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Matematicky &asopis 23 (1973), No. 2

INDEPENDENCE OF EQUATIONAL CLASSES

HILDA DRASKOVICOVA, Bratislava

Preliminaries. Equational classes Ko, K1, ..., Ky of the same type are
said to be independent (for ¢ = 0, 1 see [6]) if there exists an n-ary polynomial
symbol p [5] such that the identity p(xo, 21, ..., Za—1) = x; holds in K;, ¢ =
=0,1,...,n — 1. (We shall also say that the set {Ko, K1,..., Kp1} is
independent.) Kov K1v...v Kp—; will denote the smallest equational class
containing all K;, and Ko>< K1><...>< Ky will denote the class of all
algebras which are isomorphic to an algebra of the form o >< Wy >< ... >< Wy,
WeKi,i=0,1,....,n— 1. A set {0,:y€el'} of congruence relations
on an algebra A = <4; F> is called absolutely permutablet) ([7], [9]) if for
any family (z,:y €I') of elements of 4 such that z, = x5(\V {0, :y €T}
for any «, 8 €I, there exists x € 4 with « = z,(0,) for any y € I. Note
that any subset of an absolutely permutable set S of congruence relations
is absolutely permutable, in particular any two congruence relations of S
are permutable. But the pairwise permutability of S is not sufficient to the
absolute permutability of S. We shall use the symbols o and . for the least
and the greatest congruence relations. The symbol & will denote an iso-
morphism.

1. Statement of the results

Theorem 1. Equational classes K;,i=0,1,...,n — 1, are independent if
and only if the following conditions (1) and (2), or (1) and (2'), or (1) and (2")
are satisfied:

(1) KoAKiA...A Kyn-y consists of one-element algebras only.

(2) For every We Kov K1v...V Ky—1 the smallest congruence relations 0;
on W such that NO; € K;,t = 0,1,...,n — 1, are absolutely permutable.

(2") Given W € Kov K1V ...v Kp1 and arbitrary congruence relations ®; on A
such that NP;e K;,t=0,1,...,n — 1, then ®; (1 =0,1....,n — 1)

‘ are absolutely permutable.

1) In [7] the term ‘‘assoziiert’ is used.
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(2") For every A € KoV K1V ...V Kn-1, arbitrary congruence relations ®; on A
such that A/®; € K;,i=0,1,...,n — 1, satisfy ;. N\ {@;:5 #1,j =
=0,1,...n—1}=V {®;:j=0,1,...,n — 1} for each 1 €{0, 1, ...,
n— 1}.

Theorem 2. Let each U € Kov K1V ...V Kpnoy have a distributive congruence
lattice and let any two congruence relations on A be permutable. Then Ki,1 =
=0,1,...,n — 1, are tndependent if and only if (1) and one of the two fol-
lowing conditions hold:

(2a) For each A € Kov K1V ...V Kyn1 the smallest congruence relations ©; on A
such that AO;e Ki,1=0,1,...,n — 1, satisfy Opv Q; =V {0Q;:7 =
=0,1,...,n — 1} for each k #j,k,je{0,1,...,n — 1}.

(2’a) For each A € KoV K1V ...V Ky and arbitrary congruence relations ® ; on A
suchthatA)®; e Ki,1 = 0,1, ..., n — 1,the eguality Opy O; = \/ {®;:7 =
=0,1,...,n — 1} holds for each k #j, k,je {0,1,...,n — 1}.

Theorem 3. Equational classes Ko, K1, ..., Kn_y are independent if and only
if foreach i € {1,2,...,n — 1}, K; and KoV K1V .../ K;—1 are independent.

Corollary 1. Let Ko, K1, ..., Kn-1 be independent equational classes. Then
any subset of {Ko, K, ..., Kn1} is independent too. In particular K;, K; are
independent for any @ #j, i,5€{0,...,n — 1}.

Remark 1. If each proper subset of {Ko, Ki,..., Kn1} is independent
then Ky, K1, ..., K1 need not be independent as it can be seen in Example 6,
but this holds in special cases (see Theorem 4 and Example 8).

Theorem 4. Let Ko, K1, ..., Kn—1 (n > 2) be equational classes (of the sd)he
type) and let ke {2,3,...,n — 1} exist such that the following conditions are
satisfied :

(3) Eack I classes of the set {Ko, K1, ..., Kn1} are independent.

