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Matematicky &asopis 18 (1968), No. 4

ON SUBSERIES OF DIVERGENT SERIES
TIBOR SALAT, Bratislava

The paper is a contribution to the study of various properties of subseries.
It is closely related to the basic result concerning the subseries contained
in the papers [1] and [2].

The first part of the paper gives further results on subseries including
a refining of the fundamental result of the papers [1] and [2] and deals with
the study of the dependence of the absolute convergence of a series on the
convergence of its subseries.

The second part is devoted to the study of properties of a certain class of
functions which are defined by means of subseries of a divergent series.

In the third part we shall prove certain metric results concerning so-called
factorial transformations of infinite series.

In the fourth part of the paper we shall present some applications of the
first part of the paper to the theory of atomic measures.

DEFINITIONS AND NOTATIONS

1. Let
(1) é?n=a1+a2+...+an—|—...
be a (formal) series with real or complex terms, let
h<hkh<..<k<..
be an increasing sequence of natural numbers. The series
(2) ni}ﬁﬂ:ah—l—ah—}—...—l—ak”+...

is called a subseries of the series (1).
If a number z € (0,1) is expressed by means of its (infinite) dyadic expan-
sion
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(3) x = i e(x) 2%
£=1

(ex(x) = 0 or 1 and &(x) = 1 for an infinite number of %’ s) and if the series

@) (@) = > @)

k=1

corresponds to x, then (4) is a subseries of (1). Conversely, every subseries (2)
of the series (1) can be written in the form (4), if we put into (3) & (z) =1
(n=1,2,..)and ex) =0for k % k, (n =1, 2, 3, ...). Thus we get a one
to one correspondence between the set of all subseries of the series (1) and
the interval (0,1).

2. O(Qan) (D(Das)) denotes in what follows the set of all those € (0,1)
1 1

0

for which the series (z) is convergent (divergent). Further D*(>a,) denotes
1
the set of all those 2 € (0,1> for which the series (x) is oscillating. Hence
D*(Qan) = D(Ja,). We put further C*(Dan) = (0,1) — D*(Tan).
1 1 1 1
3. Let

(5) San=a1+az+ ... + an + ...
- n=1

be a series with real terms. Put
Ny={n; ap > 0}, N_ = {n; an < 0}, No = {n; an, = 0}.
The series (5) will be called a series of the type («), (8) and (y) respectively, if
D an=-+ o0 and > |ai < 4 o0,

neEN+ neN-
Dapy=—o0 and > a, <+ oo,
nenN- neN+
> an=-+o0 and > ap= — ©
neNs neN-

respectively, putting > a, = 0if M = 0.
neM

If > |aa| = + 0, then evidently (5) is either of the type («) or of the type
n=1

(B) or of the type (y) and just one of these possibilities may occur.
4. When # is fixed, the interval (0,1) is decomposed into 27 intervals of
,,the rank n*¢
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I I+1
i‘,?:(—’ + > (I=0,1,...20 —1).
2 20

n
— = > &2k is a finite dyadic expansion of the number //27, then every
L ]

If

x€i? has the infinite dyadic expansion z = > e(x) 2%, where e(z) =
F=1

=& (k=1, 2, ... n). Then ¥ is said to be associated with the sequence
€1, &2, ..., &En.

5. |4| denotes the Lebesgue measure of the set A4, |A|, denotes the outer
Lebesgue measure of the set 4.

6. A set M < (0,1) is said to be homogeneous in (0,15, if for every two
intervals I, I' < (0, 1)

INM.  |I'n0 M
] ']

holds. It is known that if M < (0, 1) is homogeneous in (0, 1> and measurable,
then either M| = 0 or | M| = 1 (see [4]).

7. Let g be a real function defined on (0, 1) . g is said to have the Darboux
property on (0, 1> if for every two points x1, 22 € (0, 1) the following holds:
if z lies between g(x:1) and g(z:) then there exists xy between x; and z2 such
that g(xo) = =.

8. Afunction ¢ defined on (0,1 is called locally recurrent at point o €
€ (0, 1) if each neighbourhood of zy contains a point z € (0, 1), 2 & xo such
that g(x) = g(xo) (see [5], [6]). A function g will be called strongly recurrent
at point 29 € (0, 1> if each neighbourhood of the point zy contains an uncoun-
table set of points z € (0,1> for which g(z) = g(z0).

9. Let {q,};2; be a sequence of natural numbers, g > 1 (k =1, 2, 3, ...).
Express every x €<0,1) by means of its Cantor series

[+

r = —_—
q1.92... qk

k=1

where ex(z) (k= 1, 2,...) are integers, 0 < &(x) < qx (kK =1, 2, 3,...) and
ex(x) << gr — 1 for an infinite number of k' s (see [7] p. 113). Form the series

(6) > ex(@)a.
k=1
The series (6) appear as a certain generalization of the subseries of the series (1).
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In fact if we put ¢x = 2 (k =1, 2,...), then with the exception of all dyadi-
cally rational numbers of the interval {0,1> the series (6) coincide with the

subseries of the series (1).
If we choose in particular gz = %k + 1 (k =1, 2, 3,...), then the series (6)
are said to be factorial transformations of the series (1). Let the symbols

Ci(D.an), (D1(Zan)) denote the set of all those
1 )

0

ak(x)
o E &+ =Y

4
k=1

for which (6) is convergent (divergent).

10. dim M denotes in this paper the Hausdorff dimension of the set M with
respect to the system of measure functions u*(f) =1*, 0 £t <<+ oo,
o€ (0,1) (see [8], [9]).

11. In the following 7' denotes the set of all dyadically rational numbers
of the interval (0,1}, i. e. the set of all numbers of the form £/27, 1 < k < 2».
We put X = (0,1> — T.

12. If {s,},®, is any sequence of real numbers, then {s,}, denotes the set
of all limit points of the sequence {s,},2,. Further {(— o0, 4 o) denotes
the set (— oo, + c0) U {4+ o0} U {— oo}.

13. Troughout the paper, if nothing else is said, the symbol > a, denotes

n=1
a series with real terms.

