Miloslav Duchoň

The Fubini Theorem and Convolution of Vector-Valued Measures

Matematický časopis, Vol. 23 (1973), No. 2, 170--178

Persistent URL: http://dml.cz/dmlcz/126820
THE FUBINI THEOREM AND CONVOLUTION OF VECTOR-VALUED MEASURES

MILOSLAV DUCHOŇ, Bratislava

Let X be a Banach algebra. Let G be a compact Hausdorff topological semigroup. Denote $\mathcal{B}(G)$ the σ-algebra of Borel sets in G. If $m : \mathcal{B}(G) \to X$ and $n : \mathcal{B}(G) \to X$ are regular Borel measures both with finite variation, then their convolution is a regular Borel measure on $\mathcal{B}(G)$, with finite variation, with values in X which can be defined in two equivalent ways.

In the first definition, for each Borel subset D of G, $m \ast n(D)$ is defined to be $m \otimes n(E)$, where E is the Borel subset $\{(s, t) : st \in D\}$ of $G \times G$ and $m \otimes n$ is the unique regular Borel measure on $\mathcal{B}(G \times G)$, with finite variation, with values in X such that

$$
\int_{G \times G} g \, d(m \otimes n) = \int_{G} \{ \int_{G} g(s, t) \, dm(s) \} \, dn(t)
$$

for all continuous functions g on $G \times G$.

In the second definition, $m \ast n$ is taken to be the unique regular Borel measure on $\mathcal{B}(G)$, with finite variation, with values in X satisfying

$$
\int_{G} f \, d(m \ast n) = \int_{G} \{ \int_{G} f(st) \, dm(s) \} \, dn(t)
$$

for all continuous functions f on G [cf. 5].

We wish to prove that both definitions are equivalent, similarly as in a complex case [cf. 3 and 9]. Also the first definition makes it possible, in case G is a group, to give $m \ast n$ explicitly by the formula

$$
m \ast n(D) = \int_{G} m(Dt^{-1}) \, dn(t) = \int_{G} n(s^{-1}D) \, dm(s)
$$

for each D in $\mathcal{B}(G)$. For this and other purposes the Fubini theorem for vector-valued measures is needed. Thus we establish a theorem of this kind convenient for our purposes.
1. Vector-valued measures in product spaces

Let X, Y and Z be Banach spaces. Let a bilinear continuous mapping of $X \times Y$ into Z be given, denoted by juxtaposition, $z = xy$, $x \in X$, $y \in Y$, $z \in Z$ ($|xy| \leq |x| |y|$). Let S and T be compact Hausdorff topological spaces. Denote by $\mathcal{B}(S)$, $\mathcal{B}(T)$ the σ-algebra of Borel sets in S, T, respectively. For our purposes it is convenient to introduce a vector-valued measure in the product space $S \times T$ by means of dominated operators introduced by Dinculeanu [cf. 4, p. 379] and we use the terminology from his book. By $C(S)$ is meant, as usual, the Banach space of all continuous functions $f : S \to C$ ($C = \text{real line or complex plane}$) equipped with the standard supremum norm. Following Dinculeanu [4, p. 379] we say that a linear operator $U : C(S) \to X$ is dominated if there is a regular positive Borel measure μ such that

$$|U(f)| \leq \int_S |f| \, d\mu$$

for every f in $C(S)$. According to [4, p. 380] there is an isomorphism $U \leftrightarrow \mu$ between the set of the dominated linear operators $U : C(S) \to X$ and the set of the regular Borel measures $\mu : \mathcal{B}(S) \to X$ with finite variation $\mu = |\mu|$, given by the equality

$$U(f) = \int_S f \, d\mu, \text{ for every } f \in C(S).$$

The measure $\mu = |\mu|$ is a least positive regular measure μ dominating U.

