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DECOMPOSITIONS OF COMPLETE GRAPHS
INTO FACTORS WITH DIAMETER TWO

JURAJ BOSAK, Bratislava, PAL ERDOS, Budapest (Hungary)
and ALEXANDER ROSA, Hamilton (Canada)

In the present paper the question is studied from three points of view
whether to any natural number £ > 2 there exists a complete graph decom-
posable into k& factors with diameters two. The affirmative answer to this
question is given and some estimations for the minimal possible number
of vertices of such a complete graph are deduced. As a corollary it follows that
given k diameters dy, ds, ..., dy (where £ > 3andd; > 2fori — 1,2,3,..., k),
there always exists a finite complete graph decomposable into k factors with
diameters di, dz, ..., d;. Thus Problem 1 from [1] is solved.

In this paper we deal only with nonoriented graphs. By a factor of a graph ¢
we mean any subgraph of ¢ containing all the vertices of (. By a diameter
of G we understand the supremum of the set of all distances between the
pairs of vertices of G (e. g. a disconnected graph has the diameter co). The
symbol (n) denotes the complete graph with n vertices.

Let k be a natural number. By a decomposition of a graph @ into k factors
we mean a finite system {g1, ¢2, ..., g} of factors of ¢ such that every edge
of G belongs to exactly one of the factors ¢i, ¢z, ..., ¢r. The symbol
Fr(di, da, ..., di) denotes the smallest natural number » such that the complete
graph <(n) can be decomposed into k factors with diameters di, ds, ..., dy;
if such an n does not exists, we put Fi(di, ds, ..., dr) = co. Further, put
fi(d) = Fr(d, d, ..., d). The main aim of the present paper is to find estimation<
for fx(2). From [1] it follows that f5(2) = 5, 12 < f3(2) < 13.

Theorem 1. For any integer k > 3 we have:

4k — 1 2 Ok — 7
S < < .
1@ 2k — 2
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Proof. To prove the upper estimation it suffices to decompose the graph

6k — 7
G =
()
into k factors with diameters two. The vertices of ¢ can be represented by
(2k — 2)-tuples formed from elements 1,2,3,...,6k — 7. The ith factor
(¢ 1,2,..., k) consists of all edges joining (2k — 2)-tuples with just ¢ — 1
common elements. The remaining edges can be added to any factor. It is
easy to prove that all the factors have diameter two.

Suppose that for some k > 4 we have fi(2) < 4k — 2. Then, according
to Theorem 1 of [1], <4k — 2} is decomposable into k factors ¢i, ¢z, ..., @i
with diameter two. Put » = 4k — 2. None of the factors ¢; (¢ = 1, 2, ..., k)
may have a vertex of degree n — 1 (otherwise the other factors are not con-
1 ected), therefore, by [4], ¢; has at least 2n — 5 edges. The number of all

edges Of n 1S
> n 9),
2

(1) n2 4+ 10k > 4kn 4+ n.
But

whence it follows that

n2 + 10k = 16k%2 — 6k + 4,
4kn 4+ n = 16k2 — 4k — 2,
thus for k£ > 4 we have n2 + 10k << 4kn + n, which contradicts (1). For
I 3 our assertion follows from [1], Theorem 7.
Remark. The upper estimation given in Theorem 1 is too high. Therefore

we later present some methods enabling to improve it, namely for a ,,small*“ &
in the second part of this article, and for a ,,great’‘ k in the third part.