14. A function ¢ defined on (0,1 is said to be of the type « if the set of
all its discontinuity points is dense in (0, 1) and simultaneously the comple-
ment of this set is dense in (0, 1).

15. a) If & is any o-additive field of subsets of some set and u is a measure
on &, then M € & is said to be an atom if u(M) > 0 and for every Z < M,
Z e either u(Z) =0 or wu(Z) = u(M) holds.

b) A set 4 €& is said to have the Darboux property if for each & with
0 << 6 < u(A) there exists B <4, Be & such that u(B) =4 (see [3]).

c) A set F € & is said to be purely atomic if for every set Hc E, He &
which contains no atom, u(H) = 0 holds.

16. The symbol 4 = B denotes the symmetric difference of the sets 4, B,
so that A = B=B—-—4 = (A — B) U (B — A).



1.
SOME RESULTS ON SUBSERIES OF DIVERGENT SERIES

In the paper [1] (see also [2]) the following theorem is proved.
Theorem A. Let

(7) Soan=4 ©, a,>0, a,—>0.
n=1

Then there ewists for each K > 0 such a subseries > a; of the series (7) that
n=1

z akn = K'
n=1
We prove a certain refining of this theorem.

Theorem 1,1. Let
(8) D=+ 0, a>0, a-—>0.
n=1

Then there exists for every K > 0 an uncountable set (of the power of the conti-

nuum) of numbers x e (0,1> such that (x) = ex(x)ax = K.
k=1
"Proof. From the conditions K > 0 and a, — 0 ,we infer the existence

of a sequence 73 < iz < ... <<iy <... of natural numbers such that
[ o}
9) 2 a;, < K.
n=1

Let N denote the set of all natural numbers. Let us put
N — {i1, %2, 0n,... 3 = {1, by Uny. .}

In view of the assumption (8) we have > a, =+ o, a, >0, a,—~>0.
n=1 ©

Let {¢'; },%; beasequence of numbers 0, 1. Let us put s = > &, a;, . Evi-
n=1

dently s << K (see [9]). On account of theorem A there exists such a sequence
{,.},2; with the terms 0, 1, where 1 appears infinitely many times, that
o

S e, a,=K—s>0. Put
n=1
(10) &' = en(a) 277,

n=1

’

where ey(z') =¢, (n =1, 2, ...). Then 2’ € (0, 1) and (10) is the infinite
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0

dyadic expansion of 2'. Evidently (') = en(2')an = K.
n=1
Now if {¢}},%, is a sequence of numbers 0, 1, different from the sequence

{e;},%1, we shall construct by means of the previous procedure z” € (0, 1),
a" =3 en(x") 27" (en(2”) = 0 or 1 and ,(2") = 1 for an infinite number of n
n 1

such that

(11) @) =¢, (m=123,.)
and (2") = K. As a consequence of the uniqueness of dyadic expansions,
2" % 2’ holds. Since the set of all sequences {e;,},~; of numbers 0, 1 is un-
countable and has the power of the continuum, we get in this way an un-
countable (of the power of the continuum) set of numbers z € (0, 1> for which

(z) = K. The proof is completed.

Theorem 1,2. Let a, — 0 and let > a, be a series of the type («) (alerntatively
n—1
of the type (B) or (v)). Then for every K (s, + ), s = > a, (alternatively
neN-
Ke(—o0,8),8=> ayor Ke(— o, + ©)) there exists an uncountable set

neN+
(of the power of the continuum) of numbers x € (0, 1> such that (x) = K

Proof. Let > a, be of the type («), an — 0. Let us put ¢, =1 for ne N_ U
n 1
U Ny. In view of Theorem 1,1 there exists a family (of the power of the conti-
nuum) of such sequences {en},cy, of numbers 0, 1 (where 1 appears infinitely
many times) that > eya, = K — s > 0. Let us put

neN+
©

(12) &= > en(w) 277,
n 1
where en(z) — en (n — 1, 2, 3,...). Evidently z e (0,1}, (12) is the infinite
dyadic expansion of the number z, () = K and those x form an uncountable
set (of the power of the continuum).
If 3 ay is of the type (), the proof runs in an analogous way.

n 1

If Z ay is of the type (y), a,— 0 and K > 0, then there exists by Theorem A

n 1
sequence {e,},cy,uy. Of numbers 0, 1 such that > e,a, = — K. It follows
NEN,UN-
further from Theorem A that there exists an uncountable system of sequences

{en}nex, of numbers 0, 1 (where 1 appears infinitely many times) so that
317



z entty = 2K. Now, the assertion follows immediately. The proof forK < 0 is
NEN +
analogous.

The correctness of the following theorem may also be easily seen.

Theorem 1,3. a) Let > an be of the type («) or (y). Then there exists an uncoun-
n=1

table set (of the power of the continuum) of numbers z € (0, 1> such that (z) =
+ o0.
b) Let > ay be of the type (B) or (y). Then there exists an uncountable set (of
n=1

the power of the continuum) of numbers x € (0,1> such that (x) = — oo.

Various properties of the sets C(>ax), D(Das), where > ay is a divergent
1 T

n=1
series, are studied in [10]. According to certain results of the paper [11],

if 3 an = + 0, @y > 0, then the set C( > a,) is of the first category in (0, 1)
n=1 1

It is proved in the paper [12], that if > @y is a non — absolutely convergent
n=1

series with real terms, then for all z € (0, 1> with the exception of points of
a set of the first category we have

n n
liminf > ex(@)ax = — oo, limsup > ex(@)ar = + oo
1 k—1

n—>w k n->©

((0, 1> is assumed to be a metric space with the Euclidean metric). To these
results is related the following theorem which refines also the quoted results

of the paper [12].
Theorem 1,4. a) If > anis of the type (a) or (B), then C( > ay) is of the first
n=1 1

category in (0, 1>.

b) If > an is of the type (y), then for all x € (0,1) with the exception of the
n=1
points of a« set of the first category we have
lim inf sx(x) = — o0, lim sup s,(x) = + 0,
n->oo n-> 0

n

where sp(x) = > ex(a)ar-
E o1

c) If 3 ay is of the type (v) and a, — 0, then for all x € (0,1 with the exception
n=1

of points of a set of the first category {su(x)}, = {— o0, - c0>.
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d) If liminf |a,] = 0, ax (0 = 1, 2, 3,...) are complex numbers, then C(>ax)
n->o 1

18 dense in (0, 1).