Let $m : \mathcal{B}(S) \to X$ and $n : \mathcal{B}(T) \to Y$ be regular Borel measures with finite variation, $\mu = |m|$, $\nu = |n|$, respectively. Then the mappings

$$U(f) = \int_S f \, dm, \quad f \in C(S),$$

$$V(g) = \int_T g \, dn, \quad g \in C(T)$$

are the dominated operators from $C(S)$ into X, $C(T)$ into Y, respectively. Take now h in $C(S \times T)$. Then for every $s \in S$, the mapping $t \to h(s, t)$ is a continuous function on T. Further the mapping from S into Z, given by the relation

$$s \to \int_T h(s, t) \, dn(t)$$

is continuous. We have

$$|\int_S \left\{ \int_T h(s, t) \, dn(t) \right\} \, dm(s)| \leq \int_S \left\{ \int_T |h(s, t)| \, dn(t) \right\} \, d|m|(s).$$
It is easy to see that the mapping given by

\[h \mapsto \int_S \left\{ \int_T h(s, t) \, d|m|(t) \right\} \, d|m|(s), \quad h \in C(S \times T), \]

is a positive linear functional on \(C(S \times T) \) and thus the mapping \(W \), given by the formula

\[W(h) = \int_S \left\{ \int_T h(s, t) \, dn(t) \right\} \, dm(s), \quad h \in C(S \times T), \]

is a dominated linear operator on \(C(S \times T) \) into \(Z \) [4, p. 392]. Therefore there exists a regular Borel measure \(\nu : \mathcal{B}(S \times T) \rightarrow Z \) with finite variation \(\varphi = |\nu| \) such that

\[W(h) = \int_{S \times T} h \, d\nu, \quad \text{for every} \ h \in C(S \times T). \]

We denote the measure \(\nu \) by \(\nu = m \otimes n. \) Similarly \(|m| \otimes |n| \) is a unique positive regular Borel measure on \(\mathcal{B}(S \times T) \) such that

\[\int_S \left\{ \int_T h(s, t) \, d|m|(t) \right\} \, d|m|(s) = \int_{S \times T} h \, d|m| \otimes |n| \]

for every \(h \in C(S \times T). \)

Since we have

\[|W(h)| \leq \int_{S \times T} |h(s, t)| \, d|m| \otimes |n|(s, t) \]

and \(|m \otimes n| \) is a least positive regular Borel measure \(\beta \) such that

\[|W(h)| \leq \int_{S \times T} |h(s, t)| \, db(s, t), \]

we obtain \(\varphi = |m \otimes n| \leq |m| \otimes |n|. \) Clearly

\[\int_{S \times T} h \, dm \otimes n = \int_S \left\{ \int_T h(s, t) \, dn(t) \right\} \, dm(s) \]

for every function \(h \in C(S \times T). \)

We remark that \(|m| \otimes |n|, |m \otimes n| \) and \(m \otimes n \) are defined on the \(\sigma \)-algebra \(\mathcal{B}(S \times T) \) which contains the product \(\sigma \)-algebra \(\mathcal{B}(S) \times \mathcal{B}(T). \) The inclusion \(\mathcal{B}(S) \times \mathcal{B}(T) \subset \mathcal{B}(S \times T) \) may be proper if neither \(S \) nor \(T \) is metrisable [cf. 2]. Therefore \(|m| \times |n| \) as defined in [1] or \(m \times n \) as defined in [6] need not be a Borel measure [cf. 7]. Thus \(|m| \otimes |n| \) is the unique regular Borel extension of \(|m| \times |n| \) and \(m \otimes n \) is the unique regular Borel extension of \(m \times n. \)

Since every function in \(C(S \times T) \) can be uniformly approximated by function which are finite sums of type

172
with \(f_i \in C(S) \) and \(g_i \in C(T) \), all functions in \(C(S \times T) \) are \(m \times n \)-integrable [4, p. 138] and we may write

\[
\int_{S \times T} h \, dm \otimes n = \int_{S \times T} h \, dm \times n = \int_S \{ \int_T h(s, t) \, dn(t) \} \, dm(s)
\]

for every \(h \in C(S \times T) \).

2. The Fubini theorem

We take the measures \(m \) and \(n \) as in Section 1. The proof of the Fubini theorem is based on some lemmas.

Lemma 1. Let \(\mu = |m| \). For every function \(f \in L^1(S, \mu) \) there exists a sequence \((f_n)\) of the functions in \(C(S) \) converging to \(f \) in mean and \(\mu \)-almost everywhere.