Lemma 1. Let k> 2, 2 _di<ds<d3s<...<dp<<0o. We
Fi(di,de, ..., dr) < fu(2) + d1+de + ... + dp — 2E.
Proof. From Theorem 1 it follows that fx(2) is a natural number. If d;

have:

d2 ...=d; = 2, the assertion of the lemma is evident. Thus we can
suppose that there exists an integer ¢ (1 < ¢+ < k — 1) such that d; = d»
di 2 <di1 < ... < di. Let us construct a decomposition of the
graph

G = fil2) + di+ do + ... 4 di — 2k

nto k factors with diameters di, ds, ..., dg.
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The vertex set of G consists (as we may suppose) of vertices wui, us,
u3, ..., U and of vertices wvj1, 2,053, .., 2 (0 + 1 <j < k). Ob-
viously, the total number of vertices is fi(2) + di + d2 + ... 4+ dx — 2k.
The complete subgraph of G' generated by the vertices wi, us, us, ..., %,
according to the definition of fi(2) can be decomposed into k factors ¢1, @2, ..
@ with diameter two. Define a decomposition of G into factors ¢,, (m
=1,2,...,k) thus: Into ¢,, there belong (i) all the edges of ¢,,; (ii) all the
edges usvy: (1 <s < fu(2), 1+1<j<k 1<t<d;—2) such that the
edge usu1 belongs to ¢, andj + m; (iii) all the edges of the path wivm 10m,e...
Vp.an-o (if m > i - 1). All the remaining edges are placed into ¢, .

.

It is easy to show that ¢,, has diameter dm (m = 1, 2, ..., k). The lemma
follows.
Lemma 2. Let bk > 3, 2 < dy <ds < ... < diy < oo. Then we have:

6k — 17
Fr(di,ds, ..., dr) < ( )+d1+d2+-~-+dk—2k-

2k — 2

Proof. Distinguish two cases:
I. di = 2. Then the assertion follows from Lemma 1 and Theorem 1.
I1. di > 2. By [1], Theorem 4, we have:

Fy(dy,da,...,dy) < dv+do+ ... +dx — k.

6k — T
k< ;
2k — 2

Corollary. Let k > 3,2 < d1 < dz2 < ... < dx < oco. Then Fi(dy, ds, ..., dy)
18 a natural number.

Since for any k£ > 2 we have

the lemma follows.

Proof. If dy < oo, our assertion follows from Lemma 2. If ds = oo, the
assertion follows from [1], Theorem 3. Therefore we may suppose that d2 < oo,
di = o0, i. e. there is an integer 7 (2 < 7 < k£ — 1) such that 2 < d, < d» <
<...<di < OO=di+1=di 9o = ... =d.

If ¢ > 3, according to Lemma 2, Fi(d1, ds, ..., d;) is a natural number.
Therefore the finite complete graph

G: <_Fi(dl,d2, ...,di)

is decomposable into i factors with diameters di, ds, ..., d;. If we add k — ¢
null factors (i. e., factors without edges), we obtain a decomposition of G
into k factors with diameters di, dz, ..., d;, di 1, ..., dg.
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If ¢ 2, then according to Theorem 8 of [1] F3(d1, d2, d3 = oo) is a natural
number. Since

Fy(dy, dz,d3 = oo, ..., dr = 00) < F3(dy, d2, d3 = 00),

then Fy(dy, da, ..., dx) is also a natural number. The corollary follows.
Remark. As the supposition d; < d2 < ... < di is not essential, the
preceding corollary completely solves Problem 1 from [1], p. 53.

2

Let a natural number # and a set 4 < {1, 2,...,7n} be given. 4 is called
an Sy-set if each x € {1, 2, ..., n}, x ¢ A can be written in at least one of the
following forms

x=a -+ b,
xr=a—0,

r=2n-41— (a +0b),
where a, b e A.
Let k be a natural number. Denote by g(k) the least natural number ! such
that the set {1,2,...,1} can be partitioned into % disjoint S;-sets. (If such
1 natural number ! does not exist, put g(k) = oo.)

Lemma 3. fx(2) < 2¢(k) + 1 for any integer kb > 2.

Proof. Let natural numbers m and n be given. We shall call a finite graph
(without loops or multiple edges) with m labelled vertices v, va, ..., vm cyclic,
if it contains with each edge viv; (3,57 €{1, 2, ..., m}) the edge v; 1v511 (the
indices taken modulo m) as well. By the length of an edge v;v; we mean the
number

min { & — j|, m — [t — jl}.