Proof. We shall prove b). The proof of a), which is similar, will be omitted.

Put X = (0,1> — T, X is assumed in what follows to be a metric space
with the Euclidean metric. Let p be a natural number and let 4(p) denote
the set of all those x € X, for which sp(z) < p (n =1, 2, 3,...). Since the
functions s, (n = 1, 2,...) are continuous on X, A(p) is closed in X. We shall
show that A(p) is nowhere dense in X. In view of its closeness it is sufficient
to prove, that

(13) [(@, 0) N X]N (X — A(p)) + 0

for each interval (@, b) < (0,1). This being so, let (@, b) < (0, 1>. Choose
m,1, 0 <1 < 2m — 1 such that ¢¥ < (a,b). Let i’ be associated with the

sequence ¢, &2,..., ém. Let us define zp = z ex(o) 27% in the following way:
=1
en(wo) = ex (=1, 2,... m), ex(xo) =0 for ke (N-UNo)N{m + 1, m + 2,

m—+3,...}, ex(we) =1 for ke N.n{m + 1, m + 2,...}. Evidently (x) =
= > ex(xo)ax = + o0, so that zpe X — A(p) and e N X < (a,b) N X.

k1

Let us put 4 = [J 4(p). Then 4 is a set of the first category in X and
p—1 :
thus also of the first category in (0, 1>. Obviously A is the set of all those

€ X for which lim sup sy(x) < + co.

In a similar way it is possible to show that also the set B of all those z € X
for which lim inf s,(z) > — oo is of the first category in (0, 1> and thus in

n->00

view of the countability of the set 7' the affirmation of b) follows immedia-
tely.
The part c) follows easily from b). In fact, let > a, be of the type () and

n=1

an — 0. Then according to b) there exists a residual set M < (0, 1) such that
for x€ M we have liminfs,(z) = — o0, lim sup su(x) = + 0.

n->oo n->w

In view of these relations it is possible to assign to each ¢ e (— o0, + o0)
a sequence of natural numbers

n << n<<ng<...<<nngp<...

such that s,,(x) <, ne is the least of those % > w1, for which s»(%) = ¢,
ng is the least of those # > nga, for which sy(x) < ¢ etc. Then obviously
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(14’) lSnk(.’E) - C' = ‘Enk(x)ankl = [ankl (]‘7 =2, 37"')7

in view of the assumption a, >0 we get ¢ € {sa(x)},.
We shall prove part d). From the assumption the existence of such sequence
of natural numbers

hh<kb<...<byi<...

follows that

(15) le%,.l < 4 0.

Evidently it suffices to prove: if m, | are two integers, m natural and 0 < I <

< 2m — 1, then i) N O( 3 aa) 5~ 0. Let i be associated with the sequence
1

e1, €2,..., ém. Let us define zg = > ex(2o) 2~ in the following way: ex(zo) = ex
=1
(k=1, 2, ... m), further ex(zo) = 1, if k > m and k = k; (for suitable j),
and ex(x) =0, if bk >m, k£ k (¢ =1, 2, 3, ...). Evidently xe:P and
according to (15) zg € C( > ay) holds.
1

Theorem 1,5. Let > a, be a series with complex terms, let D |an| = + co.
n 1

n—1
0

Then O > an) is a set of the first category in (0, 1).
1
Proof. Let us put a, = a, -+ ia,, a,, a, are real numbers. From the

assumption of the Theorem it follows that at least one of the series > |a,|,
n—1

[ee}
> la,| is divergent. The conclusion of the Theorem is then easy consequence
n 1

of Theorem 1,4 and of the evident inclusion

O3 an) < O3 ai) mO(;ia:;).

1

In the well-known collection of problems of mathematical analysis [14]
(see [14] p. 44), the problems of the following type can be found: Let % be
a set of subserics of the series

(16) Zan_a1+ag+...+a.n—f—....
n 1
The question arises if the convergence of all series belonging to % implies
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the absolute convergence of the series (16). If e. g. the system of all subseries
of the series (16) is taken for %, then the convergence of all subseries of the
system % implies the absolute convergence of the series (16). If the system

of all subseries of the form Z ax+si (k, I are natural numbers) of the series (16)
s§=1

is taken for %, then the convergence of all the series of the system % does
not imply the absolute convergence of the series (16). The following theoren
which may be taken as a topological criterion of the absolute convergence
of series, shows the origin of the different answers to the given question, when
the choices of the sets % differ. Observe that in the second case the set % is
countable, since the set of all the arithmetic sequences {k + sl}Z,, where
l, k are natural numbers, is countable. Hence in this case the set of all those
x € (0, 1>, for which (z) € %, is of the first category in (0, 1).
Theorem 1,6. The series > an with complex terms is absolutely convergent if
n=1 *
and only if there exists such a set H < (0,1) of the second category in (0, 1)

that for every x € H the series (x) = > ex(®) ax is convergent.
k=1

Proof. If > |an| < + oo, then we can put H = (0,1). Suppose, conversely,
n=1
that there exists H < (0,1> of the second category in (0, 1> such that for

x € H the series (x) is convergent. If > |an| = + o0, then according to Theo-
n=1

rem 1,5 C(Days) is of the first category in (0. 1) and from the evident inclu-
1

sion H = C(Dan) we see that H is of the first category in (0, 1). But this
1

Lo}
is a contradiction with the assumption of the Theorem. Hence > |a,| < + oo
n=1

and the proof is completed.

Note 1,1. In connection with Theorem 1,6 a question arises if it is possible
to construct in the interval (0, 1> a set H < (0, 1) such that for every interval
(a,b) = (0,1 the sets H N (a,b) and (a, b) — H would be of the second
category in (0, 1>. From the résults of the paper [15] (see also [13] p. 54)
it follows that such a decomposition is possible. The proofs of the results
contained in [15] are not constructive and thus they do not give a direction
how such a decomposition is to be made.