(4) There exist n — k classes of the set {Ko, K1, ..., Kn1} which have only
idempotent operations. ‘
Then Ko, K, ..., Ky are tndependent.
Remark 2. The number » — k of (4) in Theorem 4 cannot be lowered in
general, as it can be seen in Example 7.

‘ Theorem 5. Let K;,72 = 0,1,...,n — 1, be independent. Then Kov K1V ...V
VEKpa= Ko>< K1><...>< Ky and each algebra A € Kov K1V ...V Kyn_1 has,
up to isomorphism, ¢ wunique representation W = Wo><Wp><...>< Wy,
W;eK;,t=0,1,...,n — 1.

Remark 3. In particular case # == 2 the Theorem 5 yields a somewhat
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stronger result?) than [6, Theorem 1]. In [6, Theorem 1] to get the unicity,
the modularity of the lattice of all congruence relations of each algebra
A € KoV K; is postulated.

Remark 4. In [6, Theorem 2] the following assertion is proved: “Let
KoA K; consist of one-element algebras only and let every U € KoV Ky have
a modular congruence lattice. Then Kopv Ky = Ko>< K; if and only if K,
and K, are independent.” The ‘‘only if” part of this assertion cannot be
enlarged to the case of more than two equational classes (as the Example 4
shows), even if we replace modularity by distributivity (see Remark 6 in §3).
One way of enlarging of this part of the assertion is given in Theorems 6 and 7.

Remark 5. If K;,9=20,1,...,n — 1, are independent then using
Theorem 5 and results of [8], analogously as in [6], we get that in Theorem 2
the condition ‘“‘each U € Kov K1V...v Kp—1 has a distributive congruence
lattice and any two congruence relations on 9 are permutable’ can be replaced
by ‘“each U;eK;,¢=20,...,n — 1, has a distributive congruence lattice
and any two congruence relations on 9[; are permutable’.

Theorem 6. Let the following conditions be satisfied:

(5) KovKy..VKpg = Ko><Ki1><...>< K.

(6) For each i€ {l,2,...,n — 1}, (Kov K1V...v Ki)A K; consists of one-
-element algebras only. '

(7) Every algebra A € Kov K1V ...V Ky has a modular congruence lattice.

Then Ko, K1, ..., Ky-1 are independent.

Theorem 7. Let the following conditions be satisfied:
(5) KovKi1V..VKp1=Ko><Ki><...>5< Ky.
(6’y For each i 53, i,j=20,1,...,n — 1, KA K; consists of one-element
algebras only.
(7') Every algebra W € KoV K1V ...V Kn_1 has a distributive congruence lattice.
Then Ko, K1, ..., Ky-1 are independent.

2. Proofs of the theorems

We shall use the following assertions:

Lemma A ([7], [9]). Let N be an dlgebm. There exists a one-one correspondence
between the non-trivial direct decompositions 11(, : y € I') of the algebra A and

2) Added Mai 25, 1972. The manuscript of this paper had been accepted for publication
before the author knew that a proof of Theorem 5 is obtained (in another way) by Tah-
Kai Hu and P. Kelenson, Independence and direct factorization of unicersal algebras,
Math. Nachr. 51, 1971, 83—99.
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the sets S = {Oy 1y € I'} of non-trivial congruence relations (different from o
and ) on W having the folloving properties:

i) N{O,:yel}t=o.
(i) V{Q,:yel}=1.
(iii) S is absolutely permutable.
Given the set S, the corresponding direct decomposition is

Ao [1AO, :yeT).

Lemma B [3]. 4 set {Og, O1, ..., On_1} of congruence relations on an algebra A
15 absolutely permutable if and only if for every i € {0, 1, ..., n — 1} the next
condition holds :

Qi AN{O;:jF#6,j=0,1,...,00n— 1} =V {0;:j=0.1.....n — 1}.

Proof of Theorem 1. The conditions (2') and (2) are equivalent by
Lemma B.