Proof. The space \(C(S) \) is dense in \(L^1(S, \mu) \) [4, p. 325]. So for every natural number \(n \) there exists a sequence \((h_n)\) in \(C(S) \) such that

\[
\int_S |h_n - f| \, d\mu < \frac{1}{n}.
\]

Thus the sequence \((h_n)\) converges to \(f \) in mean. According to [4, p. 130] the sequence \((h_n)\) contains a subsequence \((f_n)\) converging \(\mu \)-almost everywhere and in mean to \(f \).

Lemma 2. Let \(Z \) be a set of \(\mu \otimes v \)-measure 0 in \(S \times T \). Then for \(\mu \)-almost \(s \in S \) we have \(v(Z_s) = 0 \), i.e. there exists a set \(P \) of \(\mu \)-measure 0 such that \(v(Z_s) = 0 \) for \(s \notin P \).

Proof. We have, using the Fubini theorem for positive Borel measures [8, p. 153]

\[
0 = \mu \otimes v(Z) = \int_S c_Z \, d\mu \otimes v = \int_S \{ \int_T c_Z(s, t) \, dv(t) \} \, d\mu(s) = \int_S \{ \int_T c_Z(s, t) \, dv(t) \} \, d\mu(s) = \int_S v(Z_s) \, d\mu(s),
\]

where \(c_Z \) denotes the characteristic function of the set \(Z \).

Theorem 1 (Fubini). Let \(f \) be a scalar function on \(S \times T \). Let \(f \in L^1(S \times T, \mu \otimes v) \), \(\mu = |m| \), \(v = |n| \). Then

- \(f \) is \(m \otimes n \)-integrable;
- for \(\mu = |m| \)-almost all \(s \), the map \(f_s: t \to f(s, t) \), is in \(S^1(T, v) \);
the map given by

\[s \to \int_{T} f_s \, dn \]

for \(\mu \)-almost all \(s \) (and defined arbitrarily for other \(s \)) is in \(L^1_y(S, \mu) \) and we have

\[\int_{S \times T} f \, d(m \otimes n) = \int_{S} \{ \int_{T} f(s, t) \, dn(t) \} \, dm(s) . \]

Proof. The fact that \(f \) is \(m \otimes n \)-integrable follows [4, p. 132] from the inequality

\[|m \otimes n| \leq |m| \otimes |n| = \mu \otimes v. \]

By Lemma 1 there exists a sequence \((f_n) \) in \(C(S \times T) \) converging to \(f \mu \otimes v \)-almost everywhere and in mean, i.e.

\[\lim_{n \to \infty} \int_{S \times T} |f(s, t) - f_n(s, t)| \, d\mu \otimes v(s, t) = 0. \]

From there we have

\[\lim_{n \to \infty} \int_{S \times T} |f(s, t) - f_n(s, t)| \, d|m \otimes n|(s, t) = 0, \]

therefore

\[\lim_{n \to \infty} \int_{S \times T} \left(f(s, t) - f_n(s, t) \right) \, d|m \otimes n(s, t) = 0, \]

that is

\[\lim_{n \to \infty} \int_{S \times T} f_n(s, t) \, dm \otimes n(s, t) = \int_{S \times T} f(s, t) \, dm \otimes n(s, t). \]

Let \(Z \) be a set of \(\mu \otimes v \)-measure 0 in \(S \times T \) such that \((f_n) \) converges to \(f \) outside \(Z \) and \(P \) denote a set of \(\mu \)-measure 0 in \(S \) (Lemma 2) such that for \(s \notin P \) we have

\[v(Z_s) = 0. \]

If \(s \notin P \), it follows that \((f_{n,s}) \) converges pointwise to \(f_s \) on the complement of \(Z_s \).

For each \(n \) the map \(g_n : s \to f_{n,s} \) is a map of \(S \) into \(C(T) \subset L^1(T, v) \). The sequence \((g_n) \) is Cauchy in \(L^1_{x(v)}(S, \mu) \). In fact, we have

\[N_1(g_n - g_m) = \int_{S} |g_n - g_m|_{L^1_v} \, d\mu = \int_{S} |g_n(s) - g_m(s)|_{L^1_v} \, d\mu(s) = \]

\[= \int_{S} \int_{T} |f_n(s, t) - f_m(s, t)| \, dv(t) \, d\mu(s) = \int_{S \times T} |f_n - f_m| \, d\mu \otimes v \to 0, \]

as \(m, n \to \infty \). Since the space \(L^1_{x(v)}(S, \mu) \) is complete there is a function
$g : S \to L^1(T, \nu)$ such that (g_n) (taking subsequences if necessary) converges to g μ-almost everywhere and in mean, i.e.