If X = > ex(x) 27 is the infinite dyadic expansion of the number z € (0, 1),
F1

n

then p(n, ) will denote the sum > e(z). It is proved in the papers [16] and
k-1
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[17] that if > ay, is a series with real or complex terms and > |a.| = + oo,
n=1 n=1

then there exists an « € 0,1) such that lim p(n, z)/n = 0 and (z) = > ex(x)ar
N> k=1
is divergent. In connection with this assertion we shall prove the following
result:
Theorem 1,7. Let > a, be a series with coplex terms and let D |a| = + oo.
n=1 n=1

Then for all x € (0, 1> with the exception of the points of a set of the first category in
(0, 1> the following relations hold simultaneously:

(i) () 221 ex(@)ak

s divergent,

(ii) [p (=, x)}’ — (0, 1>.
n

n

Proof. Let M be the set of all those z € (0,1) for which (i) and (ii) hold.
Let M, be the set of all those z € (0,1 for which (ii) holds. According to [18]

the set M is residual in (0, 1. Evidently M = M; N D(> a,) and the con-
1

clusion follows from Theorem 1,5.
Note 1,2. a) In the preceding theorem (ii) cannot be replaced by the condi-
tion lim p(n, z)/n = 0 (Cf. with the mentioned results of the papers [16],

n->oo

[17]), since {z € (0, 1); lim p(n, z)/n = 0} is of the first category in (0, 1)
(see [18]).

b) It is showed in the paper [10] that if > a, is a divergent series with posi-
n=1

tive terms and

Q=A== ... = Ay =

=

then

Y
*) tim inf 222 _

n->wo n

is a necessary condition for the convergence of the series (z). Theorem 1,7
shows that (*) is not a sufficient condition for the convergence of the series

().
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c) If % is any system of subseries of the series
(7 Dan=a+ a2+ ...+ ap+ ...
n 1

we shall denote by E(%) the set of all those z € (0, 1) for which (z) e %. If
E(%) is a set of the second category then according to Theorem 1,6 the con-
vergence of all the series of the system % implies the absolute convergence
of the series (17). Thus the ,,topological magnitude* of the set E(%) guarantees
that the convergence of all the series of the system % implies the absolute
convergence of the series (17). The following example shows that the ,,metrical
magnitude® of the set E(%) has here no influence similar to the mentioned
influence of the ,topological magnitude‘‘ of the set E(#%). Let e. g. E(%)
consist of all those « € (0,1) for which (ii) holds. Then E(%) is residual (see [18])
and thus from the convergence of the series (x), z € E(%), the absolute con-
vergence of the series (17) follows. But from the metrical point of view E(%)
is a ,,poor‘ set, since not only its Lebesgue measure but even its Hausdorff
dimension is zero (see [8]).

The following Theorems concern the topological structure and the metric

properties of the sets C(Dax), D(Ja,) and some related sets.
1 1

0

Theorem 1,8. Let > an be an arbitrary series with real terms. Then each of
n=1

the sets O(Dan), C*(Dan) is of the type Fso in (0, 1).
1 1

Corollary. Each of the sets D(>axn), D*(Dan) is of the type Gss in (0, 1).
1 1

Proof of the Theorem. According to the Cauchy-Bolzano criterion
for the convergence of series we get

s
s

Ak, m,n),

»

(18) oéa) nX=Q ﬂ

k=1p 1n

s
Il

Il

P

where

8

1
Ak, m, n) = {ze X; IZ ei(x)ai) <?}
1

Obviously A(k, m, ) is a union of a finite number of sets of the form ¥’ N X,
r  max (m, n) and therefore A(k, m, n) is closed in X. Then it follows from

(18) that C(> as) N X is of the type Fgs in X and so may be expressed in
1
the form X N P, where P is of the type Fss in (0,1>. But X is evidently of
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the type G5 in (0,1) and so C’(jian) N X is of the type Fys in (0,1>. Since
C(%an) NT < T, the set O(O:ian) N T is of the type F,; in (0,1>. Hence we
get immediately that C’(S;:an) is of the type Fgss in (0,1).
If we denote by Gi1 = Gl(?“n) and alternatively by G: = Gz(ian) the
1

oo}

set of all those » = > &x(x) 27% € (0,1), for which > & (z)ar = + oo alterna-
k-1

k=1
tively Z #(x)ax = — oo, then evidently
K=1
(19) CH(San) = C(San) U G1(San) U Go(San).
1 1 1 1

Thus it suffices to prove that each of the sets Gl(Zan), Gg(Zan) is of the type
1 1

Fgs in (0,1>. We shall prove it for G’1(Zdn), the proof for G'g(Zan) being ana-
1 1

logous.

From the definition of G1 = G Zan) we have

(20) GNX= ﬁ [j ﬁ B(k, n),

k=1 p=1n=p

where B(k, n) = {z € X; Z a(x)a; > k}. B(k, n) is evidently closed in X and

0

the same reasoning as in the case of examining the structure of C(>ay,) leads,
1
using (20), to the fact that G1(Dax) is of the type Fysin (0, 1).
1

Theorem 1,9. Let > |an| = 0. Then for almost all z e (0, 1> we have
n=1

z [ek(x)ak[ = —I—OO
F1

Proof. Denote by U, (U:z) the set of all those xe€ (0, 1) for which
> ler(@)ar| < 4o (D |ex(z)ar] = + 00). Evidently Uy, Uz are disjoint and
=1 F=1

[=]1 U Us = (0, 1). Further Uy and U are measurable. The measurability
of U, follows from the fact, that U; is the domain of convergence of the se-
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n
quence {sz(x)},, | Sa(x) = 2 ex(x)ar and s, (n =1, 2, 3, ...) are measurable
k=1

since they are simple (on (0, 1)) functions.