Necessity. Let z;,¢ = 0,1,...,n — 1, be elements of AWe Ko/, K / ...A Kp—1;
then p(xo, Z1...., %a—1) = 24,2 =0,1,...,n — 1, hence (1) holds. Now we
shall show (2’), hence (2) too. Let x9, 21, ..., xs-1 be elements of A € Kov K
V...WKp_y. Then [z;]®; = p([x0]Ds, ..., [£n-1]P:) = [p(xo, 21. ..., 2n=1)]D:
hence x; = p(xo, 1. ..., Tn1)(Di), ¢ = 0,1, ..., n — 1. It follows that {P;:¢ =
=0,1,...,n — 1} is absolutely permutable.

Sufficiency. Let (1), (2) hold. Let & be the free algebra over Kov I\ ...V Kp-1
with n generators x;,7 =0,1,...,n — 1. Let ©;,7 =0,1,.... 2« — 1, be the
smallest congruence relations on § such that §0; e K;, i =0,1.....n — 1.
Since F/OpV ...V Oy_1 is a homomorphic image of §0O;, ¢ =0,1....,n — 1,
then §/BOpv...v Op € K;foralls = 0,1,...,n — 1,hence Qpv O ...v O, =
= ¢. According to the definition of O, F/O; is the free algebra over K; with
n generators [20]O:, [21]04, ..., [x1]0s, ¢ = 0.1, ..., — 1. In view of (2)
and Ogv O1v...v 0,1 =1, we get that for the elements g, 2. ..., 2n_1 €F
there exists p(xo, Z1,...,2s-1) €F such that a; = p(xo, 21. ..., 22-1)(0:),
1 =0,1,...,n — 1. It follows [z;]0; = [p(xo, 21, ..., Tn-1)]Q;. hence [2;]0; =
= p([%0]OQ;¢, [21]O1, ..., [#,1]0;) holds in /O, ¢ =0, 1,....,n — 1. Because
the algebra &;Q; is free over K; with the generators [w]O;. .... [xs-1]0;,
then the identity p(ao, @1, ..., @n-1) = a¢;holdsinany K;,7 =0.1.....n — L.
Hence K;,i=0,1,...,n — 1, are independent.

Proof of Theorem 2. By [5, Chap. V., Exercise 68] the Chinese remainder
theorem holds in any U € Kov...v Kn,1. Hence a set {@p, ®;...., Dy}
of congruence relations on A € Kov ...V K, is absolutely permutable if and
only if Opv®; =V {®;:¢=20,1,...,n — 1} holds for any & =<) kje
€{0,...,n — 1} (see Lemma B). Now it suffices to use Theorem 1.

Proof of Theorem 3. Let Ko, K;, ..., K,—1 be independent, then there
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exists an n-ary polynomial symbol p such that p(xo, 21, ..., Zn-1) = 2; in
K;j,j=20,1,...,n — 1. Now it is sufficient to take the binary polynomial
svmbol q(xo, ;) = p(xo, 2o, ..., X0, i, To, ..., xo). The identity g(xo, x:) = o
holds in any Kj;, j=0,...,7% — 1, hence it holds in K¢v K1V ...V Ki1 too,
and q(xo, x;) = x; in K;. Hence K; and Kov K1V...v K;—; are independent.
The converse assertion will be proved by induction. For n = 2 it is trivial.
Let it hold for an index » and let the classes Ky, K1, ..., K, satisfy the
conditions of Theorem 3. Because of independence of Ko, Ki,.... K
there exists an n-ary polynomial symbol s such that s(xo, 21, ..., 2p-1) = ;
in Kj, j=0,1,...,n — 1. Because of independence of Kov Kiv...vKn_y
and K,, there exists a binary polynomial symbol ¢ such that #(xo, 21) = a0
in Kov K1v...w Ky and #(xo, 1) = 21 in K,. Now it suffices to take the

(n + 1)-ary polynomial symbol r(xo, 21, ..., Za) = (s(X0, X1, ..., Tn-1), Tn).
In K;, j=0,1,....,n — 1, v(xo, %1, ..., Tn) = S(X0, 21, ..., Tn—1) = x; holds.
In K,, r(xo, 21, ..., xy) = xn. Hence Ky, K, ..., Ky are independent.

