small category
(morphisms e.g. all left translations) with the cardinal |St|. Hence, representing
small categories we represent at the same time semigroups with unity elements.

By a topological representation of a category & we mean an isomorphism
of & onto a category L, where the objects of € are topological spaces and
a certain topologically defined class of continuous mappings forms the mor-
phisms of €. '

In [1] J. de Groot has proved, among other results, the following theorem
concerning a topological representation of groups:

Let ¢ be an arbitrary group. Then there exists a Hausdorff space 7" such
that the group of all auto(homeo)morphisms of 7' (under composition) is
isomorphic with . The space 7' can be chosen to fulfil some other conditions,
e. g. to be metric or compact.

The above quoted paper gave us the idea for this article. We prove here,
using some of our earlier results (see [2, 3, 4, 5]), a similar theorem for semi-
groups and small categories, namely :

Theorem 1. Let & be a small category, |K| being less than the first inaccessible
cardinal. Then K is isomorphic with a category L, the objects of & are Hausdorff
topological spaces and the morphisms all their quasi-coverings.(t) All the spaces
n & may be chosen either metric or locally compact.

We remark that, avoiding almost all topological considerations, the following
theorem was proved in [5]:

(") Let X, Y be Hausdorff spaces. X, C X is said to be regularly closed in X, if X
is the closure of its interior in X. f: X - Y is called quasi-covering (of f(X)), if it is con-
tinuous, and if for each x € X there exists a regularly closed set X1, x € X, such that
f(X1) is regularly closed in Y and f/ X is a homeomorphism of X; onto f(X1).
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Theorem 2. Let K be a small category, |K| being less than the first inaccessible
cardinal. Then there exists a category L, the objects of R are T,-topological spaces
and its morphisms all their local homeomorphisms, such that & is isomorphic
with Q.

Further, we state here a simple condition (% (f)) (depending on a cardinal f),
the proof of which for some higher cardinals would enable to increase the
cardinal of & in theorems 1 and 2.

Proving his theorem, J. de Groot proceeded in three main stages

(i) replacing an abstract group ¢ by the same group (up to isomorphism)
of all automorphisms of a graph,

(ii) finding a suitable rigid space,

(iii) replacing every edge of the graph by a copy of the rigid space.

Our proof of the above theorem has the same pattern and uses sometimes
the same spaces and constructions as J. de Groot did. Therefore we shall
assume that the reader is familiar with the paper [1].

(i) To simplify our considerations we shall speak about relations instead
of directed graphs. Evidently, the matter is the same.

Let X, Y besets, RCX X X, 8CY x Y (to show it explicitely we write
R=(R,X), S=(S,Y)). A mapping f: X— Y is called RS-compatible
if xRz’ implies f(x)Sf(x’') for all xz, 2" € X (we write often xRz’ instead of
(x, 2') € R). If (R, X) is a relation, we denote by C(R, X) the set of all RE-
-compatible transformations of X. Evidently, (R, X) is a semigroup under
composition with the identity transformation as the unity element. (R, X) is
said to be rigid, if C(R, X) = 1. If f is a cardinal, we denote by .# (f) the
following assertion: There exists a rigid relation (R, X) such that |[X| >f.

In [4] it was proved that % (f) holds for every cardinal f less than the first
inaccessible cardinal.

We denote by R the following category : the objects of R are couples (R, X),
and, if (R, X) and (S, Y) are objects, all morphisms from (R, X) into (S, Y)
are exactly all RS-compatible mappings from X into Y.

The following theorem was proved in [5]: Let & be a small category, and
let # (|8]) holds. Then & is isomorphic with a full subcategory of R.

We remark that the last theorem is an analogon with replacing a color
directed graph by a graph with the same automorphism group.

(ii) Generalizing the theorem by J. de Groot for semigroups there arises
the question: what semigroup of continuous transformations ought to replace
the group of auto(homeo)morphisms. We did not succeed with local homeo-
morphisms or open continuous mappings. The quasi-coverings seem to be
most convenient even if they have a rather surprising property, i. e. they
do not form, in general, a semigroup.

Let f: X — Y be a quasi-covering. x € X is called regular if there exists
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an open set U, x € U, U C X, such that f| U is a homeomorphism of U onto
an open set f(U) in Y. If f: X - Y is a quasi-cover, then the regular points
in X form an open dense set. This implies that the space P, ([1], § 3, p. 88)
is rigid ([1], § 3, p. 86) for quasi-coverings, where the trivial mapping is only
the identity transformation.

Take P,, n > 3, and let h° be a point on the boundary of the disk D, A!
a point on any of the propellers except the center of the propeller. Then
P, — {h°, h'} is connected and rigid for quasi-coverings. We denote by H
the space P, and by H the space P, — {h, hl}.

(iii) Let (R, X) be a relation. Similarly as in [1], we can replace every a =
= (2% 2l) e R, 2% al € X, by a copy Hy of H replacing ¢ by A (i = 0,1).
All Hy are homeomorphic to each other and disjoint with the possible exception
of their ,,vertices‘‘. Into the union of all Hy,

M = U {Hyx € R},

we introduce topologies in two different ways.

(a) We define a metric ¢ in the same way as in ([1], § 7, p. 97) (under the
assumption that there exists a finite chain connecting two arbitrary points).
We denote the metric space obtained in this way by (R, X, o).

