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Matematicky &asopis 23 (1973), No. 2

AN ISEOMORPHISM THEQOREM FOR
POSITIVE COMMUTATIVE SEMIGROUPS ON THE PLANE!

REUBEN W. FARLEY, Richmond, Virginia

Abstract. A positive semigroup is a semigroup which has a copy of the nonnegative
real numbers embedded as a closed subset in such a way that 0 is a zero and 1 is an iden-
tity. A positive Clifford semigroup is a positive semigroup which is the union of groups.
The unpublished question of whether or not two positive commutative semigroups on E2
whose semilattices of idempotent elements are isomorphic must ba iseomorphic has heen
posed by J. G. Horne, Jr. In this work the question is answered in the negative with
a counterexample, and necessary and sufficient conditions are given in order that two
positive commutative Clifford semigroups on E2? be iseomorphic.

1. Introduction

A topological semigroup is a Hausdorff space togzther with a continuous
associative multiplication. The author has defined a positive semigroup to be
a topological semigroup containing a subsemigroup N iseomorphic to the
multiplicative semigroup of nonnegative real numbers, embedded as a clo-ed
subset of E2 so that 1 is an identity and 0 is a zero [3]. Such semigroups which
meet the additional requirement of being the union of groups are called
positive Clifford semigroups [4]. The unpublished question of whether or not
two positive commutative semigroups on £? whose semilattices of idempotent
elements are isomorphic must be iseomorphic has been posed by J. G. Horne,
Jr. The counter example which we will give presently answers the question
in the negative. Following the example we will give necessary and sufficient
conditions in order that two positive commutative Clifford semigroups on £2
be iseomorphic.

2. Preliminaries

The closure of a subset 4 of a topological space is denoted A. The ~ct-
-theoretic difference of two sets 4 and B is denoted A\B. An iseomorphism

1) This paper contains part of a doctoral dissertation written under the direction
of Professor D. R. Brown at the University of Tennessee.
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between two topological semigroups is a function which is both an algebraic
isomorphism and a homeomorphism. The inverse of an element s is denoted s—1.
The set H(1) denotes the set of elements with inverses with respect to the
identity element 1. In general H(e) denotes the maximal group having e as
identity [1, p.22]. Let G denote the component of the identity of H(1).
Throughout this work £2 will denote the Euclidean plane. We will use the
terminology two dimensional to mean having an interior relative to E2. and
one dimensional to mean nontrivial but having no interior relative to E2.
Unless otherwise indicated, R will denote a semigroup iseomorphic to the
multiplicative semigroup of real numbers. The set of all positive members
of R is denoted P, and the set of all negative members by — P. The set of all
nonnegative members of R, i.e. P U {0} is denoted by N. The null set is
denoted by _1. For additional terminology the reader is referred to [3] and [5].

3. A Counter Example

Henceforth S will denote a positive Clifford semigroup on E2. We intend
so imply that a fixed iseomorphic copy of the nonnegative real numbers has
been chosen.

Example. Let us consider three copies of N x N. Let these copies be
denoted J x J, M x M, and @ X @. Let us define a relation R on 7T =
=[J » J)U (M x M)V (@ X @)]by first requiring that 4 C R. In addition.
let us define [(«, b);, (¢, d)m] € R if and only if [(c, d)m, (a, b);] € R if and only
if a=0=d and b =c, where (a,b);e(J X J) and (¢, d), € (M > ZI).
Finally. let us define [(¢, d)m, (¥, ¥)q] € R if and only if [(z, y),, (¢, d)m] € R
if and only if ¢ = 0=y and d =z, where (x,¥); € (@ X Q). Let us now
define (a.b);- (¢, d)n = (¢, Q)m - (@, b); = (0, be); = (be, O)m, (@, b);- (z, y)q =
= (, ¥)q - (@, b); = (0, 0);, and (2, ¥)g - (¢, D)m = (¢, D)m - (%, Y)g = (0, 2d), =
= (xd, 0)q. This multiplication is easily checked to be associative. The con-
tinuity of the multiplication follows from the continuity of real number
multiplication. Let us now take another copy of N X N, which we will denote
simply as V X .\, and let us define multiplication between 7' and N x N
in the following manner. Let (c,d)s- (%, ¥); = (%, ¥);- (¢, d)n = (cx, cdy)y,
(¢, )~ (2, W)g = (2, W)q - (¢, d)p = (*dz, dw)q, and (¢, d)n - (@, b)m = (ct. D), -
- (¢, d)u = (cda, c2dD);,. Let multiplication be coordinatewise within J x J,
M x M, Q X @, and N x N. Itisnotdifficult to check that this multiplication
1s continuous and associative. Let us define a relation R* on [T U (N » N)]
by requiring that 4 C R*, [(a, b);, (%, y)a] € R* if and only if [(z, ), (a.D);] €
e R* if and only if @ = x and b = 0 =y, and [(a, b)q, (2, y)u] € R* if and
only if [(x, ¥)n. (¢.b)e] € R* if and only if @ = 0 = z and b = y. Then. it is
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clear that R* is an equivalence relation, and it can be checked that R* i]
a closed congruence. It is also not difficult to show that [T U (N X N))]
is a Hausdorff space [3, p. 33]. Thus, we have constructed an example of
a positive commutative semigroup on E2.

