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A RELATION FOR CLOSURE OPERATIONS
ON A SEMIGROUP

BEDRICH PONDELICEK, Podébrady

Let S be a semigroup. The mapping U: exp S - exp 8 is said to be a@-closure
operation if U satisfies the following conditions:

) U(2) = 2;
(2) A< Bc8=UA4) < UB);
(3) A < U(A) for each 4 < &8,
(4) U(U(4)) = U(4) for each 4 < 8.

For z € S we write simply U(z) instead of U({z}). A subset 4 of § will be called
U-closed if U(4) = 4. The set of all U-closed subsets of S will be denoted
by Z (V).

In [1] a certain relation for #-closure operations U, V on § is studied, i. e.
AN B=AB

for every U-closed non-empty subset 4 of § and for every V-closed non-empty
subset B of 8.
In this paper we consider semigroups satisfying the relation

(5) ANnB=ABNBA

for every U-closed non-empty subset 4 of S and for every V-closed non-empty
subset B of S. We denote this fact by UsV.

Let (S) denote the set of all #-closure operations for a semigroup 8. It is
clear that o is a symmetric relation on %(S).

Let U, Ve%(S). Then we define U £ V if and only if U(4) < Y(4) for
each A <= 8. The ordered set (8) is a lattice (1, v) and there holds

(6) Us Ve ZF(V) c Z).

(See [1]).
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Lemma 1. Zet Uy, Vi, Us, Vs E(g(S) and Uy £ Us, Vi £ V5. If UisV; then

UsoVs.
The proof follows from (5) and (6).
Let 2 £ 4 CS PutlL(d) =814 =84 U 4 and R(4) = 48! = A8 U 4.

Finally L(g) = & = R(»). Clearly L, Re%(S). Put M=LVvR and H =
= L A R. Evidently M, H €%(S). # (L), #(R), # (M) and Z (H), respectively,
is the set of all left, right, two-sided and quasi, respectively, ideals of § (inclu-
ding 7). We have M(A4) = 81481 = SAS U ASUSAUA and H(4) =

= L(4) N R(A4) for every non-empty subset 4 of §. (See [1].)

Theorem 1. Let U, V e%(S). Then UsV if and only if H < U,V and x €

Uz)V(x) N V(x)U(x) for every x € S.

Proof. Let UsV. Evidently Se Z(V). If & # A € #(U), then 4=4 N 8§ =
= AS NS4 and so 4 is a quasi-ideal of S. Thus 4 € #(H), hence #(U) c
< Z(H). It follows from (6) that H < U. Similarly we obtain that H < V.
Thus we have H < U V. By (4) we have U(z) e Z(U)and V(x) e,?‘”(V) for
every x of 8. It follows from (3) and (5) that 2 € U(z) N V(z) = U(@)V(z) N

N V(x)U(x).
Let now H = UaA Y and let z € U@)Y(x) N V(x)U(x) for every x € 8. If

g #AeF(U)and g £ B e F(V), then by (6) 4 e F(H) and B e Z(H).
Hence A, B are quasi-ideals of §. Thus ABNBA <« ASNSA < A and
ABNBA «c SBNBS < B. Hence ABNBAc ANnB. Let x€4nB.
Since x € 4, hence by (2) we have U(x) c U(4) = 4. Similarly V(z) < B.
(@)U(x) =« AB N BA. Therefore, AN B <« AB N BA.

Thus z € U(x)VY(z) N V(x
This implies (5).

Corollary 1. Let U, Ve %(S) and let H < U 1 V. Then the following conditions
on S are equivalent:

1. UsV;

2. U(x) 0 V(y) = U@)Y(y) N V(y)U(x) holds for every x, y €S,

3. U(x) N V(z) = U(x)V(z) N V(x)U(x) holds for every x € S.

Corollary 2. Let U €%(S) and let H < U. Then the following conditions on S
are equivalent:

1. UsU;

2. 4 = A2 holds for every U-closed non-empty subset A of S;

3. U(z) = U(z)U(x) holds for every x € S,

4. x € U(x)U(x) holds for every x € S.
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Theorem 2. T'he following conditions on a semigroup S are equivalent:
1. McM,

2. Every two-sided ideal of S is idempotent;

3. @ € SxSxS holds for every x € 8.

