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Matematicky &asopis 23 (1973), No. 2

CHARACTERISTIC TYPES OF CONVERGENCE
FOR CERTAIN CLASSES OF DARBOUX-BAIRE 1 FUNCTIONS

JAROSLAV SMITAL, Bratislava

In the sequel all functions are real-valued functions defined on a real
interval 1.

Bruckner and Leonard [3] posed the following problem: If {f,}>,
is a sequence of 2%, (= Darboux Baire 1) functions converging pointwise
to a limit f what additional restrictions on the convergence are necessary
and sufficient to guarantee that f also be a 2%, function, i. e. what is the
“characteristic”” type of convergence for Darboux Baire 1 functions?

It is known that the uniform convergence of 2%, functions preserves
the Darboux continuity (see [2]). L. Misik [5] has shown a necessary and
sufficient condition to guarantee that the pointwise limit of a sequence of
continuous functions be a Darboux function. In [6] a condition is given which
is necessary and sufficient to guarantee that the uniform limit of Darboux
functions be a Darboux function. . _

In the present paper there is given a solution of the problem of Bruckner
and L eonar d mentioned above. Moreover, there are given necessary and suffi-
cient conditions to guarantee that the pointwise limit of a sequence of functions
in &/ also be in o where o7 is the class 24, the class #2 of Zahorski [7]
or the class of approximately continuous functions, respectively. .

The relevant kind of convergence for functions in Baire class « for fixed «
has been obtained by Gagaeff [4]:

Theorem. Let {f,)"., bea sequence of Baire a functions converging pointwise
to @ function f; then f is a Baire « function if and only if for each ¢ > O there
exists a sequence {An}; ,of sets of the additive class a and a sequence {ny};.,
of natural numbers such that I = |J An and |f(x) — f, ()] <e& for each x € Ay.

=1

We begin with the following.

Definition. Let I be an interval and let {An}le be a countable system
of subsets of 1. : :
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The system {A4,}5 ; has the property Py if each A, is of the type F; and
if for each xo € I, and for each unilateral neighbourhood O(ay) of xp there
is some k such that g € 4x and O(x) N Ar — {xo} # 0.

The system {45}, ; has the property Ps if each A4, is of the type Fs, and
if for each xp € I and each unilateral neighbourhood O(xy) of 2y there is some
k such that xo € Ar and the set O(xo) N Ay has the positive Lebesgue measure
(|0(z0) N Az] > 0).

The system {4 };_, has the property Ps if for each 4 > 0 and each xo € I there
exists a neighbourhood O(x) of zy with this property: For each neighbourhood
interval J of @ which is contained in O(ap) there is some k such that xo € Az and

A Al [ >1—q.

Now the following theorem gives a characterization of the sequences of &%,
functions whose limits are 24%; functions.

Theorem 1. Let {f,};_, be a sequence of functions in Z %, converging pointwise
to a function f. Then f is in 2%, if and only if, for each ¢ > 0 there exists a se-
quence {An};,  of sets unth the property Py and a sequence {ni};_, of natural
numbers such that f(x) — f,.(x)| <eand|f, (%) — [, () <e, foreach x. y € Ay.

Proof: Assume that the assumptions of the theorem are satisfied. We show
that f € 2%,. From the above quoted theorem of B. Gagaeff it follows that
f € %:. To show that fe 2 we use the criterion of Zahorski [7]: A Baire 1
function ¢ is in & if and only if each of the sets [¢g > 1], [§ < 7] is bilaterally
dense in itself, for each 1. We show that each set [f > 1] is bilaterally dense
in itself (the proof for [f < 4] is similar). Let f(xo) > 4. There is some & > 0
such that f(ag) > 4 + 3e. Let O(x¢) be a unilateral neighbourhood of 2.
Since the sequence {4,}, , has the property P;, there is some £ and a point
z = xp such that z €O(x0) N Ar. For such a z we have |[f(xo) — f(2)| <
< 1f@o) — (@) + 1fu@0) — fuld + 1fule) — fG) < 3¢, hence clearly
f(z) > A. Thus fe 2%.