Let us now construct a second example in the same fashion, except that
we will define the multiplication between 7' and N X N a little differently.
Let (¢, d)n- (x,9); = (x,9);5- (c, d)n = (cz, Cdy)j’ (¢ d)n- (2, w)g = (2, w)q-
c (¢, d)n = (cdz, dw)q, and (¢, d)n- (@, D)m = (a,0)m . (¢, d)n = (cda, cdb)m.
Again we have an example of a positive commutative semigroup on E2. It is
apparent that these two semigroups have isomorphic semilattices of idempotent
elements. However, the two semigroups are not iseomorphic. For, let us con-
sider the translation of H(1) (the interior of N X N) in the first example
by (1, 0)g. Now, (1, 0)g - (¢, d)n = (1, 0)¢ if and only if ¢2d = 1. So. the kernel
of this translation homomorphism is {(x2, 1/22)} in H(1). Let us next consider
the translation of H(1) in the second example by (1, 0);. We have (1, 0),-
- (¢, d)n = (1, 0)q if and only if c¢d = 1. Thus, the kernel of this translation
homomorphism is {(z, 1/x)} in H(1). Hence, the kernels are different, and
consequently the two semigroups cannot be iseomorphic.

4. An Iseomorphism Theorem

Let us now consider a lemma which will be used in one case of the proof
of the main theorem. The main theorem will furnish necessary and sufficient
conditions under which two positive commutative Clifford semigroups on E2
are iseomorphic.

Lemma. If 8 is an iseomorphism such that f takes the one parameter subgroup
{(x,z"): x € P,r € R, r fixed 0} under coordinatewise multiplication onto the
one parameter subgroup {(y, 1%):y € P, s € R, s fixed # 0} under coordinatewise
multiplication, then B can be extended on E2 in such a way that § takes {(x, 1)}
onto {(y, 1)} and {(1,x)} onto {(1,¥)}.

Proof. Let 8’ be any iseomorphism such that g’ takes {(x, 1)} onto {(g/,-l)—}.
If (a, b) € E2, we can write (a, b) = (21, 2]) - (22, 1) for a unique z; and x;,
since {(z,.t")} and {(v, 1)} form a basis for the space.Let us define 3[(a, b)] =
= Bl(z1, x17)] - B'[(x2, 1)]. It is easily checked that § is an iseomorphism
of E2 onto E2 which is an extension of 8. Now, § and 3’ are determined by their
action on any point. Suppose that [(x1, z1")] = (y1, y1)) and B'[(z2, 1)] =
= (y2, 1). By choosing y2 properly we can determine g’ such that B is the
required extension. We must be able to pick y2 so that A[(1, 23)] = (1, ¥3).
Now, Bl(1, 3)] = Pl(z1, 21")? « (x2, 1)2] = (112, 11°P) - (929, 1) = (U1PY27, yr°?).
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So all we need to dois to pick 2 so that #1Py2¢ = 1, which can be accomplished
by selecting y2 = y,~?/4.

In the main theorem which we are now ready to state, we will consider
two positive commutative Clifford semigroups on E2 which we will call S
and 8. Accordingly, we will denote by & and G’ the identity components
of H(1) and H(1'), respectively. Also, if ¥ is an isomorphism from the semi-
lattice of idempotent elements of S onto the semilattice of idempotent elements
of §', we will denote by e’ the element ¥(e). Furthermore, we will denote
by K. the kernel of the translation of G by e and by K. the kernel of the
translation of G by e'.