$$\lim_{n \to \infty} \int_S |g_n - g| \, d\mu = \lim_{n \to \infty} \int_S |g_n(s) - g(s)| \, d\mu(s) = 0.$$

This means that there is a set Q of μ-measure 0 in S such that for $s \notin Q$, the sequence $(g_n(s)) = (f_{n,s})$ is Cauchy in $L^1(T, \nu)$, i.e.

$$\int_T |g_n(s) - g_m(s)| \, d\nu = \int_T |f_{n,s} - f_{m,s}| \, d\nu \to 0,$$

as $m, n \to \infty$ for $s \notin Q$.

If $s \notin P \cup Q$, we know that $(f_{n,s}(t))$ converges to $f_s(t)$ for ν-almost all $t \in T$. Hence by [4, p. 133] we conclude that $f_s \in L^1(T, \nu) \subset L^1(T, \mu)$ and that $(f_{n,s})$ is $L^1(T, \nu)$-convergent to f_s, so that

$$\int_T |f_{n,s} - f_s| \, d\nu \to 0,$$

as $m, n \to \infty$, for all $s \notin P \cup Q$, i.e. $\int f_{n,s} \, d\nu$ converges to $\int f_s \, d\nu$ for $s \notin P \cup Q$.

Finally, we note that the map h_n,

$$h_n(s) = \int_T f_{n,s} \, d\nu,$$

is a continuous function from S into Y, $h_n \in C_Y(S) \subset L^1_Y(S, \mu)$. Furthermore, (h_n) is Cauchy in $L^1_Y(S, \mu)$,

$$\int_S |h_n - h_m| \, d\mu = \int_S |h_n(s) - h_m(s)| \, d\mu(s) =
= \int_S \int_T |f_{n,s} - f_{m,s}| \, d\nu \, d\mu(s) \leq \int_S \int_T |f_{n,s} - f_{m,s}| \, d\nu \, d\mu(s) \to 0,$$

as $m, n \to \infty$, and since for $s \notin P \cup Q$ $h_n(s)$ converges to

$$h(s) = \int_T f_s \, d\nu,$$

(h_n) is $L^1_Y(S, \mu)$-convergent to h, and h is in $L^1_Y(S, \mu)$.

For $n \to \infty$ we have

$$\int_S \int_T |f_{n,s} \, d\nu \, dm(s) - \int_S \int_T |f_s \, d\nu \, dm(s)| \leq \int_S \int_T |f_{n,s} - f_s| \, d\nu \, d\mu(s) \to 0,$$

i.e.

$$\lim_{n \to \infty} \int_S \int_T f_{n,s}(t) \, d\nu(t) \, dm(s) = \int_S \int_T f(s, t) \, d\nu(t) \, dm(s),$$

but

175
\[
\lim_{n \to \infty} \int_S \int_T f_n(s, t) \, dn(t) \, dm(s) = \lim_{n \to \infty} \int_S f_n(s, t) \, dm \otimes n(s, t) = \int_{S \times T} f(s, t) \, dm \otimes n(s, t),
\]

i.e.
\[
\int_{S \times T} f(s, t) \, d(m \otimes n) = \int_S \{ \int_T f(s, t) \, dn(t) \} \, dm(s).
\]

Corollary. Let \(Q \) be a Borel set in \(S \times T \). Then we have
\[
\int_{S \times T} c_Q \, d(m \otimes n) = \int_S \left(\int_T c_Q(t) \, dn(t) \right) \, dm(s).
\]

3. Images of measures and the convolution formula

Let \(T \) and \(S \) be compact Hausdorff spaces and suppose that \(p : T \to S \) is a continuous function. Let \(X \) be a Banach space and \(m : \mathcal{B}(T) \to X \) a regular Borel measure with finite variation \(\mu \) on \(T \). For every \(A \in \mathcal{B}(S) \) we put
\[
n(A) = m(p^{-1}(A))
\]
and
\[
v(A) = \mu(p^{-1}(A)).
\]

Since \(p^{-1}(A) \in \mathcal{B}(T) \) for every \(A \in \mathcal{B}(S) \), \(n \) and \(v \) are well defined, \(n \) has finite variation, \(|n| \leq v \), and \(n \) is regular [4, p. 402—403]. The regular Borel measure \(n : \mathcal{B}(S) \to X \) is called the image of \(m \) by the function \(p \) and is denoted \(p(m) \) [4]. Then \(v \) is denoted \(p(\mu) \) and the inequality \(|n| \leq v \) is now written \(|p(\mu)| \leq v \leq p(|m|) \). Since \(\mu \) is bounded, \(p(\mu) \) is bounded.

