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Matematický časopis 23 (1973), No. 3 

A RELATION FOR CLOSURE OPERATIONS 
ON A SEMIGROUP 

BEDftlOH POKDfiLfCEK, Podebrady 

Let S be a semigroup. The mapping U: exp S -» exp S is said to be Sbff-chsme 

operation if U satisfies the following conditions: 

(1) ' • U(0) = 0 ; 

(2) A c B a S=> U(A) c U(B); 

(3) A <z U(A) for each ,4 c /S7; 

(4) U(U(-4)) = U(4) for each 4 c S. 
For # e $ we write simply U(x) instead of U({x}). A subset A of S will be called 
U-ciosed if U(A) = A, The set of ail U-chsed subsets of S will be denoted 
by J ^ U ) . 

I n [1] a certain relation for ^-closure operations U, ¥ on S is studied, i e. 

.A n B = AB 

for every U-closed non-empty subset A of S and for every F-elosed non-empty 

subset B of 8. 
In this paper we consider semigroups satisfying the relation 

(5) .AnB = ABriBA 

for every U~closed non-empty subset A of S and for every F-closed non-empty-
subset B of 8. We denote this fact by UaV. 

Let ^(S) denote the set of all ^-closure operations for a semigroup S. I t is 
clear that CJ is a symmetric relation on ^(S). 

Let U, VeV(S). Then we delne U S ¥ if and only if U(-4) c V(:4) for 
each A c 8, The ordered se t^ (# ) is a lattice (A, v) and there holds 

(6) , U S Vo^(¥) c ^ ( U ) . 

(See[l]) . . . . 
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Lemma 1. Let Ul9 Vl9 U2? V2 eW(S) and Ux <; U2, Vx <; K2. 1/ UinVx then 

U2aV2. 
The p r o o f follows from (5) and (6). 
Let 0 # J. C #. Put L(A) = ,SM = SA U A and R(A) = .A./S1 = 4 5 u A. 

Finally L(0) = 0 = 1 (0 ) . Clearly L, H e f ( S ) . Put M = L v R and H = 
= L -\ R. Evidently M, H e#(.-S). JF(L)? ^ ( R ) , e^(M) and ^ ( H ) , respectively, 
is the set of all left, right, two-sided and quasi, respectively, ideals of $ (inclu­
ding 0 ) . We have M(A) ==• SMS1 = SAS U AS U SA U A and H(A) -
--• 1(4) n R(A) for every non-empty subset J. of 5, (See [1].) 

Theorem 1. Let U, V e<#(S). Then UGV if and only if H S U /., V and x e 
e U(#)V(#) n ¥^)U(^) /or e w | / x e S. 

Proof . Let UCJF. Evidently # e J ^ V ) . If 0 ^ A. e-F'(U), ihen.A=A. n S =-=. 
= AS n ^ 4 and so A. is a quasi-ideal of S. T h u s 4 e ^ ( H ) , hence 3F(U) c: 
a W(H). It follows from. (6) that H <J U. Similarly we obtain that /J <; V. 
Thus we have H <: U A K. By (4) we have U(#) G ^ ( U ) a n d F(;t) e<F(V)for 
every a; of S, I t follows from (3) and (5) that x e U(x) n V(x) = U(.i:)V(.r) n 
n 1f(#)U(:r). 

Let now H <i U A V and let # 6 U(a;)V(a;) n V(x)U(x) for every ,r e AS', if 
0 ^ ,4 e ^ ( U ) and 0 ^ -B e-^(K), then by (6) A efW(H) and B e^(H). 
Hence A, B are quasi-ideals of S. Thus AB n BA c 4 5 n 5/1 c A and. 
.J.J? n / 3 4 c SB n £ 5 c JB. Hence AB n JB.4 c A n J5. Let .T G .,4 n IX 
Since x e A, hence by (2) we have U(x) a U(A) = A. Similarly V(x) <= Z>\ 
Thus .r e U(#)K(o?) n V(rc)U(a?) c 4.B n BA. Therefore, .4 n .B c 41? n £.4. 
This implies (5). 

