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Matematicky &asopis 23 (1973), No. 2

MEASURABILITY OF FUNCTIONS OF TWO VARIABLES

JOZEF DRAVECKY and TIBOR NEUBRUNN, Bratislava

1. Introduction

Various results were published about the measurability of functions defined
on a product space X X Y (cf. [4], [5], [6], [7], [10]). It was mostly the real
functions or mappings into a metric space that were discussed. The present
paper deals with functions defined on a product of two measurable spaces
and taking values in a topological space Z. In some results the topology
on Z is supposed to be induced by an ordering.

2. Notations and notions

The notion of a measurable space (X, #) and of the product of two measur-
able spaces (X,.#) and (Y, .4") (notation (X X Y, # X V7)) is used in the
usual sense (see e. g. [2]).

Given a measurable space (X,.#), a function defined on X with values
in an ordered set Z is said to be upper (lower) measurable iff for any a € Z
the set {x € X; f(x) <a} ({x € X; f(x) > a})is in.#. A function which is both
upper and lower measurable is called weakly measurable.

If Z is a topological space not necessarily ordered, then the function f is
called measurable iff f-1[B] € .# for any open set B (and hence for any Borel
set) in Z.

Throughout the paper, (Z, <<, %) will be referred to as an ordered topological
space if and only if ¢ is the topology indticed by the ordering << of Z (cf. [3],
1. I). Every ordering in this paper is to be understood linear, unless otherwise
stated.

3. Remarks on the types of measurability
Consider now an ordered topological space (Z, <, %). As any measurable
Z-valued function f is evidently both lower and upper measurable, a natural

question arises whether the upper and lower measurability of f imply its
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measurability in the usual sense. The following example shows that this
is not the case.

Example 3.1. Suppose Z = R X R is the set of all pairs of real numbers.
Define the ordering < as follows. Let [z1, y1] < [@2, #2] whenever a; < x».
In the case x; = s put [x1, y1] <[22, y2] if and only if 9; <y». Denote by ¢
the order topology on Z and let .# be the o-ring generated by the family
of all open intervals in Z. We are going to show that the identity function
jlx, y) > [z, y] defined on Z (viewed upon as measurable space (Z..#)) into Z
(considered as an ordered topological space (Z, <, %)) is not measurable. The
family of all open intervals in Z is of the power of the continuum and hence
the generated o-ring ./ is of the same power (cf. [2], page 26, 9C). Now let &
be the set of all functions on the real line R into % where # is the usual
topology of open sets in R. Evidently card & > ¢, where ¢ is the power of the
continuum. Given a function f e F, the set Gy = |J {t} x f(t) is open in Z.

teR

Moreover if f and ¢ are distinct elements of F then for some f € B we have
f(&) = g(t), which by definition implies Gy # (fg. Thus we have established
an injection from & into ¢ and summarizing we get card ¥ > card F > ¢ —
= card . As a consequence there exists an open (and hence Borel) set Gy € %
and j~1[Gy] = Gy ¢ A . This shows that j is not measurable in the usual sense
although it is evidently both lower and upper measurable.

The proof of the following theorem employs the usual technique used
for the real functions and therefore will be omitted.

Theorem 3.1. Suppose (X, M) is @« measurable space and (Z. <.%) an
ordered topological space. A sufficient condition for the measurability of a function
f: X = Z to be equivalent with the weak measurability of f is the equality of the
o-ring generated by the sets {x;x <a}, {x;x>a} (a €Z) to the c-algebra
of all Borel sets in Z, that is the o-algebra generated by the topology.

It is not difficult to establish sufficient conditions for a weakls measurable
function to be measurable other than the one given in Theorem 3.1. Suppose f
is a mapping into an ordered topological space Z. If every open subset G of Z
is a Lindel6f space (see [3]) then the o-ring 4 generated by the topology
on Z coincides with that generated by its base and by virtue of Theorem 3.1
every weakly measurable function taking values in Z is measurable. In fact
any open set G can be covered by a collection {B,;y € I'} of base element-
and under the assumption there is a countable subclass {By:n = 1.2....}
of {B,;y eI'} such that G ={J {Ba; » =1,2,...} and so G is in the ¢-ring
Ao generated by the base. As a consequence %, contains all the o-ring 2.
The inclusion %y C Z is trivial.