Proof of Theorem 4. We shall proceed by induction on =n. First let
n = 3. Then k = 2. Let Ky be the class having only idempotent operations.
Since K;. ¢ = 0, 1, 2, are pairwise independent hence for each ¢, j € {0, 1, 2},
4 << j, there exists a polynomial symbol p;; such that pi(z:, ;) = x: in K;
and pyi(x;. x5) = 27 in K;. Now it suffices to take the polynomial symbol
q(xo, 21, X2) = Pr2(por(o. 1), Po2(To, x2)). Obviously q(xo, 21, 22) = x; in K,
1=20,1,2 (for q(xo, 21, X2) = P12(x0, ¥o) = %o in Ky), hence K;, 1 =0, 1, 2,
are independent. Assume now that the assertion of the Theorem holds for
n = m and let the assumptions of the Theorem be fulfilled for n = m + 1.
Let Ko, K1, ..., K- be the classes having only idempotent operations.
Assume first & <m. In the set {Ko, K1, ..., Kn-1} the classes Ko, K1, ...,
K -1 have only idempotent operations and each % classes are independent,
hence by induction assumption
b)) Kii=0,1,...,m — 1, are independent.

By the similar argument (by replacing K.,,—1 by Kx») we get that

(¢) Ki,i=0,1,....,m — 2, m, (i #m — 1) are independent.

If & = m the assertions (b), (¢) are trivial, for by the assumption each k classes

are independent. Using Corollary 1 and the conditions (b), (c) we get:

(d) For each he{1,2,...,k — 1, k} the classes Ko, ..., Km—r, Knin-r are
independent.

Hence for each % € {1, 2, ..., k} there exists an (m + 2 — k)-ary polynomial

symbol p;, such that pu(xo, 21, ..., Tm—tk, Tmsn—k) = 2; in K;, j=0,1,...,

m — k, m + h — k. Using condition (3) for n = m + 1 we get that the classes

Kuin-k, h=1,2,..., k. are independent, hence there exists an k-ary poly-

nomial symbol ¢ such that q(xmi1-r, Tmro—k, -«os Tmth—k- oo, Tm) = Ximsn-r

129



in Kpin-x, b = 1, ..., k. Now it suffices to take the (m 4 1)-ary polynomial
symbol p(zo, 1, ..., Tm) = q(P1(X0, - .-, Tm~k > Tm+1-k), P2(To, « - -> Tm—k> Tm+2—k),
...,]?h(xo, cees T~k > xm+h—]g), ceey pk(xo, coes Tm—k, xm)) In Kj, j = 0, l, ey
m — k, p(xo, ..., m) = x; because of idempotent operations. In Kpin-r,
= 1,2,...,k p®0, %1, ..., Tm) = Pu(%o, X1, ..., Tm—k, Tmih-k) = Tmih—k-
Hence Ky, K1, ..., K are independent.

Proof of Theorem 5.3) We proceed by induction. First we shall prove
the Theorem for n = 2. Let Ko, K1 be independent. We shall show that:
(8) Ko>< K; is equational class and
(9) Wo>< Wy AN Bo>< By, Wie Ky, Bie Ky, i = 0,1 imply U; 2By,

=201

Proof of (8): a) Let B = <B; F> be a subalgebra of Ao>< Ay, A; € Ky,
¢ = 0, 1. Denote By = {by: there exists a; € A1, (bo, a1) € B}, By = {by: there
exists ap € Ao, (a0, b1) € B}. It is clear that B; = <By; F> is a subalgebra
of i, + = 0,1. We shall show that B = Bo><By. If (bo, 1) € By >< By,
then there exist a; € Ay, ¢ = 0, 1, such that (¢o, b1), (bo, @1) € B. This implies
(bo, b1) = (p(bo, ao), p(ar, b1)) = p((bo, @1), (20, b1)) € B. Hence B > By >< B;.
The converse inclusion is trivial.

b) To prove that Ko>< K; is closed under epimorphic images we use the
following easy assertions.

Let h: A — A’ be an epimorphism of algebras and Oy the corresponding
congruence relation on U (z = y(Oy) iff k(x) = k(y)). Let ® be a congruence
relation on U which is permutable with ©,. Define the relation @’ on U’
as follows. 2’ = y'(®’) if o,y € A exist such that 2 = y(®) and 2’ = k(z),
y’ = h(y). Then @' is a congruence relation on A’ and the mapping A" : A/D —
— W)’ defined by k:[x]® - [h(z)]®" is an epimorphism. If P, D> are
congruence relations on U, both permutable with @y, such that @; . ®2 =
then the corresponding congruence relations ®’1, ®’s on U’ satisfy ®;. @5 = ¢.