Corollary 1. i e l U, F e f ^ ) «mcf Id' H :g U A V. Then the follomng conditions 

on S are equivalent: 

.!. UCJF; 

2. U(a?) n 1%) = U(x)V(y) n K(y)U(») holds for every x, y e S: 

3. U(#) n K(a?) = U(a?)K(ff) n F(x-)U(^) holds for every x e S. 

Corollary 2, Let U eW(S) and let H <; U. Then the following conditions on S 

are equivalent: 

L UaU; 

2. A = A2 holds for every U-closed non-empty subset A of S; 

3. U(x) = U(x)U(x) holds for every x e S9 

4. x e U(x)U(x) holds for every x e S, 
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Theorem 2. The following conditions on a semigroup S are equivalent: 
1. MaM, 
2. Every two-sided ideal of 8 is idempotent; 
3. x G 8x8x8 holds for every x e 8. 

Proof. 1 => 2. This follows from Corollary 2, 
2 •::> 3. Let every two-sided ideal of $ be idempotent. Let x e 8. Corollary 2 

implies that x e M(x)M(x) c 8lxSlx8l. We shall prove that x e SxSxS. 
If x •==• x2, then x = #5 e SXSXS. If a; = «a;2 for some a e $, then .x = axax2 e 
e SxSxS. Similarly, x = x2a (x = xax9 respectively) for some a G 8 implies 
if Kit x e 8x8x8, If a? = axbx for some a, b e S, then a; = axbaxbx e 8x8x8, 
Similai'ly, x = xaxb for some a, beS implies tha t x e SxSxS, Finally, if 
x r;::.:; ax2b for some a, 5 G $, then x = axax2b2 e SxSxS. 

3 -> 1. Let a; G SXSXS hold for every a; e $. Let a; e $. Then x G SXSXS C 

c: /I4(#)A4(#) and so by Corollary 2 A1&M. 

Theorem 3. The following conditions cm a semigroup S are equivalent: 
.1. RaR, 
2, RaM7 

3, 'Every right ideal of S is idempotent ̂  
4, x e xSxS holds for every x e S. 
Proof. 1. :•=> 2. This follows from Lemma 1. 

2 •=> 3. Let RaM and let a; e 8, Theorem 1 implies x e R(x)M(x) c xS^xS1 = 
R(x)R(x). According to Theorem. 1, RaR. By Corollary 2 it follows that every 
right ideal of 8 is idempotent. 

3 r:> 4 ~> 1. This is analogous to the proof of Theorem 2. 
Left-right dually we have the following: 

Theorem 4. The following conditions on a semigroup S are equivalent 
!. icri; 
2. MoL: 
3. Every left ideal of 8 is idempotent, 
4. XGSXSX holds for every xeS. 
A semigroup S is called quasi inverse (see [2]) if every right ideal of S is 

idempotent and every left ideal of 8 is idempotent. 

Theorem 5, The following conditions on a semigroup 8 are equivalent 
.1. RorR and LaL; 
2. RnM and MaL; 
3. MnH; 
4. 8 is a quasi inverse semigroup, 
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Proof . I => 2 => 4 => 1. This follows from. Theorem 3 and from Theorem 4. 
1 => 3. Let RCTM and LoL hold. Let # e S. Theorem 3 implies that x e SxSx 

and so x e SxSxSx <= M(x)H(x). Similarly, we obtain that x e H(x)M(x) tor 
every # G $. I t follows from Theorem 1 that MGH. 

3 => 2, This follows from Lemma 1. 

Theorem 8. The following conditions on a semigroup S are equivalent: 
1. HaH9 

2. RaH; 
3. HCFL; 

4. !<j£; 
5. $ is regular and intraregular, 
6. Every quasi-ideal of S is idempotent. 

Proof . 1 => 2 => 4 and 1 => 3 => 4. This follows from. Lemma 1. 
4 => 5. Let RoL and let x e $. Theorem 1 implies that a? e R(x)L(x) n 

n L(a?)R(cr) c xSlx n /S1^2^1 and so S is a regular and intraregular semigroup. 
5 -=> 6. Let $ be a regular and intraregular semigroup, Then x e xSx n /SVW 

for any x of $. This implies that a? e^A%;fe and so x e xSx2Sx c H(x)H(x), 
By Corollary 2 we obtain that every quasi-ideal of $ is idempotent. 