Let now \(S = \mathbb{G} \) be a compact Hausdorff topological semigroup, and \(T = \mathbb{G} \times \mathbb{G} \). Let \(m : \mathcal{B}(\mathbb{G}) \to X \) and \(n : \mathcal{B}(\mathbb{G}) \to Y \) be two regular Borel measures with finite variation \(\mu \) and \(v \), respectively. Let \(\mu^1 \cdot v \) and \(m^1 \cdot n \) denote the measures, which are the images of \(\mu \otimes v \), \(m \otimes n \), respectively by the semigroup operation \(p(s, t) = st \),
\[
\mu^1 \cdot v = p(\mu \otimes v), \quad m^1 \cdot n = p(m \otimes n).
\]

Let \(f \in C(S) \). Then \(f \in \mathcal{L}^1(\mathbb{G}, \mu^1 \cdot v) \) and \(f \circ p \in \mathcal{L}^1(\mathbb{G} \times \mathbb{G}, \mu \otimes v) \) [4, p. 404] and we have
\[
\int_{\mathbb{G} \times \mathbb{G}} f \circ p \, dm \otimes n = \int_{\mathbb{G}} f \, dp(m \otimes n),
\]
in other words.
\[
\int_{\mathcal{G} \times \mathcal{G}} f(st) \, dm \otimes n(s, t) = \int_{\mathcal{G}} f \, dm_n \, n.
\]

Since the last equality holds for every function \(f \in C(\mathcal{G}) \), we have

\[
\int_{\mathcal{G}} f \, dm_n \, n = \int_{\mathcal{G}} f(st) \, dm \otimes n(s, t) = \int_{\mathcal{G}} f \, dm_n \, n
\]

for every \(f \in C(\mathcal{G}) \). However, this means that

\[m \ast n = m \ast n \]

on \(\mathcal{B}(\mathcal{G}) \) [4, p. 326].

If \(\mathcal{G} \) is a group, then the convolution formula is an easy consequence of Corollary of Theorem 1.

Theorem 2. Let \(\mathcal{G} \) be a compact Hausdorff group, \(m \) and \(n \) regular Borel measures on \(\mathcal{B}(\mathcal{G}) \) with finite variation and with values in \(X \) and \(Y \), respectively. Then, for each Borel subset \(D \) of \(\mathcal{G} \)

(1) \(t \mapsto m(Dt^{-1}) \)

is an \(n \)-integrable function on \(\mathcal{G} \) and we have

(2) \(m \ast n(D) = \int_{\mathcal{G}} m(Dt^{-1}) \, dn(t) \).

Proof. We have, putting \(E = p^{-1}(D) \),

\[
\int_{\mathcal{G}} c_{E}(s, t) \, dm(s) = m(Dt^{-1}),
\]

and

\[m \ast n(D) = m \otimes n(E) = \int_{\mathcal{G} \times \mathcal{G}} c_{E} \, dm \otimes n = \int_{\mathcal{G}} \left\{ \int_{\mathcal{G}} c_{E}(s, t) \, dm(s) \right\} \, dn(t), \]

using the fact that if \(g \in L^1(\mathcal{G}, \mu \ast \nu) \), then \(g \circ p \in L^1(\mathcal{G} \times \mathcal{G}, m \otimes n) \) and we have

\[
\int_{\mathcal{G} \times \mathcal{G}} g \circ p \, dm \otimes n = \int_{\mathcal{G}} g \, dm \ast n
\]

[cf. 4. p. 404], in particular for \(g = c_{D} \).

REFERENCES

Received December 29, 1971

Mathematický ústav
Slovenskej akadémie vied
Bratislava