Now let h:Uo><UAs —~C, W;€K;, ¢ = 0,1, be an epimorphism. Let
@y, @1 be the congruence relations on o >< A1 corresponding to the direct
decomposition Uy >< Ay (Lemma A). @y and O are permutable: Let (ao, a1).
(bo, b1), (co,c1) € Wo>< WAy and (@o, a1)Po(bo, b1)Ox(co, ¢1). Then ap = by and
k(bo, bl) = }L(C()z C]). Further h(Co, (11) = h(p(CO, ao), p(cl, al)) = h(p( (Co, c),
(a0, a1))) = p(h(co, c1), Mlao, a1)) = p(h(bo, b1), h(ao,a1)) = &(p((bo, b1),

3) One can prove Theorem 5 by the similar method as that of [6, Th. 1] for n = 2.
To get the unicity of given representation in the proof of [6, Th. 1] it suffices to use
[1, Chap. IV., Th. 13], hence the modularity of congruence lattices in [6, Th. 1] need not
be postulated. In the proof of Theorem 5 by the similar way it suffices to use [2, Corollary
3.5 (vi)] to get the unicity of the given representation. We give here another proof of
Theorem 5 by induction. The first step, the proof of Theorem 5 for n = 2, differs from

that in [6, Th. 1].
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(a0, a1))) = h(p(bo, ao), p(b1, a1)) = h(ao, a1), hence (ao, a;)On(co, a1)Do(co, €1).
Similarly, ®; and O, are permutable. By the above assertions % induces con-
gruence relations @;, ®; on € such that @, . ®; =1 and €/®; is an epimorphic
image of p>< Wqy/®; 22 A¢, hence §P; € K;, ¢ = 0, 1. It remains to show
that O A D] = 0. If ¢ = d(DyA D;) then ¢ = h(ao, a1), d = k(ao, b1), ¢ =
= h(eo, 1), d = h(fy, e1). Because € € Kov K; and p(x, ) = « holds in Ko
and in K; too, we get ¢ = p(c, ¢) = p(h(ao, a1), h(eo, 1)) = h(p((ao, a1),
(o, €1))) = h(p(ao, eo), p(a1, e1)) = h(ao, e1). By the same argument we get
d = h(ao, e1) hence ¢ = d. By [1, Chap. V1., Th. 22], (8) holds. Now we prove
(9): Let Bo><Br A0 Wo>< WAz, W, Bi ey, ¢ = 0,1. There exists an
isomorphism i: o >< W1 = Bo ><B;. We have to show A; 0B, ¢ =0, 1.
We shall prove o 22 Bo. First we show:

(1) iz, y) = (v, %) and (@, y2) = (22,21) Imply 1 = 2.
(az) i(x,y) = (v1,71) and (22, y) = (x3,y2) imply y1 = ys.

From the assumption of (a1) we get (x2, y1) = (p(x2, ®1), p(z1, y1)) = p((22, 21),
(1, ¥1)) = ip((x, ¥2), (%, y)) = i(p(®, ), p(y2, y)) = (2, y) = (21, ). Hence
x2 = 1. The proof of (as) is similar. Now we shall define a mapping ¢ : Ao - By
as follo“s Let t(z) be an element of By such that for an y € Ay, i(x, y) =

= (t(x . We assert that ¢ is an isomorphism. ¢ is surjective, because if
x1 e%o, Y1 6%1 and if we denote (z, y) = 1~1(x1, 1), then i(x, y) = (21, 1),
hence x; = t(x). t is injective, for if t(x) = ¢(z;) then for y € Ay we get i(x, y) =
= (t(x)a .7/1), ":(xlb ?/) = (t(x1)> ,1/2) BY (a’2)’ Y1 =Y. Hence Z(x, y) = i(xl! y)
This implies (x, y) = (21, ), hence x = x;. ¢ is a homomorphism: Let f be

an n-ary operation X1y .o, 20 € o, Y1, .., Yn € Wa. Let i(xx, yu) = (@), ¥5)-
Then (f(t(x1), ..., t(xn)) f(yl, v d) = (@), 1), -y (Han), ¥R) =
= f(‘(xl, Jl)’ (X "(xn, ?/n)) = Zf((x17 ?/1)’ KRR (xn,yn)) = ’L(f(xl’ cees x‘ﬂ):

f1, ..., yn)). This implies #f(x1, ..., za) = f(¢(x1), ..., {(zn)). Hence Wo 2 By.
A; & B; can be proved analogously.