From Lemma 1 of the paper [19] (see also [4]) it easily follows that U,
is homogeneous in (0, 1> and therefore either |Ui| = Oor |U;| = 1. If [U;| = 1,
then the measure of the set g(Uy N (0, 3>) < (3, 1D, g(f) = 1 — ¢, is equal to
1/2 and there exists an zo €T such that ¢ and also 1 — x belongs to U;.

Hence > [ex(wo)ax] < + co and simultaneously > |ex(1 — @o)ax| = > |(1 —
F1 F=1 K=1

— ex(wo))ax| < 40, consequently > |ag| < +o0 in contradiction to the
E=1

assumption of the Theorem. Hence |U;| = 0 and the Theorem is proved.

Theorem 1,16. a) If > a, + =0, then |C(Das)| = 0.
n=1 1

b) If > an = — oo, then |C(San)| = 0.
n—1 1

¢) If > an oscillates, then |C*(3 an)| = 0.
n=1 1

Proof. a), b) may be proved in a way analogous to the one used in the

proof of Theorem 1,9.
In the case c) the measurability of each of the sets

0(“2»”), G@an), Geé;an)

may be seen by a similar method as in the proof of the preceding Theorem
when the measurability of U; was proved. The homogeneity of each of the
sets may be easily seen by means of Lemma 1 of the paper [19]. Using a method
similar to that used in proving |Ui| = 0 in Theorem 1,9 we find that

lo(ian)l = IGI(?(Z”)I = |G2(§:aﬂ)| — 0.

2.

o0
PROPERTIES OF THE FUNCTIONS f(> ax).
R 1

Throughout the following part of the paper we shall assume a, (n =1,

@

2, 3, ...) to be real numbers, > |ax| = + co.
n=1
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0

The function f = f(> @) will be defined in the following way: If z € ¢ > an),
1

1 fl)(x)l (see (3), (4)). If (z) = +o0, then f(a) = 1. If (z) =

= —o0, then f(r) = —1. If (z) oscillates, we put f(z) = 0.

we put f(z) =

Theorem 2,1. a) Let a, —> 0 and let > an be of the type (o) or (B). Then the
n 1

sev of all discontinuity points of the function f = f(> an) coincides with the s
1

0(21: az) U (T — {1}).

b) Lei an— 0 and let > ay be of the type (y). Then f{
n=1

at each poinl of the interval (0, 1).

@) s discontinuous

HMS

Proof. a) We shall restrict ourselves to the case that > a, is of the type

n 1
a0

(@). Put 77 =T — {1} and let a9 %= 1, 2 ¢ C(D as) U T". Then

1

(21) woeD(i )

and f(zo) = 1. Let ¢ > 0. Choose L > 0 such that 1/(1 + K) < e. Since x9 * 1

fulfils (21) and > ay is of the type («), there exists such an interval ¥ of the
n—1

m-th rank, that xo lies in the interior of this interval and for each point x

which lies in the interior of that interval, (z) = > ex(x) az > K holds. Hence

£=1
if (x) < + o0, then
() 1 1

- et
L+ ()] L+ (@) 14K

If(@) — flao)l =

Thus f is continuous at the point x¢. Similarly it may be seen that f is left-
continuous at the point 1.
Now, let 29 € C(3 an), so that f(xe) < 1. It follows from Theorem 1,4 that

1
©

D(> ay) is dense in (0, 1). Consequently each nieghbourhood of the point
1

fee]

o contains a point x (x € D(> ay)), for which f(x) = 1. This proves the dis-

1
continuity of f at the point .
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Finally let wo €T’ =T — {1}. Then f(x) = 1.
Let

&r

4 r

v

&1 &2
mo=—Ft—+...+ 1, e =1,

2 2 27

be the finite dyadic expansion of the number zo. Then its infinite dyadic
expansion is
El(xo) 87_1(51,‘0) 0 1 1

SRR F—t—t—t

2 2r-1 ' 2r  2ril oree

xro —

where ¢i(xg) =g fore=1,2, ...r — L Let by < ks < ... <kp < ...

be a sequence of natural numbers such that & > r and > |a; | < + cc. Such

n—1
a sequence exists according to the assumption a, — 0. Now, let us define

the numbers z, as follows:
Ty = > a(®)27%, &) = () (=1, 2, ... r—1),
F=1
&r(@y) Loen(aw) =0forn>r,n#k (t=1,2, ..), () =0 for ¢ < v

and g (2y) =1 for ¢ > v.
Evidently x, > o (v—> o) and

3l + 3 o

fa) £ — =5 <1
1+ z lai| + Z lag,|
i=1 =1
for v — 1, 2, 3, ..., where §, depends only on r and does not depend on v.

The discontinuity of f at the point xzp follows immediately.
b) Let z an be of the type (y). Let xo e (0, 1>. The following two cases

n—1
may occur:

L |f@) = 1. 2. |fa0)] < 1.

In the case 1 we use the fact that on a residual and consequently dense in
(0, 1> set (see Theorem 1,4 ¢)) f(x) = 0 holds. This implies the discontinuity
of f at zp immediately.

In the case 2 let § be an arbitrary positive number. Let m be chosen so
large that an ‘interval i (0 <7 < 2» — 1) with the property zoe€il) <

m

327



< (xg — 6, Xo -+ 0) exists. Let iﬁfg be associated with the sequence e1, &2, ..., &m.

0

Let x; = Z ex(x1)27% be defined as follows: e(x1) = ex(bk =1, 2, ... m),
k=1
futher ex(x1) =0 for ke (N-U No)N{m + 1, m + 2, ...} and &) =1
for ke Ny Nn{m + 1, m -+ 2, ...}. Evidently 2;€:? and f(z;) = 1. This
implies the discontinuity of f at the point .
According to Theorem 1,10 and the known Lebesgue criterion on Riemann
integrability, we get the following result.