Theorem. Let S and S’ be positive commutative Clifford semigroups on E2;
Suppose that ¥ is an isomorphism from the semilattice of idempotent elements
of S onto the semilattice of idempotent elements of S'. Furthermore, suppose
that there is an iseomorphism @ from G to @' such that ® agrees with ¥ on the
tdempotent elements of G, and such that D(K.) = K, for each e such that e is
the idempotent element of a one dimensional group in S distinct from the bounding
ray of G. Then, S is iseomorphic to S'.

Proof. The proof of the theorem will be initiated with six preliminary cases,
with the final required iseomorphism being exhibited in terms of the iseomor-
phisms achieved in these cases. In the first two cases we will consider Gud(,
where C is the identity component of a two dimensional group which shares
a bounding ray with G. The first two diagrams in Figure 1 might be helpful
in visualizing these two cases. In these two cases, as well as in the remaining
four cases, GU C is a subsemigroup of S. For, we know that C' and G are
groups. Furthermore, if ¢ € C, ¢@ is the continuous homomorphic image of
a group, and is hence a group. Since ¢G meets C'in ¢, cG C C, and by continuity
¢G CC. Tt is not difficult to see that there are only two possible cases when
C and @ share a bounding ray. For, K, must be a one dimensional group such
that 0 ¢ K,. Otherwise, 0.9 = g by continuity, which is a contradiction.
Moreover, e ¢ Kg, else eg = g by continuity, which is also a contradiction,
since C is iseomorphic to N X N.

In the final four cases we will consider G U C, where G N C' = {0}. The last
four diagrams in Figure 1 should be helpful here. If we recall that C'. G C C,
then arguments like those which will be given in the proof of Case (iii) to
determine the product of idempotent elements from ' and @ will show that
these cases will in general be exhaustive.

Case (i). Let us first consider the union of the closure of the identity com-
ponent of H(1) with the closure of the identity component of another two
dimensional group H(j) which shares a bounding ray with the identity com-
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ponent of H(1). Let us denote the identity component of H(j) by C. Let e denote
the idempotent element on the bounding ray shared by G and C. Let g denote
the idempotent element on the other bounding ray of G. In this case, let us
assume that K, is a closed subgroup of G. Let @ be the iseomorphism from G
onto &' such that @(K,) = K,’, where ¢’ = ®(g) = ¥(g). Now j@ is the
continuous homomorphic image of the group ¢, and is hence itself a group
which contains j. Now, je = ¢, and hence j. (N¢) = Ne, where N is the non-
negative real numbers. Since j@ is a group containing j and whose closure
contains Ve, the bounding ray between €' and D. j& must be two dimensional.

C G c Kg G
. e { o e
I {
kg
g f g f
Case (i) Case (ii)
G
Kg G Kg G
‘\"'\‘ € Kh ¢ Kh
[ “v\_\_h (
g ! g f
m h - h
) Cc
Case (iii) Case (iv)
Kh Ifq G G
e { R e l
'\_\_\ﬂ .
~ -
Kg = Kp
9 f 7 f
n:r h A h
o C
Case (v) Case (vi)

Fig. 1. Diagrams for the ca~es in the theorem.
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Thus jG must be C. Similarly, g¢ = D, where D is the identity component
of H(g). The translation of ¢ by j is also one-to-one, since it is a linear trans-
formation of a two dimensional vector space onto a two dimensional vector
space [1, p. 208]. Let us extend @ to C in the following manner. Let IV be the
ray shared by C and G. Thus, I = Ne = Pe U {0}. If y € (C'U IV'). then
y = ja for a unique z in (G U W). since jw = w for all w € . Let us define
@; from C U W into S’ by @s(y) = ¥(j) - D(x). Since @ is defined on (', it ix
defined in particular on IV so that the map @; is well-defined and is continuous.
Now. if W' = @(W) and (" is the identity component of H(¥(j)). then since
Dy = Djl, we have O(C U W) CC" U IW'. Let w’ € W’ so that o’ = P(ar),
and let {¢,} be a sequence in (' converging to w. Then {@j(ca)} is a sequence
in (" converging to @;(w) = ®(w) = w'. Hence, W’ C (". Thus, ¢ must be
one of the two dimensional groups sharing a bounding ray with ¢’. in which
case the j’ translate of G’ is one-to-one from G’ onto C'. Let us show that @;
is onto. Let g’ € 0". Then, there is a unique z’ in G’ such that " = j2’ =
= j'®@(x), where z is an element of G. But, j'®@(z) = @j(jx). where jr e (.
Now, let us show that @; is one-to-one. Suppose that @;(y1) = D;(y2), where
Y1 = jx1, Yo ==jxz, and x1, x> are elements of G. Then D;(ja1) = Djx2),
whence i'®@(x;) = j'®(x2). Since the translation of @’ by j’ is one-to-one. we
have @(x;) = @(x3), whence a1 = a2, and ja; = jas.

