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CHARACTERISTIC TYPES OF CONVERGENCE 
FOR CERTAIN CLASSES OF DARBOUX-BAIRE 1 FUNCTIONS 

JAROSLAV SMITAL, Bratislava 

I n the sequel all functions are real-valued functions defined on a real 
interval I. 

B r u c k n e r and L e o n a r d [3] posed the following problem: If {fn}Tt=i 
is a sequence of Q@i\ (= Darboux Baire 1) functions converging point wise 
to a limit / what additional restrictions on the convergence are necessary 
and sufficient to guarantee t h a t / also be a 3)£8\ function, i. e. what is the 
"characteristic" type of convergence for Darboux Baire 1 functions? 

I t is known tha t the uniform convergence of Q3S\ functions preserves 
the Darboux continuity (see [2]). L. Mis ik [5] has shown a necessary and 
sufficient condition to guarantee tha t the pointwise limit of a sequence of 
continuous functions be a Darboux function. In [6] a condition is given which 
is necessary and sufficient to guarantee tha t the uniform limit of Darboux 
functions be a Darboux function. 

In the present paper there is given a solution of the problem of B r u c k n e r 
and L e o n a r d mentioned above. Moreover, there are given necessary and suffi­
cient conditions to guarantee tha t the pointwise limit of a sequence of functions 
in s/ also be in si where si is the class 288\, the class Jii of Zahorski [7] 
or the class of approximately continuous functions, respectively. , 

The relevant kind of convergence for functions in Baire class a for fixed a 
has been obtained by Gagaeff [4]: 

Theorem. Let {fn}™=1 be a sequence of Baire oc functions converging pointwise 
to a function / ; then f is a Baire oc function if and only if for each s > 0 there 
exists a sequence {An}™=1of sets of the additive class oc and a sequence {njc}^=1 

00 

of natural numbers such that I = ( J An and \f(x) — fn)c(x)\ < e for each x e Ajc-
n=l 

We begin with the following. 

Definition. Let / be an interval and let {An}™^ be a countable system 
of subsets of / . 

1 1 5 



The system {An}„=1 has the property Pi if each An is of the type Fa and 
if for each x0 e I, and for each unilateral neighbourhood 0(x0) of x0 there 
is some k such tha t x0 e Ak and 0(x0) n Ak — {#0} ^ 0. 

The system {^4W} =̂1 has the property P2 if each An is of the type Fa, and 
if for each x0 e I and each unilateral neighbourhood 0(x0) of ^o there is some 
k such that,#o £ -4^ and the set O(#o) n ^ has the positive Lebesgue measure 
(\O(x0)nAk\ > 0 ) . 

The system {An}™=1 has the properly P3 if for each TJ > 0 a??cl ea cA x0 e I there 
exists a neighbourhood O(^o) of x0 with this property: For each neighbourhood 
interval J of x0 which is contained inO(a*o) there is some k such that .To e Ak and 

\J n Ak\ j \ j \ > i - n . 

Xow the following theorem gives a characterization of the sequences of Q38\ 
functions whose limits are Q3S\ functions. 

Theorem 1. Let {/w}^=1 he a sequence offomctions in Q@l\ co^^verging poinhcise 
to a function f. Then f is in £2@i\ if and only ^f, for each e > 0 there exists a se­
quence {An}™=1 of sets with the property Pi and a sequence {nk}k=1 of natural 
numbers such that \f(x) — flk(x)\ < e and \f)ik(x) — fHk(y)\ < e,for each x, y e Ak. 

P roof : Assume tha t the assumptions of the theorem are satisfied. We show 
t h a t / e £$3#\. From the above quoted theorem of B. Gagae f f it follows that 
fe£#i. To show tha t f eQ) we use the criterion of Zahorski [7]: A Baire 1 
function g is in QJ if and only if each of the sets [g > X], [g < / ] is bilaterally 
dense in itself, for each X. We show tha t each set [/ > X] is bilaterally dense 
in itself (the proof for [/ < A] is similar). Let f(x0) > X. There is some e > 0 
such tha t f(x0) > X + 3e. Let O(x0) be a unilateral neighbourhood of x0. 
Since the sequence {An}™=1 has the property P i , there is some k and a point 
2^2*0 such tha t z eO(x0) n Ak. For such a z we have \f(x0)—f(z)\ < 
< !/(*>) -/nfc(*>)l + ./*(*>) -fnk(z)\ + \f)k(z) -f(z)\ < 3E, hence clearly 

f(z) > X. T h u s / e S ^ i . 
Conversely, let / e ^ l i and let e > 0. Put Bk = {x; \f(x) — fk(x)\ <e/3}, 

and Bl = {x\ I e/6 <f(x) < (I + 2)e/6}, for each positive integer k, and each 
integer I. Let C\ = Bk n Bl. We show that the system {C\} has the property 
P i . Since each of the sets Bk, Bl is Fa the set C\ is also Fa. Now let x0 e I 
and let O(x0) be a unilateral neighbourhood of x0. There is some p such that 
x0 e BP. Since / e @38\, the set B? is bilaterally dense in itself, hence there 
exists a point z eO(x0) n B?, z ^x0. There is also an integer q such that 
both z e Bq and x0 e Bq, hence x0 e C\ and z eC\C\ O(x0) — {x0} ^ 0 
and hence the system {C\} has the property P i . Finally let {An}™=1 be an 
enumeration of the sets C\ and let {nk}^x be a sequence of positive integers 
such tha t nk = raif Ak = Cl

m. The sequences {An}^ and {w*}*_i have all 
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the desired properties, since for each x, y e C\ we have \f(x) — fk(x)\ < e/3 < s 
and /,(.r) - / * ( y ) | < l/*(x) - / ( x ) | + \f(x) - f(y)\ + \f(y) - fk(y)\ < f/3 + 
-f- f/3 -f- f/3 = £. The theorem is proved. 