In particular, if Z satisfies the second axiom of countability every weakly
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measurable Z-valued function is measurable since under the assumption any
open subset of Z has a countable base and therefore is a Lindel6f space.

The following theorem will throw some more light on the notions of upper,
lower and weak measurability.

Theorem 3.2. Suppose (Z, <<, %) is an ordered topological space satisfying
the first axiom of countability and let (X, /) be a measurable space with X € ./,
that is, let ./Z be a c-algebra. Then the following statements are equivalent for
« mapping f: X - Z.

(A) fis lower measurable.

(B) fis upper measurable. -

(C) [ is weakly measurable.

(D) {xeX;f(x)>a}ed foreach aclZ.
(E) {reX:fx)<a}ed foreach acZ.

Proof. Since .# is a og-algebra, the equivalences A< E and B< D are
obtained immediately from the assertions {z;f(x) <a} =X — {x;f(x) > a}
and {z;f(x) > a} = X — {; f(x) <a}, respectively. We are going to prove
A = D. Consider a point ¢ €Z and a countable base {d,;n=1,2,...}
of its open neighbourhoods. If a is the first element in Z, then {x € X; f(x) >
>a} = X e./. which was to be proved. Suppose then « is not the first
point in Z. Evidently either
(i) each A, contains a point @, <<a or
(ii) there is A, with no such point.

In the former case there holds {z;f(z) > a} = () {z; f(®) > a,} €4, being

a countable intersection of sets that were assumed measurable. In case (ii),
since the topology on Z is induced by ordering, there is a point b <<a such
thatfornox € Z b<x < aholdstrue. Then {z; f(x) > a} = {x; f(x) > b} e A
by assumption A. The proof of B = E is analogous. To complete the proof
of the Theorem we note that C implies both A and B and that either of the
latter two implies the other and hence C by definition.

Remark. As shown by Example 3.1 even under the hypothesis of Theorem
3.2 the measurability of f is not implied by any of the listed conditions.

4. Z-systems

In investigating measurability as well as the upper and lower measurability
of functions with values in topological spaces the notions defined below will
be very useful.

Definition 4.1. Let (X..#) be a measurable space and let # = {Pt;0) £+ Pre..

n?

149



neNg, k=1,2,...}, where Ny s either the set of all positive integers or a set
{1,2,..., 4} P is called a P-system on X iff |J {Pk;n e Ni} = X for each
F=1,2....

Definition 4.2. Suppose (X,.#) is a measurable space and P a P-system
on X. Let (Z, 9) be a topological space. A function f: X — Z is said to be reqular
at xg € X relative to P iff for any G € G with f(xo) € G there is ko such that for
k> ko, x, o € PF implies f(x) € G.

Definition 4.8. Let (X, #) be a measurable space and (X, ) a topological
space. A P-system P on X is regular relative to T iff to any A € and any
x € A there is ko such that for k > ko, x € Pt implies P¥ < A.

n

Lemma 4.1. Suppose (X, #) is a measurable space. Let (X, T ) and (Z, 9)
be topological spaces and let there be a P-system P on X, regular relative to T .
Then every function f: X —Z which is continuous at a point xo € X is regular
relative to P at xy.

Proof. Take G € ¢ with f(xo) € G. Due to the continuity of f there is an
open set A3 xzp such that f[4] C @G. Since & is a regular P-system there is
ko such that for k > ko we have P¥ C 4 whenever xp € P¥. But then z € P¥
implies f(z) € f[PF] < f[4] < G, as was to be proved.