We can also extend @ to D in the following manner. Since gG¢' = D, for an
element z in D there is an x in ¢/ such that gx = 2. Let us define Dy(z) = g'D(x).
We must show that @, is well-defined. Suppose 2 = gx; = gxe, where x;. 22 € G.
Then, @4(z) = ¢'@(x1), and Dy(z) = ¢’'P(x2). We must show that ¢'P(x)) =
= ¢'®(x2). Now, gx, = gxs implies that g(xrix2~1) = g, whence (x12271) € K.
Since D(Ky) = K,, we have that @(x1z271) = [D(x1)] - [D(22)]L € K, so
that ¢'[D(x1)]- [DP(x2)]L = ¢', and ¢'D(x1) = ¢'D(x2). It is not difficult to
show that @, is one-to-one and onto. The proof that @, is continuous while
lengthy can be done in a straight forward manner with sequences.

Let us denote by @ the extension of @ to C. Let us show that @ preserves
multiplication. Let z, y € C, such that x = ja, y = jb, where a, b € . Then
(lry) = Difzy) = Py(jab) = jD(ab) = [['D(a)] - [FDB)] = [Bs(ja)] - [B5(jb)] =
= [@(z)] - [@(y)]. The other cas=s to be checked are similar to this one.

Case (ii). This case will differ from the first one only that here we will assume
that fis in the closure of K,. Despite this difference, we can handle this case
in exactly the same manner as Case (i).

Case (iii). In this case we will consider the union of ¢ and C, where C is
the identity component of a two dimensional group H(m) with the property
that € N G = {0}. Let e and f be the idempotent elements on the bounding
rays of @, and let g and % be the idempotent elements on the bounding rays
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of C such that the points @(e), D(f), D(h), and D(g) on the decomposition circle
appear clockwise in the order listed. More particularly, let us assume in this
case that e is in the closure of K; and that f is in the closure of K,. Again,
we know that m( is a group contained in C. So, by continuity of multiplication,
me = g, me = 0, me = m, or me = h. Also, he = h by continuity of multipli-
cation, and similarly ge = m, ge = h, or ge = 0. But, ge = m implies that
geh = mh = kh, which is a contradiction, since gh = 0. Also, ge = h implies
that gge = ge = gh which implies that gh = h, which is a contradiction,
since gh = 0. So, we conclude that ge = 0. Then, if me = m, gem = gm = 0,
which is a contradiction, since gm = g. If me = g, then meh = gh, mh = h =
= gh = 0, which is again a contradiction. If me = 0, then meh = mh =1 = 0,
which is again a contradiction. So, we conclude that me = h. It also follows
by similar eliminations that gf = mf = hf = 0. Now, let {y.»} be a sequence
in K such that {y,} converges to e. Then, {my,}is a sequence in C such that
imyn} converges to me = k. Thus, not all of the elements of the sequence
{myn} are on the ray Pm. So, m@ is not a one dimensional group in C, but
is rather a two dimensional group in C, from which we conclude that mG = C.
Now, this case can be handled in the same manner as Case (i).

Case (iv). This case will differ from the previous one only in that here we
will assume that K is a closed subgroup of G. However. just as in the previous
case, mG = C, since no use was made of the fact that f € K,. So this case
can also be handled in the same manner as Case (i).

Case (v). This case will differ from Case (iv) only in that we will assume
that K4 and K} are distinct closed subgroups of G. In this case ge = k, ge = m,
or ge = 0. But, ge = h implies that geh = hh = h, which is a contradiction,
since gh = 0. Also, ge = m implies that geh = mh = h, which is a contra-
diction, since gh = 0. So, we conclude that ge = 0. Now, suppose that me = ¢.
Then meg = gg = ¢g, which is a contradiction, since eg = 0. It is clear that
mKy and mK, are contained in S, and S (in C) respectively. Not both of
mKy and mK) can be the point m. This is true since K, and K form a basis
for ¢, whence m@G would be the point m, and by continuity of multiplication
m - 0 = m, which is a contradiction. So, we may assume without loss of
generality that mKy; = Sg. But, mS, <« mKj, since me % g. So, m@ is not
one dimensional, whence m@G = C. Now this case can be handled in the same
manner as Case (i).