@

Theorem 2,2. If a, -0 and > a, is of the type («) or (B), then f(> an) is
n=1

1

integrable (in the Riemann sense) on {0, 1>. If an — 0 and > a is of the type
© n—1

(), then f(> an) is mot integrable (in the Riemann sense) on {0, 1).
1

Note 2,1. If > ay, is of the type («) or (8), then Theorem 1,4 implies the
n=1

0

function f(z an) to be of the type o (see [20]). It can be easily seen that the
set of all dislzcontinuity points of a function of the type « is of the first category
(see [20]). The last fact implies again that if 5: ay is of the type («) or (f)
and a, — 0, then O(ian) is of the first categoryni;1 (0, 1>.

From Theorem 1,% the following result may be easily obtained.

Theorem 2,3. a) Let a, — 0 and let > an be of the type («). Then

n=1

S
0, 1)) = , 1
f((0, 1)) (1 T >

if N— and Ny are finite and

/

JF((0, 1)) =< 1

1+ s

if at least one of the sets N_, N is infinite (s = > an).

neN -

b) Let a, — 0 and let > ay, be of the type (y). Then f((0, 1)) —

—(—1, D. "

Note 2,2. An analogous affirmation to that appearing in part a) may be

formulated for the case of Z ay being of the type (B).
n 1
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Several examples of functions with the Darboux property and discontinuous
at each point of the interval (0, 1) are known (see [21], [22]). From the fol-
lowing Theorem the existence of one class of such functions follows.

Theorem 2,4. a) Let a, — 0, let > a, be either of the type («) or (B). Let
n=1

x1 < @2, @1, 22 € (0, 1, f(@1) * f(@) (f = fOan)). Let z lie between the numbers
1

f(x1), f(x2). The there exists a set (of the power of the continuum) of numbers x
lying between ) and x2 such that f(zx) = z.

b) Let an — 0 and let >, ax be of the type (y). Then f = f(O an)
n=1 1

assumes each of its values on every interval at the points of a set of the power of
the continuum.

Corollary. If a, (n =1, 2, 3, ...) are real numbers, an— 0, > |an| = + 00,

n—1
)

then f(> an) has on the interval (0, 1) the Darboux property.
1

Proof of the Theorem. Let > a, be of the type (x). Let 21 < %z and let

n=1
e. g. flx1) <z < f(x2) (in the case f(x1) > z > f(x2) the proof would run in
an analogous way). Choose m so large that the numbers z;, z2 belong to two
different intervals of the rank m, x1 €%, x2 €%, &y + ko. Since f(z1) <
< f(zx2) < 1, we have f(x1) < 1, so that 21 ¢ T (all the points of 7' have in their
dyadic expansions from a certain index all the digits equal to 1 and therefor
f(x) = 1for x €T). In view of the fact that the function

t
14 p|”

is increasing and continuous, a 6 > 0 exists such that

o) = te(—o0, +0)

kilek(xl)ak + 6
(22) z = —

1 + Z ek(xl)ak —|— 6'

k—1

Define @ = > er(x)27% in this way: e(x) = e(x1) for k=1, 2, ... m.
F—1
Further, for & > m we put ex(x) = 1 if g (21) = 1. Denote by Z the set of all
those k& > m for which e(x1) = 0. Then evidently Z is infinite and > a; —
keZ
= +4-00. According to Theorem 1,2 we shall construct a sequence k; € Z

=123 . ) khh<k <. ... <kn<...
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such that
(23) >y, = 0.
i=1 .

We put ¢, (¢) =1 (t=1,2,3, ...) and ex(x) =0 for ke Z, bk + k; (i =1,
2, 3, ...). Thus {ex(x)}_, is defined for all &, x €Y and therefore = < ,.

Evidently z; < z and in view of (22), (23) f(x) = z holds.

On account of Theorem 1,2 (applied to the series > ai) there exists for
keZ

the number 6 > 0 an uncountable set (of the power of the continuum) of

sequences k1 < k2 < ... < kp < ..., for which (23) holds and so according

to the preceding construction there exists also an uncountable set (of the power

of the continuum) of such z for which 21 < < 2> and f(z) = =.

Now let > ax be of the type (y). Let I < (0, 1). If uw € (—1, 1) we shall find

n-—-1
K such that ———— =wu. We put K=+ if u=1 and K= —o0
1 + K|
if w = —1. For suitable m, I we shall have ¥ = I. Let i be associated

with the sequence ¢, &2, ..., en,. Since Z a; is again of the type (y) and a; — 0,
, t=m+1
Theorems 1,2 and 1,3 imgly the existence of such an uncountable set (of the

power of the continuum) of sequences {n:};° ,, ,, of numbers 0, 1 (in which 1
appears infinitely many times) that. i nia; = K — % &a;. Now if we put
x =§ &(x)278, gi(x) =& (=1, 2, l'mt;&) and g(x) Zlni t=m+4+1, m—+
+ 2? 1 .), we see that x € i, f(x) = u and the set of all such x has the power
of the continuum. The proof is completed.

Theorem 2,5. The function f = f(>an) is strongly locally recurrent at each
@© 1
point of the interval (0, 1) if > a, fulfils one of these conditons:
n=1

(G) > an is of the type (x) and both the sets N, Ng are finite,
1

n—

(k) > an is of the type (), N is finite and No infinite,
n 1

1 Z an 1s of the type («) and both the sets N_, No are infinite,
n 1

(m) > an is of the type (y).
n—1

Note 2,3. It is possible to prove an analogical result for the type (). An

easy consideration enables us to see that if > ay is of the type (), N- is in-
n=1
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finite and Ny finite, then f(> a,) is not locally recurrent at an arbitrary point,
T

the infinite dyadic expansion of which differs from the dyadic expansion of

©

the number zg = > ex(20)27% (ex(xo) = 1 for ke N_ and ex(xo) = 0 for other
i1

k) at most in those &k which belong to the set Nj.