Example 4.1. There is a simple way of constructing a regular &-system
in a separable metric space (X, g) if the o-ring .# contains all the open sets
of the metric space. The family {!2,’5; n=12,...;k=1,2,...} constructed
in [7] is an example. It is sufficient even to put P¥ = {x € X; o(x, xa) < 1/k},
where {xn;n =1, 2,...} is a dense set in X. Then each P! is open and hence
measurable, and since {x,;n = 1,2, ...}isdensein X, |J {(Ptin=1,2,...} =
= X for every k, too. Therefore the family is indeed a Z-system on X. Now
if 4 CX is open and a9 € 4, there is 6 > 0 such that the sphere S(xo, §) =
= {zx € X; o(x, x0) < d}is a subset of 4. Take ky > 2/6. We are going to show
that for k > ko, if P* exp, then P¥ < A. Since under the assumption the
members of the #-system are spheres with the diameter 2/k <6 and zo € PF,
then evidently x e P’ implies p(x, 20) <2/k <J, and consequently =z e
€ S(xo, 0) = A. The P-system is therefore regular relative to the topology
induced by the metric.

The following propositions will tell us something more about the existence
of a regular Z-system.

Lemma 4.2. Let (X, ) be a topological space having a countable base (that is,
satisfying the second axiom of countability) and (X, #) a measurable space
with 9 < . Then there is a regular P-system on X.

Proof. Denote by {B;;t = 1, 2, ...} a countable base of the topology on X.
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We are going to construct a countable family {Pﬁ; nelNg, k=1,2..}
n-1

such that |J {Pi;n e Ny} = X for k= 1,2,....Clearly &/o = {Bn — U By;

n=1,2,...}is a countable family of mutually disjoint sets. Let {P}; n eN 1}
be a sequence (finite or infinite as the case may be) consisting of all non-empty
sets in 7. Now suppose that {P¥;n € Nx} has been constructed for k =
=12,...,p.Putly = {Byu N P2;neNptand B, = {PL — Bpi1; n € Np}.
By enumerating all non-empty sets in &/, U %, we get a countable family
{P"“, n € Np+1} of pairwise disjoint sets. We have to prove that the family

= {Pfine Nk, k=1,2,...} just constructed by induction is a Z-system.
Each Pk € 2 is obviously a non-empty .#-measurable set and for k = 1, 2, ...
we have |J {Pi;neNi} = {(PElinelNia} = ... = Pl n e N1} =
= {B:;t=1,2,...} = X. Observe that for any n and k= 1,2, ... the
set P¥ is a subset of some PY' and this implies that if z € P’“, x € Pk,

k1 <k, then P¥ C P* due to P’ ’s being mutually disjoint for any fixed k.

Now let 4 be an open subset of X and let @ € 4. Since {B;;t=1,2,...}
is a base there is ko with xy € By, C 4. As U {Pﬁ“; n € Ni,} = X the point x
must fall in some P% C By,. We have already seen that k > ko, zo € P¥

implies P¥ C P% C By, C A and therefore & is regular relative to 7.

Lemma 4.3. Suppose (X, T) is a topological space and (X, #) a measurable
space such that T C M.Let P be a regular P-system on X. Then (X,T)
satisfies the Suslin condition, that is, any family ¥ C T of non-empty mutually
disjoint sets is countable.

Proof. We first show that to any element zy of a set 4 € . there can be
found a P} e P to satisfy x € P¥ C 4. By virtue of the regularity of &,
for g € A there is a ko such that k > ko, 2o € P¥ implies P¥ C 4. However
to any k there is n with P¥ 5 xp and so a P* with the desired properties exists.
Now choose a point x5 in every 8 €% and let S be a set with S € Z and
25 €8 CSS. Since the sets in & are all mutually disjoint we have S; # S
whenever S; 7= Sz and so a one-one mapping is constituted from & into £,
the latter being countable by the definition of the Z-system. Then card & <
-~ card Z < No what was to be proved.

Corollary. A metric space is separable if and only if there is a regular P-system
in it.