Proof. 1 = 2. This follows from Corollary 2.

2 = 3. Let every two-sided ideal of S be idempotent. Let « € S. Corollary 2
implies that x e M(x)M(x) < SaSSt. We shall prove that e SzSzS.
If x = a2, then x = 25 € SxSzS. If x = aa2 for some a € S, then x = axax? €
€ SeSzS. Similarly, # = a2e (¢ = xax, respectively) for some a € § implies
that x € SeSxS. If x — axbx for some a, b €8, then 2 = axbaxbx € SxSzS.
Similarly, @ = xaxb for some @, b €S implies that x € SxSxS. Finally, if
x = ax?b for some a, b € S, then x = axax?b? € SxSzS.

3 = 1. Let @ € SxSaS hold for every x € §. Let € 8. Then « € SxSaS <
< M(x)M(x) and so by Corollary 2 McM.

Theorem 3. The following conditions on a semigroup S are equivalent:
1. RoR,

2. RoM,

3. Bvery right ideal of S is idempotent,

4. x € xSx8 holds for every x € 8.

Proof. 1 = 2. This follows from Lemma 1.

2 = 3. Let RoM and let « € §. Theorem 1 implies = € R(z)M(z) < 288! =

R(x)R(x). According to Theorem 1, RoR. By Corollary 2 it follows that every
right ideal of § is idempotent.

3 = 4 = 1. This is analogous to the proof of Theorem 2.
Left-right dually we have the following:

Theorem 4. The following conditions on a semigroup S are equivalent:

1. LoL;

2. MoL;

3. Bvery left ideal of S is idempotent,

4. xeSxSx holds for every xeS.

A semigroup S is called quast inverse (see [2]) if every right ideal of S is
idempotent and every left ideal of § is idempotent.

Theorem 5. The following conditions on a semigroup S are equivalent:
1. RoR and LoL;

2. RoM and MoL;

3. McH;

4. 8 is a quasi inverse semigroup.
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Proof. 1 = 2 = 4 = 1. This follows from Theorem 3 and from Theorem 4.

1 = 3. Let RoR and LoL hold. Let € §. Theorem 3 implies that « € SzSx
and so x € SeSxSx = M(x)H(x). Similarly, we obtain that « € H(2)M(x) for
every « € S. It follows from Theorem 1 that McH.

3 = 2. This follows from Lemma 1.

Theorem 6. The following conditions on a semigroup S are equivalent:
1. HoH,

2. RoH;

3. HoL;

4. Rol;

5. 8 is reqgular and intraregular,

6. Every quasi-ideal of S is idempotent.

Proof.1 = 2 = 4and 1 = 3 = 4. This follows from Lemma 1.

4 = 5. Let RoL and let x € S. Theorem 1 implies that x e R(x)L(z) N
N L(x)R(z) < a8z N S%281 and so S is a regular and intraregular semigroup.

5 = 6. Let S be a regular and intraregular semigroup. Then « € Sz N Sx28
for any « of §. This implies that x € xSzSz and so « € 82282 = H(x)H(z).
By Corollary 2 we obtain that every quasi-ideal of S is idempotent.

6 = 1. This follows from Corollary 2.

If4 < 8, A £ &, then we denote by P(4) the subsemigroup generated by
all elements of 4. Put P(g) = &. Evidently P €%(S) and Z#(P) is theset of
all subsemigroups of § (including @). Further P £ H.

Theorem 7. The following conditions on a semigroup S are equivalent:

1. PP

2. RoP;

3. PolL,

4. Bvery element of S is an idempotent and every subsemigroup of S is a quasi-
-ideal of S.

5. Every element of S is an idempotent and xzy = zy for x,y,z € S.

Proof. 1 = 2 and 1 = 3. This follows from Lemma 1.