Case (vi). This case will differ from the previous one only in that here we
will assume that Ky = Kj,. In this case me = m, me = ¢, me = h, or me = 0.
But me = m implies that gme = gm, and ge = ¢, which is a contradiction,
since e ¢ K,. Likewise, me = ¢ implies that gme = gg, and ge = ¢, and we
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have the same contradiction. Let us now suppose that me = k. Then, meh =
= hh = h, he = h, which is a contradiction since e ¢ K;. So, we conclude
that me = 0. Similarly, we have that mf = 0. Hence, mS, and mS; must
both be the ray Pm. Since S and Sy are a basis for ¢, we have that mG is
the one dimensional group Pm.

We can extend @ to Pm = mG in the following manner. Let y € mG. Then,
y = mzx, for some x € G. Let us define @,(y) = m'®(x). First, we must show
that @,, is well-defined. Suppose that y = mx, = mxs, where z1, 22 €G-
So, m(x12271) = m, and (x12271) € Kp,. But K, C Ky, for if z € G and z2m = m,
then zg = zmg = mg = ¢. So, if Ky 5 {1}, Km = Ky, since both are one
dimensional groups. Thus, @(x1x2~1) = D(21)[D(x2)]-! € K,,., whence m' [D(x1)]-
- [D(x2)]7t = m’, and m'D(x1) = m'D(x2) = Pp(y). Let us next show that @,
is one-to-one. Suppose that @p(mz;) = DPm(mxz), where x;,x2 € (. Then,
m'P(x1) = m'D(xz), and m'D(x1x2~1) = m'. But, since @(x12271) € K, , OD(Km) =
= K,,., and @ is one-to-one, we have that x122~1 € K, or m(z1z271) = m,
and max; = mxz2. The proof that @ is continuous is similar to that in the
previous cases.

By use of the Lemma we can extend @, to an iseomorphism @* from
C to C" so that @*(Sy) = Sy’ and @*(S) = 8S,,. Then, we can extend ®*
to an iseomorphism of C onto ¢’ by defining, as before the iseomorphism @,
from the identity component of H(g) onto the identity component of H(g'),
and by defining @), from the identity component of H(k) onto the identity
component of H(h'). We must now show that this extension is continuous.
Let {y»} be a sequence in C such that {y,} converges to g. Since the one
dimensional group m@G and the one dimensional group S, form a basis for
C, {yn} = {mxnan}, where each x, € @ and each a, €8,. So, {mwya,} con-
verges to ¢, {gmxaas} = {gx,} converges to gg =g, and by the continuity
of @y, {g'D(xy)} converges to g¢'. Since P* is an iseomorphism, {D*(y)} =
= {D*(manan)} = {D*¥(mxn)D*(ar)} = {m'D(xn)D*(as)} which clusters to ¢,
so that {g'm'®(xs)D*(an)} {g'P(xn)} converges to g't. So, ¢’t = ¢’, whence
t =g' orteSy in C'. The latter assumption leads to a contradiction, since @*
is an iseomorphism and {y.} does not cluster to a point in C. Now, in more
generality, let {y,} be a sequence in €' such that {y»} converges to p, where p
is an element of the identity component of H(g). Then, {p=ly,} = {gp~tya} =
= {gp~'mxnan} = {gp~lxs} converges to g. But, p~1 = gz, for some xy, € G,
and p = gx,~l. So, {92nxm} converges to g, whence {9'P(xn2m)} =
= {g'P(xx)D(xm)} converges to g, and {g'®(xn)} converges to g'®(xn1).
Thus, {@y(9zn)} = {g'®(x)} converges to ¢'D(xp,~1) = 4(p). We must show
thf"t 1D*(yn) } converges to @y(p). But, {@*(yn)} clusters to ¢, whence
ly (D*(,y”)} = {9'm D(20)P*(an)} = {9'®(x,)} clusters to g't. Thus g't = Dy(p)
and g'i®(p~1) < ¢'. But, {Dy(p~1) is an element of the identity component
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of H(g'), so that t@y(p~1) =¢', and t = 9’ Dy(p) = Dy(p). In exactly the same
manner, it can be shown that if {y,}is a sequence in C'such that {y,} converges
to p, an element of the identity component of H(h), then {@*(y,)] converges

to Dp(p).