Proof. Given a separable metric space, it obviously satisfies the second
axiom of countability and the existence of a regular Z-system is established
by Lemma 4.2. Conversely, let there be a regular #-system &£ in a metric
space (X, p). If it were not separable then there would exist an uncountable
family 4 of mutually disjoint open sets in it (see [9]), which contradicts
Lemma 4.3.



5. Upper and lower measurability

Theorem 5.1. Suppose (X,.#) is a measurable space and P a P-system
on X. Let (Y,.17) be a measurable space and (Z, <, %) an ordered topological
space. If a function f on X X Y into Z has all its x-sections (x € X) lower
A -measurable and if all the y-sections (y € Y) of f are reqular relative to 2 at
cach x € X, then f is a pointwise limit of a sequence {fy; k =1, 2, ...} of lower
M X A -measurable functions

Proof. Let Z = { }n k be the above mentioned Z-system. Put @' = P’

and for n > 2, @F = U P!, For any fixed k = 1, 2, ... the sets QF are

mutually disjoint relative to n while | @F = X. Moreover, @' €./ for all n. k.
n
Since @¢ C P* and the sections f¥ are regular relative to & in every z € X,

we have for any xp € X and G € 4 with fv(x) € ¢

1V V [(z, 2 Q) = (fr(zx) e G)]
ko k>ko 2eX
"

0

Choose a point z} in each @}. Since X = |J @5 and n; # np implies N

n
N @', = 0, there exists to any « € X a unique n = n(k, z) with x € @%. Define
filx, y) = f(x¥, y), where ' is the point that had been chosen from QF > x.
All the functions fi, k= 1,2,... are lower .# X .4 "-measurable. In fact,
for any @ € Z we have

() eX X Y;ifilx,y) >a} = U @ x e Y;fla}, y) > a},
the sets !
P X {y e Yiflag,y) > a}
being all in 4 X .V .

Now consider (z,y) e X x Y and G € ¥ with f(z, y) € (. By the regularity
of fv take ko such that for k > ko f(x1,y) € G, whenever z;,x € PX. Con-
sequently for k> ko f(zf, y) = fi(z, y) € G. This gives limfi(z, y) = f(x. »)
and completes the proof.

Remark. The proposition obtained from Theorem 5.1 by replacing the
word “lower” by “upper’ or by “weakly” is evidently true, too.

Lemma 5.1. Let (X, /) be a measurable space and (Z, <, %) an ordered
topological space. Suppose (Z,9) satisfies the first axiom of countability. If
a sequence {fi;i=1,2,...} of upper (lower) measurable functions defined
on X and taking values in Z converges pointwise in the topology ¥ to a function f.
then f is upper (lower) measurable.
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Proof. For the upper measurability of f we have to prove {x € X; f(z) <a} e
€ for any a € Z. In the case a is the first element of Z, then {x e X;
flx) <a} =0 e . Suppose therefore that a is not the first point in Z and
consider a countable base {Un;n = 1,2,...} of neighbourhoods of a. One
of the following two cases may arise.

(i) For some n, U, contains no point z <<a. Since the topology is induced
by the order this implies the existence of a point b € Z such that b <a and
for no z € Z we have b <<z <<a. But then

(1) {zeX;fx) <a} = {reX;f(x) <b}= {reX;3 V filz) <b} =

m i>m
=U N #eX;filr) <a}
m=1 t=m

(i) For each U, there is a point a, with U,> a, <a. Then the sequence
{an;n =1,2,...} converges to a in the topology ¢. In a similar way as in
case (i) it can be shown that

(2) {xr e X; f(x) D

iIC8
Ds

II
3

| xeX;fi(x)<a,n}.

Since the f;'s are upper measurable and ./ is a o-ring, the sets on the right-
-hand sides of both (1) and (2) are in ./, which proves the upper measurability
of f. The proof of the lower measurability is analogous and therefore will
be omitted.

Corollary. Under the assumptions of the last Lemma a limit function of
a sequence of weakly measurable functions is itself weakly measurable.

