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MATEMATICKO-FYZIKALNY CASOPIS SAV, 13, 1-1963

NOTE ON A DOUBLE COSET DECOMPOSITION
OF SEMIGROUPS DUE TO STEFAN SCHWARZ

A. H.CLIFFORD (') New Orleans (U.S.A.)

In a recent paper in this journal, Stefan Schwarz [1] proved the interesting theorem
that any homomorphism ¢ of a completely simple semigroup S onte a group G can
be described by a double coset decomposition ‘

S=Hv HaH v HbH v ... (a,bh,...€8) )

of S with respect to the kernel H of ¢. The double cosets appearing in (1) are mutually
disjoint, and HaH consists preciscely of those elements of S mapped by ¢ into ¢(a).
It is natural to inquire when this happens in general, and the purpose of this note
is to take a small step in this dircction.

Theorem. Let S be a regular semigroup, and let @ be a homomorphism of S onto a group
G. Let e be the identity clement of G, and let H = ¢ ~'(e) be the kernel of ¢. Then

o ‘ola) = HaH (for all ain S) (2)

i

if and only if H is simple.
Proof. Assuming (2). let ae H. Then
HaH = ¢ ~'¢(a) = ¢ ~'(¢) = H.

so H is simple. (We did not need the regularity of S for this.)
Conversely, assume that H i1s simple, and let a € S. Since

p(Hall) = o(H) p(a) p(H) = ep(a) e = ¢(a),

we clearly have Hall < ¢ ‘'¢(a). To prove the opposite inclusion, let be ¢ ' ¢(a),
so that ¢(h) = ¢(a). Since S is regular, there exists ¢ in S such that bch = b. Then
o(b) p(c) p(h) = @(b) in G, so that

ey = @)~ = p@~,
¢lac) = e = @(bc).

Thus ac and be belong to H. Since H is simple, there exist v and y in H such that
be = ~acy. Hence

b = beb = xa(cyb).

(1) This paper was prepared with the partial support of the National Science Foundation (U.S.A.).
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Now

1

pcrb) = o(c) (v) p(b) = ¢la) ~ epla) = e.

whence cvb € H. and we conclude that b € HaH. This proves our theorem.

The following example shows that there exist regular semigroups with the Schwarz
property that are not completely simple. Let r, s, # be mappings of the set of non-zero
integers into itself defined as follows.

‘ X if x >0,
x) = —lx]; s(v) = .
) [l ) J[—.\‘-{—llf_\‘<0:
[ AN if x>0,
1 if x = —1.
]——.\‘wl if v < —1.

Hy) = -

Setting p = rs. ¢ = rt, ey = pq, ¢, = ¢p, we find:

reo=egr =r,. $° =85t = sep = S, 1?2 =ts = ey =1,

2
e(z) = €,. 0] = €ye; = €69 = ¢, F €.

The semigroup S generated by r. s, and ¢ can be shown to be regular and simple
(in fact bisimple); but it is not completely simple since the idempotent ¢, is not
primitive. (p and ¢ generate a so-called ““bicyclic** subsemigroup B of S, and one can
show that

S=BuBrusButBusBrutBr)

Since S is generated by idempotents, the only homomorphic group image of S is the
group of order one, and S has the Schwarz property by virtue of being itself simple.
For an apparently less trivial example, let T = G x S, where G is any group. Then the
kernel of any homomorphism of 7 onto a group has the form Nx S, where N is
a normal subgroup of G. and every such Nx .S is simple.
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3JAMETKA O PA3JIOXEHWW MOJYIPVYIII MO ABOMHOMY MOAVJIIO
A. X. Knuddopn

Pe3tome

B cratbe noka3biBaeTcs ciieayrouas TeopcMma:

Iyctsb S perynsipHast noayrpynna u ¢ romoMopduism S Ha rpynny G. [1ycts e equunua rpynmnst G
wH = ¢~ (e)— anpo ¢. [Motom ¢~ 'g(a) = HaH (175 BcAKOTo a € S) UMEET MECTO TOTIA M TOJIBKO
Toraa, eciin H — ripocras noayrpyinna.

Ha npumepe noka3aHo, 4To CyLLeCTBYET peryssipHas rnosjyrpynna S, KoTopas He sBJISIETCS BI1OJHE

IPOCTOI TaK, 4TO ¢~ lg(a) = HaH nns Bcskoro a € S v IUIS BCAKOTO roMomopdusma ¢ 1ony-
rpynnsl S Ha rpymny.
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