Conversely, let fe 2%, and let ¢ > 0. Put By = {x; |f(x) — fi(x)| <e/3}.
and B! = {x;1¢/6 <f(x) <(l + 2)¢/6}, for each positive integer k, and each
integer I. Let C} = By N Bl.. We show that the system {C}} has the property
P;. Since each of the sets By, B! is F; the set C'i. is also Fs. Now let ag e/
and let O(xp) be a unilateral neighbourhood of xy. There is some psuch that
2p € Br. Since f e 24,, the set Br is bilaterally dense in itself, hence there
exists a point z € O(wo) N B?, z + x9. There is also an integer q such that
both ze B, and w € By, hence z0e () and zeC) N O(x) — {xo} +0
and hence the system {C}} has the property Pi. Finally let {4}, ; be an
enumeration of the sets C% and let {nx};., be a sequence of positive integers
such that ny = mif Ay = C' . The sequences {4,}; , and {ng};_, have all

m
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the desired properties, since for each x, y € C% we have |f(x) — fi(z)] <¢/3 <&

and fi(x) — fi(y)] < ful@) — f@)] + 1f@) — )] + 1fly) — )] <ef3 +
+ ¢/3 + /3 = &. The theorem is proved.

Theorem 2. Let {fy};, , be a sequence of functions in the class Mz converging
pointwise to a function f. Then fe./s if and only if for each ¢ > 0 there is
a sequence (A, ; of sets with the property P2 and a sequence {ny}y , of natural
numbers such that f, (x) — f(x)] <eand|f, (x) — f,. )] <e, foreach x,y € Ay.

The proof of the theorem is omitted. It is similar to that of Theorem 1.

Theorem 3. Let {fn}, , be a sequence of approximately continuous functions
converging pointwise to a function f. Then f is approximately continuous if and
only if for each e > 0 there exists @ sequence {An}, , of sets with the property Ps
and « sequence {nylr_, of natural nwmbers such that |f, (x) — f(x)| <& and
fu @) — [, ()] <e, for each x, y € Aj.

Proof: Assume that the sequence {f,}, , satisfies the conditions of the
theorem. We show that fis approximately continuous. Let 2o € I and ¢ > 0.
It suffices to show that the set {x;|f(x) — f(20)| < 3¢} has the Lebesgue
density 1 at 5. Let # > 0; let O(xg) be a neighbourhood of z; whose existence
s guaranteed by the property Ps;. Let Jy be a subinterval of O(xg), which
contains xy, and let m be a number such that

[dm O Jol [ 1Jo] > 1 — 9.

For such m we have {x;|f(x) — f(xo)] < 3e} D Am; clearly, for each x € Ap,
J(@) — flwo)] < flx) — f,.(®) + [, (@) — [, (@) + |f,.(x0) — f(xo)] < 3e.

Thus for each interval Jy C O(xg) such that xy € Jy, we have
Jo N (x5 flz) — flwo)l <3e} [ Jo| = |JoN Awl|/lJo] > 1 — 5

and hence f is approximately continuous.

Conversely, let f be approximately continuous. Let ¢ > 0. Similarly as in
the proof of Thexrem 1 form the sets Bp = {x; |f(z) — fi(z)] <¢/3}, B! =
— {o; 1e]6 < f(xr) <(l + 2)¢/6}, for each positive integer £, and each integer [,
and put C} = By N Bl Clearly, for z,y € C%, |fi(x) — f(x)] <& and [fi(z) —

fr(y)] < e. Hence to prove the theorem it suffices to show that the system
(C%} has the property Ps. Let > 0 and xo € I. Assume that xy € Bs. There
exists a positive number & <<¢ such that the set {x;|f(xo) — f(z)| <ei}
is a subset of the set Bs. Since f is approximately continous, the set {x; |f(x) —
— f(xo)] < &1} has the Lebesgue density 1 at the point zp. Thus there is
a neighbourhood O(xg) of xg such that for each subinterval Jy of O(xg) which
contains a9 we have

(1 Jo O (w5 f(@) — flwo) <edl [ ol > 1 —nj2.
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Since the sequence {f,};_; converges pointwise to f on the interval Jy of finite
measure it converges also in measure to f, hence there is some m such that

2 [Jo N {z; |f(@) — fm(@)] <e/3}[[|Jo| > 1 —n/2.
But the set
To 0 (&3 () — fu(@)] <el3} N {5 (@) — fla)| <er)
is a subset of Jo N C;,, hence
[Jo N Col/[Jol > 1 — 7
(see (1), (2)), q.e.d.

Remark. Similar characterizations as in Theorems 1—3 are possible also
for functions in the classes .#3 and /%, of Zahorski [7]. However the cor-
responding properties P are very complicated.
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