Theorem 5.2. Suppose (X,.#) is a measurable space and P a P-system on X.
Let (Y, A7) be @ measurable space and (Z, <<, %) an ordered topological space.
Suppose (Z, G) satisfies the first axiom of countability. If a functionf: X X ¥ —Z
has all its x-sections lower (upper, weakly) N -measurable and if all its y-sections
are reqular relative to 2 in every x € X, then f is lower (upper, weakly) M X N"-
-measurable.

Proof. By Theorem 5.1, f is a limit of lower (upper, weakly) measurable
functions. and by Lemma 5.1 it is itself lower (upper, weakly) measurable,
since (Z, ¥) is assumed to satisfy the first axiom of countability.

Theorem 5.3. Let (X, . #) be @ measurable space and I C.M a topology on X
with a countable base. Suppose (Y, N") is a measurable space and (Z, <<, D)
an ordered topological space. Let f: X X Y —Z have all its x-sections lower
(upper, weakly) measurable and all its y-sections continuous at each x € X.
Then f is « limit of a sequence of lower (upper, weakly) M X .V -measurable
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Junctions. If, besides, (Z, 9) satisfies the first axiom of countability, f is lower
(upper, weakly) measurable.

Proof. By Lemma 4.2 there is a regular #-system on X and by Lemma 4.1
the y-sections of f are regular relative to it. Now we may apply Theorems 5.1
and 5.2 to obtain what was asserted.

6. Measurability

In this section we are going to investigate the measurability of functions
mapping a product space X X Y into a topological space not necessarily
ordered.

Theorem 6.1. Let (X, .#) and (Y, ") be measurable spaces, let P be a P-system
on X and (Z, %) a topological space. If a function f: X X Y — Z has A -measur-
able x-sections for x € X and if its sections fv for y € Y are regular relative to & at
each x € X, then there exists a sequence {fx; k = 1,2, ...} of M X N -measurable
functions which converges pointwise to f on X X Y.

Proof. The proof of Theorem 5.1 can be adapted without difficulty. The
functions fi, £ = 1, 2, ... are constructed in the same way and their measur-
ability is shown analogously.

The following Theorem provides yet another sufficient condition for a func-
tion f: X X Y —Z to be a limit of a sequence of measurable functions. The
idea of such a condition for the measurability of real-valued functions was
suggested in an oral communication by L. Misik.

Theorem 6.2. Let (X, #) and (Y, N") be measurable spaces and let (Z, %)
be a topological space. Suppose f is a function on X X Y into Z and such that
Jor x € X the sections fr are N -measurable. If there is a countable subfamily &
of M such that W = {(fv)"1[G];y € Y, G € )} is contained in the least totally
additive family containing A (that is W~ C {{J7¥"; V" CA}), then f is a pointwise
limit of a sequence of M X N -measurable functions.

Proof. In view of Theorem 6.1 it is sufficient to show that there is a Z-system
on X such that for every y € Y the section fv is regular relative to it at each
xp € X. By the same construction as in the proof of Lemma 4.2 starting from
the countable family # = {B;;t=1,2,...} we obtain a family {Pf},:
of ./-measurable sets such that for any fixed k¥ we have |J P = X and
Pt N Pt = (for n  m. Further, if w € P&, 29 € P, Iy < k2, then P2 C Pk,
To prove the regularity in a9 € X consider an open set G5 f¥(x). Then
xg € (fv)"1[G] € #" and since #~ is ‘‘generated” by &, there is a set in £,
say By,, such that x € By, and By, C (f¥)-1[G]. If k> ko and axp, = € PF,
then clearly there is m with 2o, x € P%* and due to the construction of {P¥},
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we have P C By,. Now f¥(x) € f¥[Bx] C fY[(f¥)"[G]] = G, which completes
the proof.

Having established sufficient conditions for a function of two wvariables
to be a limit of a sequence of measurable functions, we need a sufficient
condition for such a limit function to be itself measurable. A proposition
equivalent to the following is proved in [1], page 28.