Evidently, a cyclic graph contains either every or no edge of length 7 for
each 1 €{l, 2, ..., [m/2]}.

Assign to a given S,-set 4 a cyclic graph with 2n 4 1 vertices containing
edges of length 7 if and only if ie 4 (¢ =1, 2,...,n). It is clear that thus
a one-to-one correspondence between cyclic graphs with 2n 4 1 labelled
vertices with diameter two and S,-sets is defined. Further, it is obvious that
to different [disjoint] S,-sets different [edge-disjoint, respectively] cyclic
factors with diameter two of (2n + 1) are assigned. Therefore the assertion
of the lemma follows immediately from the definitions of fi(2) and g(k).

Let natural numbers n, 7, integers ¢, d and a set A = {1, 2, ..., n} be given.
Denote by red,c the (uniquely determined) integer » such that



r =c¢ (mod 2n 4 1),

Irl < n
Further, put
r®) = |red,rt|,
¢ o d = |redcd],

cod={-d; ded}.

Evidently, we always have
(*) 0<ced<m,
coA={0,1,2,...,n}.
Lemma 4. If n and r are such natural numbers that the greatest common divisor
2n +1,7) =1 and A is an Sy-set, then r o A is an Sy-set as well.
Proof. Choose x {1, 2, ..., n}. It suffices to prove that either xer 4
or there exist a, b € 4 such that one of the equalities
x=7r a-7re°b,
xr=roa—rob,

xr=02n+1)—(reca-+reob),

holds.
It is easy to see that thereis a y € {1, 2, ..., n} such that roy — 2. In fact

as (r, 2n + 1) = 1, the congruence
rz = « (mod 2n + 1)
has a solution ze€ {1, 2,...,2nr}. If 1 <z < n,weputy 2z andifn 41

<2< 2n weput y=2n+1—z
Since 4 is an Sy-set, either y € A or there exist @, b € 4 such that one of

the following cases occurs:
y=a—>,
y=a-+b,
y=2n-+1— (a +0b).
If y € A, then evidently x = royero A. Let us analyze the other cases
(all the following congruences are related to the modul 2n 4 1).
(I) y=a —0b. Obviously 4+ reoy=ry —ra—rb, where ra= 4 r a,
b= 4 rob.
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By examining all 8 possibilities for choice of signs we find that one of the
following 4 cases occurs (we use inequality (¥)):

x—roy= roa-+ rob, hence x =roa -+ rob,
x roy= roa—rob, hence x =roa—rob,
x roy=—roa-+4rob, hence x =rcb—roa,
x roy=—roa—rob=2n+41)—roca—rob,

sox=2n-+4+1— (roca -+ rob).

(IT) y a + b. Evidently
tkoy=ky=4Fka+ kb= +koa4kob,

where we again have 8 possibilities for choice of the signs. Further procedure
is the same as in case (I).
(III) y 2n+ 1 — (@ + b). We have: +koy =ky =Fk(2n + 1) — ka
kb —  ka — kb= FkoaTFkeob. Further we proceed as in case (I).

The lemma follows.
Lemma 5. Let v, n and k be such natural numbers that

) 2n 1 s a prime number,
2) k divides n,

) 7 is a primitive root of 2n + 1, (1)

) A {r®, r@k) y@E) .y — 1} s an Sp-set.

Then g(k) < n.
Proof. From (1) and (3) it follows that (r, 2n 4+ 1) = 1 and that the numbers

7,72, ..., 7%, ..., 12" represent all non-zero residue classes modulo 27 4 1.
From this fact it can be easily deduced that {r®),»@, .. r®} _ {1,2, ..., »n}.
From (2) and (4) it follows that the sets 4,ro A, r2oA4,...,7k 1o A are
mutually disjoint. They are S,-sets, as it follows from (4) and Lemma 4.
Therefore the set {1,2,...,n} can be decomposed into k disjoint Sj,-sets,

consequently g(k) < n.