Now let Theorem 5 hold for n = k and let Ko, K1, ..., K¢ be independent.
Using Theorem 3 we get that Kov KiVv...v Ky and K are independent,
hence (Il’oV Kiv...v Kk_l)V Ky = (KoV Kiv...v Kk—l) >< K and any algebra
A € KoV KV ...V K has, up to isomorphism, a unique representation % o2
20 B >< A whereB € KoV ...V Kx-1, Uy € K. By Corollary 1, Ko, K1, ..., Kg-1
are independent, too, and using the induction assumption we get KoV ...V
V Kg-1 = K¢><...>< K1 and B has, up to isomorphism, a unique represen-
tation BOWo><...><p1, Wi e Ky, ¢ =20,1,..., k — 1. Hence Kov K1v
V..VEr VK = Ko>< Ky ><...>< Kp-1>< K and U 2B >< Wp 2 Wp ><
>< Wy >< ... >< Wg-1 >< A where the representation is unique up to isomor-
phism. This completes the proof.
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Proof of Theorem 6. We shall proceed by induction. For n = 2 this
theorem holds by [6, Theorem 2]. Let the theorem hold for n = & and let
the conditions (5), (6), (7) be satisfied for n = & + 1. We assert that (3) holds
for n =1~&, too. Indeed, let A e Kov..VKr1 < Kov.../ K1V Kr =
= Ko><...>< Kg1>< Kj, then A0 Wo><WAr><...><WUp, Use Ky, 1 =
=0,1,..., k. Hence Ay € Kyv...v K, because Ay is a homomorphic image
of . With respect to (6), A is one-element algebra. Hence A 20 WA >< ... ><
>< Ag-1. By the induction assumption Ko, Ki, ..., Kx-1 are independent.
Now the two classes Ky and KoV ...V Ki- satisfy the assumptions of Theorem 6
for n = 2 and this implies that Ky and KoV ...v Kx_; are independent. By
Theorem 3, Ky, Ki, ..., Kx—1, K are independent, too.

Proof of Theorem 7. We shall use Theorem 1. The condition (1) is
obviously fulfilled. Now we shall prove the condition (2). Let W € Ko/ ...v Kp_1.
Then (by Lemma A and (5)) A W Do ><...>< A/D,_1, where A/P; € K;.
i=20,1,...,n — 1, and {®p, @y, ..., Dy} is absolutely permutable. From
Lemma A and Lemma B we get Oy ®; =V {®;:0=10.1,....n — 1} =
forany b 435, h,j=0,1,...,n — 1. Let O;,¢ =0, 1,....,n — 1, be the least

congruence relations on W such that A/O; e K;, ¢ =0.1,....n — 1. With
respect to (6') we get O;v @; = for anyv ¢ %4, ¢,7=0.1..... n — 1. Using
(7') we get:

Q; /(N{®i:i£4,5,j=0,1,....,n — 1}) =

= \{O;vDy):7 #j,i=0,1,...,n — 1} = 1. Then ®; = ®;r. =

= OA[O;VA{Di:t £j,1=0,1,...,0 —1}] =0;v 0 = O

for each j =0,1,...,n — 1. Hence the set {Qy, O1,.... @1} is absolutely
permutable and Ky, K1, ..., Kr—1 are independent.

3. Examples

The first two examples will give independent equational classes KN;,7 =
=0,1,...,n — 1, (of the same type) such that not every algebra U of
Kov Kiv...v Ky has a modular congruence lattice.