2 = 4. Let RoP. Theorem 1 implies that H < P. Since P < H, hence H = P
and so % (H) = &% (P). Therefore, every subsemigroup of § is a quasi-ideal of S.
Since RoH, hence by Theorem 6 every quasi-ideal of S is idempotent. Let
z€S. Then zeP(x) = H(x) = H(x)H(x) = P(x)P(x). Hence there exists
some integer n > 1 such that x = an. It is clear that P(x) is a cyclic subgroup
of 8. Let e be an identity of P(x). Then x = ex = we € H(e) = P(e) = {e} and
80 2 = e. Hence, every element x of S is an idempotent.

3 = 4. Similarly.

4 = 5. Let every element of § be an idempotent and let every subsemigroup
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of § be a quasi-ideal of S. Then we have #(P)c.Z (H)and so by (6) H < P.
Since P = H, hence H = P. We shall prove that azy = xy for every x, y, 2 € §.
Leta,y,2 €8. Put 4 = {z, y}. Evidently H(4) = P(4) = {x, y, 2y, y», vyx, yay}.
Since H(A4) is a quasi-ideal of S, hence azy e S N Sy <« AS NS4 < H(4)S n
NSH(4) « H(A). If a2y — o, then wzy = a2y® = (wzy)y = xy. If 22y — ¢,
then wzy = 2%y = 2(azy) = xy. If vzy — yx, then azy = 2?22 — x(xzy)y —
= w(yx)y = (vy)? = ay. If xzy = ayw, then xzy = azy? = (v2y)y = (xyx)y —
= (2y)? = 2y. If xey = yay, then xzy — 2?2y — w(xzy) = 2(yzy) = (2Y)2 = 2y,
Hence, xzy = xy for every z, y, z € S.

5 = 1. Let every element of § be an idempotent and let zzy = 2y hold for
every x, ¥, z of S. We shall prove that every subsemigroup of S is a quasi-ideal
of 8. Let 4 be an arbitrary subsemigroup of 8. If x € S4 N A8, thenx = ue —
— fo for some ¢, f € 4 and for some u, v € S. Thus we have x = fv = f2y —
= f(fv) = fue = fe € A. Hence S4 N AS = A and so 4 is a quasi-ideal of S.
Therefore .7 (P)< % (H) and so by (6) H = P. Evidently x = a2 € P(x)P(x)
for every x € S. Corollary 2 implies that PsP.

Remark 1. It follows from Theorems in [3] (pp. 108—109) that:
The conditions of Theorem 7 and the following conditions on a semigroup S
are equivalent:

6. Bvery pair of elements from S is regularly conjugate, ©. e. xyx = x for every
x, yesS

7. 8 is anticommulative, 1. e. xy + yx for every paivr of distinct elements x, y
Jrom S.

A %-closure operation U is said to be a 2-closure operation if

(7) U(4) = |J U(x) for each non empty 4 < 8

aed
holds. Let 2(S) denote the set of all 2-closure operations for a semigroup S.
Evidently 2(S) < %(8). It is clear that L, R, M € 2(S).
Let U e%(S). We define U* € 2(8). If 4 < 8, then « € U*(4) if and only
if Ux)Nn A4 # @. For U, Ve%(S) we have

(8) U< V= U* <V
(9) U = U
(See [11.)

Let U e%(S). We shall introduce the equivalence U on a semigroup S by:
for , y € 8, aUy if and only if U(x) = U(y). For any element a of S, let U,
denote the U-class of S containing x. (See [4].)
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Ir follows from Theorem 4 [4] that
(10) U= U* = U, e F(U) for every « € 8.
Theorem 1 [4] implies that
(11) A = | U, for every non-empty set 4 of 7 (U*).

zed
Lemma 2. Every maximal subgroup G of a semigroup S is an H-class of S.
Proof. Let e be an identity of a maximal subgroup ¢ of S. If x € ¢, then
evidently « € H(e) and ¢ € H(z) and so by (2) and (4) H(z) = H(e). Thus we
have « € H, and so ¢ < H,. It follows from [5] that H, = R, N L, is a sub-
group of S. Since ¢ is a maximal subgroup of S, hence ¢ = H, which implies
that G is an H-class.