Proof of the Theorem. The affirmation easily follows from Theorem 2,4
if Z ay fulfils the condition (m). Let z ay fulfil (j). On account of [6] it suffices to

Verlfy that for every ¢ from the rande of f, the set Ey(f) = {# € (0, 1); f(x) =
— t} is dense in itself. Theorem 2,3 implies that the range of f is the interval

1+ |s] nen- 14 lsl
from Theorem 1,4 we infer that E1(f) is dense in xtself . Suppose therefore that
14 |s d
st <t <1l Let f(xo) =1t, @0 = Z er(x0)2 ¥ € (0, 1), let 6 > 0. There
s -1

exists m such that if [ is suitably chosen, 0 < 7 < 2» — 1 we have xp i)

o0

s s
( ) 1>, § = > a,. This being so,let t € | —— 1> If t = 1, then

< (w0 — 8, @o + 6). Since f(xo) =t < 1, the series (xo) = > ex(wo)ax is con-

© k1
vergent. Put w = >  e(wo)ax. The series Z ar is evidently of the type («).
Eom+l k=m+1

As a consequence of the assumption (j) we have s* < u << + o0, where s* —
o]

ar. Hence for the series >  ai the assumptions of Theorem 1,2
k>m, ax<0 E m+1
are fulfilled and therfore in view of Theorem 1,2 there exists such an infinite

set (of the power of the continuum) of sequences {1,};",, ., of numbers 0, 1

(where 1 appears infinitely many times) that > map =u. Put o =
k=m+1

— > ()27, ex(®) = er(wo) for k < m, ex(w) = for k> m. Evidently
K1

z e, so x € (g — 0, wo + 0) and f(x) = f(xo) = t. Moreover the set of such
x is obviously uncountable of the power of the continuum.

In a similar way the assertion in the cases (k), (1) may be proved.
We shall show that every function f = f{( Zan is Borel measurable.
Theorem 2,6. a) If Z ar is of the type () or (B), then f( Van s a function
of the second Baire class (on (0, 1)). B
b) If z ar ts of the type (y), then f(;nan) 18 a function of the

third Baire class (on (0 13).
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Proof. a) Let Z an be of the type () (for the type (B) the proof runs in
an analogous wa,y) It follows from the definition of f = f( z an) that f is
a limit of a sequence of simple functions f, (n =1, 2, 3, ...) deﬁned on (0, 1)

[e o}

as follows: for # = > e (2)27% € (0, 1)
=1

iglé‘i (x)a@
+ | i gi(x)a

fo(®) =

Since fu (n =1, 2, 3, ...) are of the first Baire class, f is of the second Baire
class on (0, 1> (see [13] p. 299—300).
Let > an be of the type (y). Then it suffices to prove (see [13] p. 282) that

n=1

for every real a each of the sets M2 = {x € (0, 1); f(x) < a}, My = {x € (0, 1);
J(®) > a} is a set of the type Fgos in (0, 1.

Consider at first the set Me. If ¢ > 1 or a £ —1, M? is evidently of the
type Fgo5 in (0, 1>. Hence let —1 < a = 1. Two cases can occur. 1. 0 < a =
<12 —1<ac=s0.

1. Evidently Mo = D*(Day) U {w € C*(Da,); fx) <a}. Put Re={xe

© 1 1
€ C*(Qan); f(x) < a}. Then R* = (ReN X) U (ReNT). Since ReNT <= T,
1
we see that R N T is of the type Fys and consequently also of the type Fyos
n (0, 1y. Further D*(Day,) is of the type Gss in (0, 1) (see the corollary fol-
1

lowing Theorem 1,8), thus it suffices to prove that R* N X is of the type
FO'(’O’ in (0, ].>.
The following equality is obvious:

B(k, n),

4

s

o Fafe{ D)

k=1p—1n

It

© 1
where B(k, n) = {z € C’*(Zan) NX; falx) <a— 7 . But B(k, n) is closed
¢ .,

in X N C* (C* = O*(Qay)) and so as a consequence of the equality (24)
1
Re N X is of the type Fs in C* N X. Hence

(25) RenX = (C*NnX)n M,
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where M is of the type Fys in (0, 1. Since X is of the type (s in (0, 1), (25)
and Theorem 1,8 give that R* N X is of the type Fses in (0, 1).

Evidently Me = {x e O* Zan ) <a}, since a =0 and f(z) =
for o € D*( Zan ). Further we have Me = (M‘l N X)U (M* N T) and similarly

as in the case 1 we see that it suffices to prove that M N X is of the type
Fss5 in (0, 1>, This can be done by a similar procedure to the one used in the
case 1.

In the same way it may be proved that each of the sets M, is of the type
Fgss in (0, 1). The proof is completed.

It follows from Theorem 2,6 that each of the functions f = f(> ax) is Lebesgue
1

measurable and owing to its boundedness also integrable (in the Lebesgue
sense) on <0, 1>. The question arises about the value of the Lebesgue integral
1

f Sf(t)dt of this function. We can expect that its value will essentialy depend

on the properties of the series Z @y . The following Theorem is an easy conse-
n=1
quence of Theorem 1,10.

© 1 ©
Theorem 2,7. If > ay is of type («), then ff(t)dt = 1. If > aq is of type (B),
0 n—1

n=1

1 o 1
then ff(t)dt = —L If > an oscillates, then ff(t)dt = 0.
0 n=1 0

ON THE FACTORIAL TRANSFORMATIONS OF INFINITE SERIES

In this part of the paper a metrical result, which is an analogy of certain
metrical results of the paper [10] on subseries, will be proved.

Theorem 3,1. Let Z @n = 00, let there exist j such that

n—1

1\
v
v

a; 2 aj41 aj+k

Then dim C1(Dan) = 0

1
Before we prove the Theorem, we shall prove an auxiliary result. If
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we put ha(2) = i &i(x).