Example 1. Let K;,1 =0,1,...,n — 1, consist of all algebras A; =

= <Aq;f>, where f is an n-ary operation and f(xo, ..., %s-1) = 2; in A,
t=40,1,...,n — 1. Then K;,+=20,1,....n — 1, are independent (for it is
sufficient to take p(xo....,2n-1) = f(xo, ..., 2n-1)) hence Ko ... K,

= K¢><...>< Ky-1. Any equivalence relation ¥ on W;(i € {0.1....,n — 1})
is a congruence relation on W; € A';, because x; = y;(¥), j =0.1....,n — 1,

imply flxo, 21, ..., Tu1) = & = Yo = f(Wo, y1, ..., Yn-1) (¥). Hence by [1]
congruence lattices on the algebras of K; are not modular if card 4; > 3.
Example 2. Let Ky consist of all groups ¥ = <(; fo, fi> where fy(x. )
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= ay, fi(x.y) = xy~1. Let K, consist of all skew-lattices (Schiefverbinde [4])
S = <8;fo,i> where fo(z,y) = 2Ay, filz,y) = zvy. In K, the identity
(xA y)Vy = y holds. Ko and K; are independent for it suffices to set p(z, y) =
= fi(fo(z, y), y). There are skew-lattices such that any equivalence relation
on them is a congruence relation. For example the algebra /4 = <M; A,V >
where zAy = x, xvVy = y for any z,y of the set M is such a skew-lattice,
hence by [1] the congruence lattice on . is not modular if card 21 > 3.

Example 3. Let K, (where p;, i =0, 1,...,n — 1, are distinct primes)
denote the equational classes of Abelian groups satisfying pix = 0. i =
=0,1,...,n — 1. Denote m = pop1... pn-1 and q; = mp;. Let t;. 1 =
=40,1,...,n — 1, be integers satisfying ¢;t; = 1(p;). Then it suffices to set
P = qotoxo + qitixr + ... + @u-1fn—12Zn—1 because ¢q; = O(p;) for i #£j. 1 =
=0,1,...,n — 1. It follows that K,, ¢ =0, 1,...,n — 1, are independent
hence K,V ...VK, = K, ><...><K, . The same result can be obtained

Pn-1
(¢=20,1,...,n — 1) by the class of all rings of the charac-

>

if we replace K,
teristic p;.
Example 4. We give an example of equational classes Ko, K1, Ko with
the following properties:
(a) KoA K1A Kz consists of one-element algebras only.
(b) Every algebra U € KoV K1V K> has a modular congruence lattice.
(C) Kov K1V K3 = I&’o >< I{], >< Ks.
(d) Ko, K1, K2 are not independent.
Let Co, C1, Cz are the classes K, of Exercise 3 where p; = 3, 5, 7, respectively.
Then Ko = Co><Cy, K1 =C1><Cs, Kg=0C¢g><Cs and Kov K1V K> =
= (y >< 01 >< C> are equational classes. The condition (a) can be easily veri-
fied. Since the algebras of the class Kov K1V K> are groups, the condition (b)
is satisfied. Finally, let A; € C; (4 = 0, 1, 2) be groups having more than one
clement. Then the algebra o >< 3 >< A2 has more than one representation
as a direct product of algebras of K; (¢ = 0, 1, 2). Hence Ky, K1, K2 cannot
be independent by Theorem 5.
Remark 6. There are equational classes Ko, K1, K» satisfying conditions
(a), (c), (d) of Example 4 and the next condition:
(b') Every algebra U € Kov K1v K2 has a distributive congruence lattice.
Such an example can be constructed by the same way as in Example 4 by
replacing classes Co, C1, C2 by the following classes: C,, C;, C, are classes
of algebras A = <A;A,V, f> where <A4; A,V > are lattices and f(xo, 21, 22) =
=z;in0;,i=0,1, 2.