Theorem 8. The following conditions on a semigroup S are equivalent:
1. H*cU holds for all U e €(8S) where H » H* < U;
2. H*cU holds for some U e €(S) where H » H* < U;
3. H < H*
4 H-— H*
5.8 1s a union of groups and G1 U Gy is a quasi-ideal of S for every pair of
maximal subgroups G, G of S,
6. S is a union of groups and G186 < G U G holds for every pair of maximal
subgroups G, Gs of S.

)

Proof. 1 = 2. Evident.

2 = 3. This follows from Theorem 1.

3=4. Let H< H* By (8) and (9) we have H* < H** < H and hence
H H*

4 = 5. Let H = H* Since P = H, hence, by (8) we have P* < H* — H.
According to Theorem 8 [4], S is a union of groups. Let ¢; (¢ = 1, 2) be maxi-
mal subgroups of S. It follows from Lemma 2 that ; is an H-class and so, by

is a quasi-ideal of S.

5 = 6. Let S be a union of groups and let (1 U (2 be a quasi-ideal of S for
every pair of maximal subgroups G, G5 of §. Then G186 < (G1 U G2)S 0
NSGh VU Gs) = G U Gs.

6 = 1. Let S be a union of groups and let 618G: < (/1 U (/5 hold for every
pair of maximal subgroups of 8. We shall prove that H < H*. let @ £ 4
e (H*). 1t is known that S is a union of maximal subgroups. Lemma 2 implies
that every H-class is a maximal subgroup of S. According to (11), 4 is a union
of maximal subgroups of S. Let x € 4S8 N S4. Then x = g151 = s2¢92 for some
s1, s2 €8, for some g1 € 1 = A and for some g2 € 3 <« A where ¢4, G, are
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maximal subgroups of §, Let ¢; be an identity of a group G (¢ = 1, 2). Thus
we have x = g181 = 19151 = €15292 € G18Gs = Gh U G5 < A. Therefore A4S N
NS4 < A and so 4 is a quasi-ideal of S. This means that 4 € % (H). Since
F (H*)< Z(H), hence, by (6), H < H*. Since S is a union of groups, hence S
is regular and intraregular. According to Theorem 6, we have HoH and so,
by Lemma 1, H*cU where H A H* = H < U €%(S).

Put O(4) = A for each 4 < S. Then O € 2(S), O = O* and for every
u E%(S),

(12) o
holds.

Theorem 9. The following conditions on a semigroup S are equivalent:
1. OcU holds for all U e €(S);

2. OcU holds for some U e €(S);

3. P*cU holds for all U e €(S);

4. P*cU holds for some U €%€(S);

5. H*oP;

3. Bvery non-empty subset of S is a quasi-ideal of S,

7. For every x, y, z € 8, either xzy = x or xzy = y.

Proof. It is clear that 6 < H = O.

1 = 2 and 3 = 4. Evident.

2 = 6. It follows from Theorem 1 that H < O and so, by (12), H = O.

4 = 6. Theorem 1 implies that H < P*andso P < H = P* By Lemma 12
[1], we obtain P = O. This implies H < P* = O* = O. Hence, by (12), H = O.

5 = 6. Let H*sP. It follows from Theorem 1 that H < P. Since P < H,
hence H = P and so P*sP. Hence (by 4 = 6) H = O.

6 = 7.Let H= O.Let «, y, z € 8. Evidently, 4 = {, y} is a quasi-ideal of S,
Then xzy € AS N SA < A and thus we have either xzy = x or xzy = y.

7 =1, 3 and 5. Let zzy € {x, y} hold for every z, y, z€ 8. Then ayz — =
for every pair of elements @, y from S. It follows from Remark 1 that PsP
and vy = wxzy for every z € S. This implies that either xy = x or xy = y and
80 every non-empty subset of § is a subsemigroup of S. Hence P = O and
80 0cO. It follows from Lemma 1 that OcU (for all U e%(S)), P*cU (for all
U e%(S)) and H*GP.

u

IIA

-~

H/x

Remark 2. It follows from the proof of Theorem 9 that every element of S
is an idempotent (see Remark 1). This implies that:

The conditions of Theorem 9 and the following condition on a semigroup S are
equivalent:

8. Bvery element of S is an idempotent and it satisfies at least one of the condi-
tions of Theorem 8.

e
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