. Lemma 6.1. Let (X, .#) be a measurable space and (Z, 9) a topological space

having the property

(p) To every open set G in (Z, G) there is a continuous real-valued function ¢
defined on Z with ¢(z) % 0 if and only if z € G.

Let g;: X >Z,1=1,2,... be M-measurable functions and let there for each

z € X exist g(x) = lim;gi(x). The function g thus defined is then also M -measur-

able.

Example 6.1. Any pseudometrizable topological space has the property (¢).
It is enough to consider the function ¢(z) = inf{d(z, ¥); ¥y € Z — G}, where d is
a pseudometric on Z.

What has been said in this section implies at once

Theorem 6.3. If the hypotheses of Theorem 6.1 or of Theorem 6.2 hold and
if moreover Z has the property (@), then the function f is measurable on the product
space (X X Y, M X N).

Theorem 6.4. Let (X, #) and (Y, A") be measurable spaces and (X, T)
@ topological space. Let there be a regular P-system P on X. (This is true in
particular if 7 C M and T has a countable base.) Suppose (Z, F) is a topological
space. If a function f: X X Y —Z has all its x-sections N -measurable and
all its y-sections continuous at every x € X, then f is a limit of a sequence of
M X N -measurable functions. If, besides, (Z, ) has the property (¢), then f is
M X N -measurable.

Proof. Obvious.

Considering the problem of plane measurability of a function f(x, y) (that
is the problem when the component-spaces are supposed to be real lines
with Borel or Lebesgue measurability), the left or right continuity instead
of the continuity of the sections of f(, y) is sometimes assumed (see [5]).
In what follows (Theorem 6.5) we show that the idea of &-systems can be
applied also in such cases.

Definition 6.1. 4 partially ordered metric space (X, d; <) is said to have
the property U iff
(1) X is a partially ordered set and
(2) there is a countable dense set H in X such that for any x € X we have
x = lim,x, where xo, e H, xy >x, n=1,2,....
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Theorem 6.5. Let (X, d) be @ metric space with the property U. Suppose (X..#4)
is @ measurable space such that M contains all the open sets in (X, d) and also
all the intervals I, = {x € X; 2 < a},a € X. Let (Y, A") be a measurable space
and (Z,%9) a topological space with the property (¢). If f X X Y - Z is
a function having all its x-sections A -measurable and all its y-sections continnous
from the right at each x € X, then f is M X N -measurable.

Remark. Continuity of fv from the right means that for any v € X' and
G'> f(x), G €9 there is 6 > 0 such that for all " > x with d(x, 2") <9,
fu(x') € G holds true.

Proof of Theorem 6.5. Consider a sequence {z,;n =1, 2, ...} of all points
in H. Put P! = {x e X;d(x, 2a) <1/k, * < z,}. Due to the property U we
havelJ {Pi;n=1,2, ...} = X and {P}},x is easily seen to be a ZP-system
on X. The continuity of f from the right implies its regularity relative to Z.
Applying Theorem 6.3 we get what was to be proved.

The assertions of Theorems 5.3 and 6.4 may hold true even if there is no
regular Z-system on X. For the space X, take the set of all pairs [¢, 7] with
0 <t <1 and 7€ {0, 1}, with lexicographical ordering and the topology
induced by the order. Let . be the least o-ring containing all the intervals
and also the sets {[f,0]; 0 <t <1} and {[t,1];0 <t <1}. Let (1..V")
be any measurable space and Z the real line. It is shown in [8] that to any
function on X X Y with (lower) measurable a-sections and continuous
y-sections there is a sequence of (lower) measurable functions converging
to it. We prove now that in this example no regular Z-system exists on X.

If there were a regular Z-system & on X, then to any point, say [¢, 0]
and any open set containing it, say U; = {x € X; * <[t, 1]}, there would
be a Py e # with [t,0] € P, C U;. This evidently implies that [¢, 0] is the
greatest element in P;. The injection from the interval (0,1) into & just
established proves that & is uncountable, which is a contradiction.
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