Lemma 6. We have: g(1) < 1, g(2) < 2, ¢g(3) < 6, g(4) < 20, g(5) < 35,
g(6) < 78, g(7) < 98, g(8) < 96, g(9) < 189, g(10) < 260.

Proof. We use the method from Lemma 5: we look for such a multiple »
of k that (1) is valid and the least primitive root r of 2n 4 1 satisfies (4).
With the help of tables of the least primitive roots of primes (see, e. g. [5])
we can construct the following S,-sets 4 :

(1) A natural number r is called a primitive root of a prime number p if the numbers

r, r2, r3, ..., r» 1 = 1 represent all non-zero residue classes modulo p.
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L=1L,n= 1,r=2 A={l}.

k=2, n= 2,r=2 A={1}.

E=3, n= 6,r=2 4={1,5}.

E=4,n=20,r—3, A=/{1,4,10,16,18}.
L=5,n=35 r=1 A =/{1, 20,23, 26, 30, 32, 34}.

k=6, n="18 r=5 A=/{1,4, 14, 16, 27, 39, 46, 49, 56, 58, 64, 67, 75}.
k=17 n=98 r=2 A={1,6 14,19, 20, 33, 36, 68, 69, 77, 83, 84,
87, 93}

=8 n=296r=5 A={1,7,9,12, 16, 43, 49, 55, 63, 81, 84, 85}.
k=09, n=189, r =2, A ={l,5,25, 39,51, 52, 57, 68, 76, 86, 91, 93, 94,

119, 124, 125, 133, 138, 162, 163, 184}.
k=10, n = 260, r = 3, 4 = {1, 10, 18, 29, 32, 42, 52, 55, 62, 74, 98, 99,
100, 101, 106, 114, 176, 180, 197, 201, 219, 226, 231, 235, 237, 255}.

To check that they are S,-sets is a matter of routine. The rest of the proof
follows {from Lemma 5.

Remark. It can be easily found that even g(1) = 1, g(2) = 2, ¢g(3) 6.
By a systematic examination we can also establish that g(4) 20, but, on
the other hand, g(5) — 30. (The inequality ¢(5) < 30 follows from the fact
that 4 = {1, 5,6,11,14,29}, 304, 3204, 334 and 3¢ A4 are disjoint
S0-sets.)

Theorem 2. We kave:f2(2) < 5, f3(2) < 13,f4(2) < 41, f5(2) < 61, f6(2) < 157,
f2(2) < 193, f5(2) < 193, fo(2) < 379, fio(2) < 521.

Proof. Fork =§= 5 k + 7the upper estimation of f; (2) follows from Lemmas 3
and 6. For k = 5 it suffices to apply Lemma 3 and the preceding remark.
For k = 7 we proceed thus: Evidently f7(2) < fs(2), because from a decom-
position of a complete graph into 8 factors with diameter two we obtain
a decomposition into 7 factors with diameter two by unifying edges of any
two of the 8 given factors leaving the other 6 factors without any change.
Since f5(2) < 193, we have f7(2) < 193 as well.

Lemma 7. There exists a natural number N such that for all naturals n > N

we have: The number A, of all factors of {n with t [1 3n3 log n] edges and
with a diameter greater than two s less than

()

Proof uses methods similar to those used in [2].
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(I) Pick a vertex x of <n . Let ¢ be an integer for which
0<s <t

holds. Denote by a; the number of factors of (n) with ¢ edges, in which the
degree of z is ¢. Evidently, we have:

(IT) Put ! [1 3nlog n]. Prove that there is a number N; such that for
¢ 0,1,2,...,1 and for every natural » > N; we have

a; 1
< .
az; nd
It is easy to see that for any natural n the inequalities

nl < ¢,
2l <t

are valid. Now, we have:

T (T

(t+1)@E+2)...2 y
m—i—1)(n—1—2)...(n— 2])

() e (") ez i)

(¢ — 20 + 1)t — 21 + 2) ... (t — i)

X <

n2\2i-t
G+ 1)G+2)...2 (2)
S i) —i— ) —2) (— Ut ) —2AL D). (t—d)

G+ D@ +2)...20 [ n)2 2l i
221 ¢ "\ n—1—1)n—1t—2)...(n — 2



121 _GANE+. 2
(¢ —20 4+ 1)t —2A+2)...(t—i) (202 i

n o\ t a-i 41 (42 2 n \%
X i EE— < —— - ces T * X
n — 21 t— 20+ 1 W) 21 ) n — 21

4 4
¢ 21 g \i-1 5 \2 /"5 \a 5 15 \¢-1
N <G =2 ()
t—2l 4+ 1 4 4 4 4 \16

5 (15\I» 1
<—|—=| <-—
4 \16 n3
for every natural » > Ny, if V; is a sufficiently large constant.

(III) Let us prove that the number B,(x) of the factors of (» with ¢ edges,
in which the degree of  does not exceed [, is less than

%)

2 n2

for every sufficiently large n.
Obviously, according to (II) for » > N; we have:

n2By(x) , %t at .t .

G )

<n2a0+a1+...+az:n2 _flg+ﬂ+."+ﬂ<
azy az; azy azy
1 [Vgnlogn]—I—l
<n(l +1)— = .
n3 n

Evidently, the last expression tends to zero for n - co. Therefore

[VSn logn]+ 1 1
> < —
n 2




for n > N3, where N is a sufficiently large constant so that

Nn2By(x) 1
— <
n 2
(2
t

1
for » > max {N1, Na}.

(IV) We prove now that the number B, of the factors of (n with ¢ edges
containing a vertex of degree < [, is less than

:(6)

B, < Z Bn(x),

for n > max {N1, No}.
Evidently, we have

where x runs through the vertex set of {n). Therefore, using (IIT) we obtain

> L)) =2 (G)
By < Bux) <n— —(\2)]=—|\2
2 n?

t 2n\ Yy

T

for n > max {1, Na}.

(V) Fix now two different vertices  and y of {») and two integers 7 and j
satisfying the relations | < i <n, l <j <n.

Denote by Dy(x, y, ¢, j) the number of factors of (n) with ¢ edges in which x
has degree ¢, y has degree j, and «x is not joined with y by an edge. We have:

neanin= (7905 (()

t—i—j

Further, denote by E(x, y, 1, j) the number of factors of (n with ¢ edges
in which « has degree 7, y has degree j, and the distance of « and y is greater
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than two. Evidently,
. n— 2
— —2_
By i) = (") ("7 ("37)
J t—i—j
We shall find a natural number N3 such that for every n > N3 we have-

En(x,y,1,)) 1
- < :
Dy(z, 4,7, 9) n3

Obviously, we have:

E"(x:y:i,j) n—1tv—2 n—1—3 ’l’l——’i—-j—l
« . - ° cee R <
Dn(x’y;l,]) n— 2 n—3 n—]—l

n—1— 2\ n—3—1[\l1
<\————| s|\————| -
n—2 n—2
It is easy to see that there exists a natural number N3 such that for all
n > N3 we have
n— 2
>
141

Evidently, it suffices to prove that for every n > N3 we have:

n___2 1+1
—_— > n3.
n—3—1

But for » > N3 we have:

1 n-2
1 _+_ +1
n—2 1 > e.
l+1
It follows that
n— 2 1+1 1 n-2 (+1)
—— = 14— \B\n2 o
n— 3 — l) n— 2
111
+1)2 (V3n1ogn)?
>en 2 > e n . ’I’L3.