1=T1

Lemma 3,1. Let > a,, fulfil the assumpﬁon of Theorem 3,1. Let x € C1 (?“n)-
n=1
Then

ha(z
lim inf @
Proof of the Lemma. Let
hon(2
tim inf 22 S

n-> o0

Then there exist numbers r > max (2, 7) and 6 > 0 such that ka(%) = on
r+p

for n =2 r. By means of Abel’s partial summation we get > ex(¥)ar =
k=r

= —hra(@)ar + he(@)(ar — @rs1) + ... + brip(@)rip = —hry(x)ar + ar +
+ @rv1 + ... + @ryp). Further ar + ary1 + ... + @r4p > +o00 if p—> O, so

that « € Di(Da.) and thus z ¢ O1(Dan).
1 1

Proof of the Theorem. Let the assumptions of the Theorem be ful-
filled. Then for an arbitrary

0

xzz ex(x) c<0, 1)
(k + 1)!

k=1
(the factorial expansion of the number x)
(26) ha(®) = Np(1, ) + 2Nu(2, @) + ... + kNa(k, ) + .

holds, where N,(k, z) denotes the number of &’ s in the sequence (%), &2(%), ...,
..+, &n(®) (in (26) on the right hand Na(k, ) = 0 for k¥ > n). By means of
simple estimation we get from (26)

(27) @) 2 > Na(k, )

=1
If x € C1(3an), then as a consequence of (27) and Lemma 3,1 we have
1

@

2 Nk, )

.. pk=1
lim inf ——— = 0.
n->w n
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Observe that

) Nk, «
A/n((), x) -1 Lzl ( )
n - n
N,(0,x)
—— =1, hence the inclusion

Thus for x € C1(2a,) we have lim sup
1 7 ~> 0

® N0,
(28) Cl(zan) c{xe<0,1); lim sup L(n-—) =1 =W,
1 n->oo

holds. On account of a certain result of the paper [23] (see [23] Theorem 5)
dim Wy = 0 holds and then (28) implies dim Ci(Das) = 0. The proof is
1

completed.

4.

APPLICATIONS OF SOME RESULTS ON SUBSERIES
TO THE THEORY OF ATOMIC MEASURES

Let & be some o-field of subsets of a given set, let ¢ be a measure on &.
Let 4, B be two atoms of . Then 4 N B = A and the following cases may

oceur:

(i) p(A N B) =0 (iz) u(4 N B) = u(d).

In the case (i1) the sets 4, B are taken as two different atoms. In the case
(i2) (4 N B) > 0 and so in view of the inclusion 4 N B = B we have u(4 N
N B) > 0 and so in view of the inclusion 4 N B < B we have u(4 N B) =
= u(B). Then evidently u(4) = u(B). In this case the sets 4, B are not
taken as two different atoms. Thus we identify the atoms which differ only

in a set of measure zero.
Now, let £ € & be a purely atomic set, let u(£) = + 0. Let

(29) . E1, Es, ... En, ...

be all the (mutually different) atoms contained in Z, let u(Ez) < -+ (n =
=1, 2,3, ...). It is proved in the paper [3] by means of Theorem A that £
has the Darboux property if and only if there exists a sequence of natural

numbers
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such that
(31) ZIM(E@.) = + o0, lu(Ep,.) - 0.

. In connection with this fact, an application of our Theorem 1,1 leads to the
following result.

Theorem 4,1. Let E € & be a purely atomic set with the Darboux property,
let W) = +oo. Let (29) be all (mutually different) atoms contained in E,
let w(Bn) < 4+ (n=1, 2, ...). Then to each a > 0 there exists an infinite
system (of the power of the continuum) of sets D < E, mutually differing in
a set of a positive measure such that u(D) = a.

Proof. Since £ has the Darboux property, there exists (30) such that (31)

holds. Put a, = u(E,)) (n =1, 2, 3, ...). Then the series > a, fulfils the as-

n=1
sumptions of Theorem 1,1. As a consequence of that theorem there exists

such a set V (of the power of the continuum) of numbers v = > &(z)27% €
k=1

€ (0, 1> for which (z Z x)ay =a.Weput D, = |J E,, ifxeV.Evident-

kser(x)=1
ly w(Dz) =a

Now, let 2, 2" € V, 2’ # 2" and let e. g. ¢(z') = 1, ¢(2") = 0. Then Dy —
— Dy > E:D/ - U Ept’

i+j
fu(D - Dx ) ; p; - E;J? Epa N Epj) = M(Em) > O:
since u(E, N E,) = 0 for ¢ % j. The proof is finished.

Let £ fulfil the assumptions of Theorem 4,1. Denote by %, the system of
all such H € &%, H < E, which contain an infinite number of atoms (in the
sense of the agreement made at the beginning of this part of the paper a set
H € & contains an atom 4 exactly when u(4 N H) > 0). Assign toeach H € %,

the number §(H) = Z e27% € (0, 1>, where & = 1, if H contains the atom
E=1

Ei, and g = 0 in the other case. It can be easily seen that if H', H" € %,,
then 6(H') + 6(H") if and only if u(H'— H") > 0

The construction of the numbers 6(H) is similar to the construction of the
numbers (M), which are assigned to the sets of natural numbers in the ad-
ditive number theory (see [24] p. 17).

We put 6{%} = {6(H); H € U}, if % < %o. The ,,magnitude‘’ of the system
% may be measured by the ,,magnitude‘‘ of the set é{#%}.

If He % and 6(H) = Zek2 ~k, then we put p(n, H) = > e.
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The applications of Theorems 1,4 and 1,7 give the following result completing
Theorem 5 of the paper [3].

Theorem 4,2. Let E be a purely atomic set, let u(H) = +oo and let (29) be
all (mutually different) atoms contained in E, u(B,) < 4o (n =1, 2, 3, ...).

a) Let U1 denole the system of all H € %o, for which u(H) < +o0. Then
{1} is of the first category in (0, 1>.

b) Let %> denote the system of all such H e %,, for which u(H) = 4+ and

n, !
simultaneously {ﬂ——-)—} = (0, 1>. Then §{%-} is residual in (0, 1).
n n

Note 4,1. As we have already noted assigning a set of numbers 6{#} to
the system % < %, makes it possible to measure the value of the ,,magnitude
of the system % by means of 6{%}. Thus the system % may be said to be of the
measure 0 or to be of the first category if the corresponding set 6{%} is of the
measure 0 or of the first category (see [3]). In this sense it is possible to formu-
late the result a) (it would be possible to make it also for b)) of Theorem 4,2
in the following way: For all H € %, with the exception of sets forming a system
of the first category we have u(H) = -+ 0.
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