(b) We define a topology on M defining the system of all open sets in M.
Let (7 C M. U is said to be open, if and only if for every 2’ € U it is true:
if 2" is not a ,,vertex‘, i.e. " € Hy for exactly one «, there exists 0 > 0 such
that all @ € M, for which p(x, ') < 4§, v € Hy (the metric is considered as
in 71,) belong to U; if a’ is a ,,vertex‘‘. then for almost all copies Hy, 2’ € H,
all points @ € Hy such that p(x, 2") - o(h° A')/3 belong to U. and for the
remaining Hy, " € Hy, there exists oy > 0 such that all x € H,, p(x, 2') << 0y,
belong to U. This topological space will be denoted by (R, X, T).

Now we are able to present the proof of theorem 1. Let R’ be a full
subcategory of R such that & is isomorphic with R’. Every object of R’
is a couple (£, X), R being a relation on a set X. We may associate with every
(R, X) the space (R, X, p) ((R, X, T). respectively). Consider a class € of all
spaces (R, X, o) ((R, X,T), resp.) as objects and all quasi-coverings of these
spaces as morphisms. Then £ is a category. It is easy to establish an isomor-
phism of € onto R’, using the facts that each ,,vertex‘ must be mapped under
quasi-covering into a ,,vertex‘‘ and that H is connected. We omit the details
of the proof as it runs in the same way as the proof of theorem 7 in [1].

Using the metric spaces in our construction (we remark that all considered
(R, X) have the ,finite chain property as follows from the proofs in [5]),
the objects of & are bounded metric spaces, using (R, X, T'), the objects of £
are locally compact Hausdorff spaces.

Now we state explicitly some corollaries:
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Corollary 1. Let & be a small category such that F (IK]) holds. Then there
exists a category L, the objects of & are Hausdor[f topological spaces, morphisms
all their quasi-coverings, such that & is tsomorphic with L. All the spaces could
be chosen either metric or locally compact.

Corollary 2. Let St be a semigroup, and let F (|SY|) holds. Then there exists
a Hausdorff topological space T such that the set of all its quasi-coverings is
a semigroup under composition isomorphic with St.

Corollary 3. Let G be a group, and let F (|G]) holds. Then there exists a Haus-
dorff topological space T such that the semigroup of all its local homeomorphisms
forms a group under composition isomorphic with G.

Proof. We can find 7' such that all quasi-coverings form a group isomorphic
with ¢/. In this case every quasi-covering is an autohomeomorphism. As every
local homeomorphism is quasi-covering, corollary 3 follows.

We remark that our proofs could be modified for groups of homeomorphisms
without of the restriction of cardinals, as every well ordering relation is rigid
for compatible 1-1-transformations with the compatible inverse.

Finally, we formulate in relation with our above remark two problems
which seem to be open:

Problem 1. Does the assertion Z# (f) hold for all cardinals £?(?)

Problem 2. Is it possible to use in theorem 1 compact spaces? The Cech-
-Stone compactification does not work immediately in the same way as for
homeomorphisms.
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(3) Added in proof: The problem 1 has been solved positively in [6].
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O TOHOJTOTMYECKOM HPEICTABJIEHUN HHOJYTPVYIIIT U MAJIBIX KATEI'OPUI

e Bykoncru, 3uenex I'egpaun, Anern Ilynorp

Pesiome

[Toj, Mamoit kareropueil (MOLHOCTH M) Mbl IIOJPA3yMeBACM BCAKYIO KATEropuio, KIACC
MOp(PIBMOB KOTOPOt — MHOMECTBO (MOLHOCTII ).

1To;L kBasu-moispuITHeM Mbl OyieM OHUMATL BesKoe HenpepbiBHoe oToGpamkenne f: X — V
(.Y, V' — oTjesnMble TONOJIOTNUECKIE TTPOCTPACTBA), 00Ia/laloie CICAYIOIUM CBOICTBOM:

JUIL BCSIKOIO @ € X CYIIecTBYCT peryispio 3aMKHYToe MHOecTBo U (T. €. MHOMKECTRO,
SIBHONCCCA 3aMBIKaHMeM cBOeil BHYTpeHHeit wactu) Takoe, uro x € U, f | U — romeomop-
noe oroopaskenune B Y, n f(U) peryasapno szamiiyToe B Y.

I3 padore jorasana caejyomasn

Teopema 1. Ilyems | — masas Kamezopus MOUHOCIU MeNbWE NEPBO2O HEDOCIMUMNCUMOLO
rapduna.ivioeo wueaa. Toeda ] usomophna kumezopuu L, 06veEmamu KOMOpPol AGAKIOMCS
OMACLUMBIE  INOTL0A02UMECKUE npocmparncmed, @ .M()[)‘(/I‘II/J.M(LMII/ — 68C¢ Ux h'(l(l,{iu'-nOhf[)anltﬂ.
I’[)Il d oM ,8 MOMCHO abtﬁpamb makr, ¥mo ece ee 00 vermol — mempuieckue npocmpaiicmea,
WA Ak, N0 6ce OHU AOKAABILO KOMNAKNHbL.

PaGora Tecuo cpazana ¢ padoroii [1]; ucmo/ib3oBaisl pesyabTarsl pador [1], [4], [5].
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