(VI) Let C), be the number of factors of (»)> with ¢t edges in which all the
vertjces have degrees greater than [ and with diameters greater than two.
From (V) it follows that for every » > N3 we have:

Cn <3 S By, i5) <

(z,y) @.5)

Dulx, y,1,7 1 —
<Z‘Z‘ (@, Yy ) _ Z:z Dutas 4 i, ) <
n3 n3

@y @5 (@y)  (@5)

By () (
S ) )

(@,9)

where (2, y) runs through the set of all unordered pairs of different vertices

of n (i,j) runs through the set of all ordered pairs of integers such that
l<i<n l<j<n.

(VII) Put N max {N;, N2, N3}. Then, according to (IV) and (VI) for
every natural number » > N we have:

B) ) ()

The lemma follows.

Lemma 8. 4 natural number M exists such that for every integer m > M

we have: n contains
n—2
12 log n

edge-disjoint factors with diameter two.

Proof. According to Lemma 7 there exists a positive integer N such that
for every integer » > N we have:

(),



Put

Evidently there is a natural number N4 such that for every n > N4 we have
uw < mn. Put M = max {N, N4}. Obviously for n» > 2 we have:

n(n — 1) S n(n — 1) .
“= 2[V3n3 log n] 2 V3n3 logn N

n2 —2n + 1 n2 — 2n n— 2
— B e —— > B —— p—t — .
127 log n 12n log n 12 log n
Therefore it suffices to prove that for n > M the graph (»n) contains u edge-
disjoint factors with diameter two.

If we assume the contrary, then each of the

NER

=0 t

!

systems S consisting of # edge-disjoint factors of <(n), each with ¢ edges,
contains at least one factor with diameter greater than two. Any such factor
with ¢ edges and with diameter greater than two occurs just in

(o,
i-1 ¢
(w—1)!

q:

systems S. Therefore the number of factors of {n) with ¢ edges and with a dia-
meter greater than two is at least

-2 (0)-20)

which contradicts Lemma 7. Thus Lemma 8 follows.

Theorem 3. There exists a positive integer K such that for any integer k > K
we have:
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fe(2) < (32)21\32 log k.
10

Proof. Pick a natural number K; such that for every k > K; we have

49\2
[(—) k2 log k] > M,
10

where M is the constant from Lemma 8.
Pick a natural number K» in such a way that for any £ > K,

k2log k > 750,

.and, consequently,

1
— 3> ——k2logk.
250

Further, pick a natural number K3 such that for every integer k£ > Kj

we have:
49\2 1
—| log k < k2o00.
10

Put K = max {K,, Ks, K3}. Pick an integer k> K. Put

9 2L21 k
= |(|l—] k2lo .
" 10 g

Then we have:

49\2 49\2
((—) k2 log k — l) —2 (—) k2logk — 3
n—2 10 10
> = >
log loe [[22) k2 10g % 2 1og & -+ log | [} Log &
og 10 og og k + log 10 og
49)* k2 log k ! k2log k
10 BY T 950 " 8
> = 12k2,

2log k + log (kﬁ)

n— 2
k< —
I/1210gn

It follows that



where n > M. From Lemma 8 it follows that {(n)> can be decomposed into
k edge-disjoint factors with diameter two (the remaining edges may be added
to any factor). Consequently,

49\2
fu2) <n < (F)) k2log k.

The theorem follows.

Remark. It can be proved that there exist positive constants C; and Co
such that

Chk? < g(k) < Cok?log k

for every sufficiently large k; the left inequality is obvious; the right one can
be obtained using similar methods as in our Theorem 3 and in [3]; this re-
mains true even if we do not allow representations of the form 2n» 4 1 —
— (@ + b). Now, using Lemma 3 we can again obtain that fao(k) < Ck2 log k
for certain constant C and all sufficiently large k.

Problem 1. Is g(k)/k? bounded ?
Jx(2)

.

Problem 2. Determine lim

k>0
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