We have now shown how to extend the iseomorphism from & onto G
to the closures of identity components of other two dimensional groups in S.
The iseomorphism can be extended to non-identity components in the following
manner. Suppose that H(j) is a disconnected maximal group in S. Let D, be
the identity component of H(j) and let D; be another component. We now
use the fact that there is a unique element x such that a2 = 1 and xD, = D .
If ze Dy, z = xa for a unique element a in D,. Let us define @(z) = y®(a).
where ¥ is a unique element such that 2 = 1 and yD,” = D;". Suppose that
z = za, w = ab, where a,b € D,. If ®(z) = O(w), yD(a) = yD(b). 2D(a) —
= y2@(b). D(a) = D(b), a = b, and z = w. So, this extension is one-to-one.
The extension is clearly onto, and since multiplication is continuous. it follows
that the extension and its inverse are continuous. Also. @(z)®@(w) = [yD(a)] -

- [y@(b)] = D(a)(yy)D(D) = DP(a)P(D) = P(ad) = D(axxd) = D(xaxd) = D(zw).

Let us now show how to extend our iseomorphism of ¢ onto G to a sector
of one dimensional groups in S. We will first show how to do this in the case
of a sector of connected one dimensional groups, and then the extension can be
carried out when the one dimensional groups have more than one component
by translating the identity component sector of such groups by a square root
of 1 in a non-identity component sector in the same way as just done above.
Now, let ¢ = C'\{0} be a maximal sector of connected one dimensional groups.
Just as above, we can show that G U C is a subsemigroup of S. Let us denote
the set of non-zero idempotent elements of C' by F. Let P be the copy of the
positive real numbers embedded in &, and let N = P U {0}. Let us define
a function m from N X F to C by m(n, f) = nf. The function m is continuous
and is clearly onto, since any element in C is on a ray Nf, where f € F. Also,
it is easily seen that m is one-to-one except that m(0,f) = m(0.g), for all
f. g € F. Now, let us consider the following diagram.

Since the P rays are a continuous collection, it follows that m* is an iseomor-
phism. Let @(P) be the image of P in . Then there is a sector of one dimen-
sional groups in §’, namely @(P) - Y(F). Furthermore, this sector is a maximal
sector of one dimensional groups, otherwise P . F would not be a maximal
sector of one dimensional groups in S. As above, the closure of the sector
@(P) - P(F) is iseomorphic to [P(N) X P(F)]/[{0} X P(F)] under m*. Now.
let us define a function from (N X F) to [@(N) X ¥(F)] by choosing this
function to be @ x . This induces (@ X ¥)* from the factor sets which
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NxF m*
{0} x F

—
-

i identity

| \

| |

m

=
X
o

- C

i clearly an iseomorphism. Hence, the sector C = P . F is iseomorphic to the
sector @(P)¥P(F) by the restriction of the map @ . ¥, defined by (@ - ¥)(pf) =
— @D(p)¥(f), which is another way to describe (@ X ¥)*. Let us call the sector
DPYP(F), C". Let us define 2 from G U C into G' U C" by i(x) = D(z), if
x e, and Az) = (@ - P)(x), if x € C. Here, by (@ - ¥)(x) we mean (D - ¥)(pf)
where p, f are the unique elements in P, F respectively such that z = pf.
It follows easily that A is iseomorphism, and since there are only finitely many
sectors of one dimensional groups, we can extend @ to all such sectors in thi«
manner.

Now,if S and S" are positive commutative Clifford semigroups on E2? subject
to the further hypotheses of this theorem, the iseomorphism @ from H(1) to
H(1") can be extended to an iseomorphism « from S onto 8’ by defining x(x) =
— Di(x), where x € H(k), if x is not in a sector of one dimensional groups,
and x(x) = A(z) if = is in a sector of one dimensional groups. Let Cy and D,
be two dimensional identity components of maximal groups in S distinct
from G and which share a bounding ray M. Then, if @; takes G U (', to
G’ C, and @y takes G U D, to G' U D,’, because D31 = Dy 5r, it follows
as in Case (i) that €y’ and D, share the ray M’. In virtue of the cases which
have been considered « is one-to-one and continuous from £?2 onto £2 and
is hence a homeomorphism. Finally, let us show that « preserves multiplication.
Let x,y €S such that x € H(j) and y € H(k). Then, x = ja and y = kb for
some a,b e H(1). So, xy = jkab. But, jk is the idempotent element of the
group H(jk), and (jkab) € H(jk). Hence, «a(xy) = a(jkab) = j'k'D(ab) =
— [jB(a)] - [KD®)] = [D1(ja)] - [Bekd)] = Bs@)Puly) = a(@)x(y). Similarly,
it 1x not difficult to show that « preserves multiplication on sectors of one
dimensional groups. Thus, the theorem is established.
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