Theorem 2. Let {/w}^=1 be « sequence of functions m the class Jiz converging 
pointwise to a function f. Then f eJtz if and only if for each s > 0 there is 
a sequence [ J w ^ = 1 of sets with the property P2 and a sequence {nk}^=1 of natural 
members such that fnk(x) — f(x)\ <eand\fny(x) — flk(y)\ <e, for each x,yeAk. 

The proof of the theorem is omitted. I t is similar to tha t of Theorem 1. 

Theorem 3. Let {fn}n=i oe a sequence of approximately contimwis functions 
converging pointwise to a ftinction f. Then f is approximately continuous if and 
only if for each e > 0 there exists a sequence {An}™=1 of sets with the property P3 
and a sequence {nk}^=1 of nahiral numbers such that \flk(x) —f(x)\ <s and 
fjx) -fltK(y)\ <e, for each x,yeAk. 

Proof : Assume tha t the sequence {fn}^i satisfies the conditions of the 
theorem. We show tha t / is approximately continuous. Let XQ G I and e > 0. 
I t suffices to show tha t the set {x; \f(x) — f(xo)\ < 3e} has the Lebesgue 
density 1 at XQ. Let rj > 0; let O(x0) be a neighbourhood of XQ whose existence 
s guaranteed b}r the property P3. Let Jo be a subinterval of 0(XQ), which 
contains x0, and let m be a number such tha t 

\Am n Jo] / ]Jo! > 1 - rj : 

For such m we have {x; \f(x) — f(x0)\ < 3s} 3 Am; clearly, for each x e Amy 

f(x) -f(x0)\ < f(x) -fjx)\ + fjx) -fjx0)\ + \fjx0) -f(x0)\ < & . 
Thus for each interval Jo C 0(XQ) such tha t XQ SJQ, we have 

J 0 n [x; f(x) -f(x0)\ < 3f} / Jo| > |Jo n Am\J\J0\ > 1 - v 

and hence / is approximately continuotis. 
Conversely, let / be approximately continuous. Let e > 0. Similarly as in 

the proof of Theorem 1 form the sets Bk = {x; \f(x) — fk(x)\ <E /3} , Bl = 
— {x; I e/6 <f(x) < (I + 2) e/6}, for each positive integer h, and each integer I, 
and put C[ = Bk n BK Clearly, for x, yeC[, \fk(x) - f(x)\ < e and \fk(x) -

fk(y)\ < £• Hence to prove the theorem it suffices to show tha t the system 
[6^.} has the property P3. Let r\ > 0 and XQ el. Assume tha t x0 e Bs. There 
exists a positive number ex < e such tha t the set {x; \f(x0) — f(x)\ < £1} 
is a subset of the set Bs. S ince / i s approximately continous, the set {x; \f(x) — 
—/(^o)| < £ i } has the Lebesgue density 1 a t the point x0. Thus there is 
a neighbourhood O(x0) of x0 such tha t for each subinterval J 0 of O(#o) which 
contains x0 we have 

(1) Jo n {x; f(x) -f(xo) < ei}\ / \J0\ > I - »?/2 . 
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Since the sequence {fn}n=i converges pointwise t o / on the interval JQ of finite 

measure it converges also in measure to / , hence there is some m such that 

(2) \Jo n {x; \f(x) -fm(x)\ < e/3}| / |Jo| > 1 — ^/2 . 

But the set 

Jo n {x; \f(x) -fm(x)\ <el3} n {x; \f(x) - / ( * 0 ) | <E i } 

is a subset of Jo O C^, hence 

h/o n 0i|/|/o| > 1 - v 
(see (1), (2)), q . e . d . 

Remark. Similar characterizations as in Theorems 1 — 3 are possible also 

for functions in the classes Jf% and dl^ of Z a h o r s k i [7]. However the cor­

responding x>roperties P are very complicated. 

REFERENCES 

[1] BRUCKNER, A. M., — CEDER, J . G.: Darboux Continuity. Jahresber. Dtscli. 
Math.-Ver. 67, 1965, 93 -117 . 

[2] BRUCKNER, A. M. -CEDER, J . G . - W E I S S , M.: Uniform Limits of Darboux 
Functions. Colloq. math . 15, 1966, 65 — 77. 

[3] BRUCKNER, A. M. -LEONARD, J.: Derivatives. Amer. Math. Monthly 73, 1966, 
2 4 - 5 6 . 

[4] GAGAEFF, B.: Sur les suites convergentes de functions measurables B. Fundam. 
math . 17. 1932, 182-188. 

[5] MlSlK, L.: tiber die Eigenschaft von Darboux und einiger Klassen von Funktionen. 
Rev. math , pures et appl. 11, 1966, 411-430. 

[6] SMITAL, J.: Some Characterizations of Darboux Continuity of Real Functions. 
Mat. Sasop. 22, 1972, 5 9 - 7 0 . 

[7] ZAHORSKI, Z.: Sur la premiere derivee. Trans. Amer. Math. Soc. 69, 1950. 1-54. 

Received January 3, 1971 
Katedra algebry a teorie elsel 

Prirodovedeckej fakidty Univerzity Komensktho 
Bratislava 

1 1 S 


		webmaster@dml.cz
	2012-07-31T18:51:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