Example 5. As an application of Theorem 1 we shall show that the
following classes Ko, K1 are not independent. Let Ky, K1 be equational
classes of algebras <4;fo, f1,f2>, where in Koy <4;fo, f1,fo> are lattices
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with the least element (the operation f), fo(x,y) = zAy, filx,y) = zVvy.
In K1, <4;fo,f1,f-> are Boolean rings, fo(z,y) = .y, filr,y) =z + v,
(f2 represents the zero element). Let U be the two-element lattice with the
elements 0,7 and B the two-element Boolean ring with the elements 0, 1.
The subset C = {(0,0), (i,0), (i,1)} of the direct product A ><B forms
a subalgebra of A >< B, hence € € KoV K. Consider the equivalence relations
on C:(a,b) = (c,d)(0g) iff @ =¢, and (@, d) = (¢, d) (0,) iff b =d. Then
®9, O are congruence relations on € and ¢/0; € K;. Nevertheless Oy and 0,
are not permutable, hence Ky, K; are not independent (by Theorem 1). More-
over € cannot be represented as a direct product € ><&;, €; € K;, hence
Kov K1 # Ko >< K. (Note that the same result can be obtained with Ay
as the class of distributive lattices with the least element.)

Example 6. We shall give an example of classes Ko, K1, K2 such that
for any couple (3,7), ¢ #J, ¢, =0,1,2, K; and K; are independent but
K;i,t=0,1,2, are not independent. Let K;, ¢ = 0, 1, 2, be equational classex
of algebras <<4;; fi, fo, f3>, where in Ky : fi(z, y) = =, fo(z, y) = 2, fa(z, y) =
=f3(u, ’U), in Ki: fl(x: Yy) =y, fz(x’ Y) :fz(ua U),fa(.’l), ."/) =, in Ky: fl(x! y) =
= fi(w, v), f2(®, y) = ¥, f3(x, y) = y. Consider the algebras A; = <A;;fi,f2,f3> €
€Ki, 1=20,1,2, where 4;= {0,1} and fa3(x,y) =0 in Wo, fo(x,y) =10
in Az, fi(z, y) = 0 in Ws. Obviously the set 4o >< 41 >< 42 — {(1,1,1)} formx
a subalgebra of Wy >< A1 >< WAz but cannot be decomposed into a direct product
Bo >< By >< Bs, where B; € Ky, @ = 0, 1, 2. To show the independence of every
couple K;, Kj, i £j, ¢, =20,1,2, it suffices to take p(x,y) = fi(z, y)
(for Ko, K1), p(z, y) = fo(x, y) (for Ko, Ks), p(x,y) = fa(x,y) (for Ky, K>).

Example 7. This example shows that the number n — & of Theorem ¢
cannot be lowered. It suffices to join to the classes K;, 1 = 0, 1, 2, of Example 6
the class K3 of algebras <4;fi,fz,fs> where <d4;fi,f>> are lattices
(fulz, y) = Ay, folx,y) = xvy) and fi(x,y) = x - y where -+ satisfies the
following identities: x + & = 2, zA (x + y) = 9, « + (xvy) = 2. Hence in A3
there are idempotent operations only. For each ¢ € {0, 1, 2}, K; and K3 are
independent: The corresponding polynomial symbols p(x, y) are fi(fa(x, ¥), ¥),
Nilx, f3(z, y)) and fi(z, fo(x, y)), respectively. Every triple A, Kj, K3 is
independent for each ¢ 544, i,5 = 0, 1, 2, by Theorem 4. But Ko, K1, Ko, K3
are not independent because Ko, K1, K2 are not independent (see Corollary 1).

Example 8. In the paper [6] it is shown that the equational class Ky of all
groups ® = <G; fo, fi>, where fo(x, y) = =y, fi(x, y) = zy~1 and the class K,
of all algebras <<L;fo,fi> where & is a lattice, fo(z, y) = zvy, filz,y) =
= xA\ Y, are independent. In Example 3itisshownthat K, ,i =0,1,...,n—1,
are independent. Hence K; and KL, are independent for each i€ {0, 1, ....
n — 1}. Because K, has only idempotent operations, using Theorem 4 more
times we get that Ki, Ky, Kp,, ..., K, , are independent, too. (Note that
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the independence of these classes can also be obtained by using Theorem 3.)
The sameresult holds if we replace the class K; of Example 8 by the class of all
skew-lattices from Example 2 or if we replace the mentioned classes by the
classes of all algebras <4;fo, fi, fo>> where K; is the class of Brouwerian
lattices (fo(x, y) = vy, filx, y) = 2Ay, fa(x,y) =z :y) and K; (¢ = 0,1, ...,
n — 1) is the class of rings of characteristic p; (fo(z, y) = = + v, fi(z,y) =
=z —y folz,y) =x.y).
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