6 => 1. This follows from Corollary 2. 
If .4 c S, i ^ 0 , then we denote by P(A) the subsemigroup generated by 

all elements of A. Put P(0) = 0 . Evidently P e ^ t f ) and J^(P) is the set of 
all subsemigroups of S (including 0 ) . Further P g H. 

Theorem 7. jPIe following conditions on a semigroup S are equivalent 
1. PciP5 

2. MCJP; 

3. P0i? 

4. Every element of S is an idempotent and every subsemigroup of S is a quasi-
-ideal of S. 

5. Every element of S is an idempotent and xzy = xy for x9 y,z e S. 

Proof . 1 => 2 and 1 => 3. This follows from. Lemma 1. 
2 => 4. Let MCJP. Theorem 1 implies that H ^ P. Since P <> H, hence H = P 

and so JF(H) = ^ ( P ) . Therefore, every subsemigroup of S is a quasi-ideal of S> 
Since MCJH? hence by Theorem 8 every quasi-ideal of S is idempotent. Let 
x eS. Then a? e P(x) = H(x) = H(x)H(x) = P(a:)P(x). Hence there exists 
some integer n > 1 such that a; = a;w. I t is clear that P(x) is a cyclic subgroup 
of S. Let e be an identity of P(x). Then # = ex — xe e H(e) =-= P(e) = {e} and 
so a? = e. Hence, every element x of S is an idempotent, 

3 => 4. Similarly, 
4 => 5. Let every element of # be an idempotent and let every subsemigroup 
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<:4" S be a quasi-ideal of S. Then we have #~(P)cz#"(H)aiid so by (6) H g P, 
Since P 51 H, hence H — P. We shall prove that #22/ = #2/ for every x, y, z e S. 
Let o% ?/, 2; G #. Put .4 = {#, 2/}. Evidently H(.J) = P(A) == {a;, y, xy, yx, xyx, yxy). 
Since H(,i) is a quasi-ideal of S, hence #22/ G XAS' n A% cr J.ASY n AM C= H(A)S C\ 
C\ SH(A) c: H(.4). If 2:22/ = x, then a?22/ = xzy2 = (xzy)y = ;M/- If #22/ •= 2/, 
then. #2;// ----- f?*%2/ = #(#22/) =:: aW- If ^ 2 / — Vx> then, a?22/ = a?222/2 =:;::; x(xzy)y -= 

• x(yx)y :=z (xy)2 ~ #iy. If *^!/ = a;^*? then #22/ = xzy2 = (xzy)y = (xyx)y = 
- (̂ ;7/)2 •— #2/. If #22/ = 2/#2/> then #22/ = x2zy = x(xzy) = x(yxy) = (a;!/)2 =; #?/. 
Mcn.ee, a-22/ ~~- #2/ f ° r ©very as*, 2/, 2 G $. 

5 -> 1, Let every element of ASf be an idempotent and let xzy = xy .hold for 
rvery x, y, z of S. We shall prove that every subsemigroup of S is a quasi-ideal 
of *S\ Let A be an arbitrary subsemigroup of A?. If x e SA C\ AS, then a? = ue = 

• fv for some e, f e A and for some u, v e S. Thus we have x =-= /y =-- / % = 
- • f(fv) --:.•-•: fue •=• fe G J.. Hence &4 n AS c: J. and so 4̂ is a quasi-ideal of S, 

Therefore W(P)c:^(H) and so by (6) H g P. Evidently a; = #2 G P(a,)P(tf) 
for every a- G ASY. Corollary 2 implies that PcyP. 

Remark 1. I t follows from Theorems in [3] (pp. 108 — 109) that : 
The conditions of Theorem 7 and the following conditions on a semigroup S 

are equivalent: 

ll Every pair of elements from S is regularly conjugate, i. e. xyx = x for every 
x, y e S. 

7. S is anticommutative, i.e. xy # yx for every pair of distinct elements a;, y 
from S. 

A ^-closure operation U is said to be a M-clostire operation if 

(7 j U(A) = | J U(x) for each non empty A c S 
XEA 

holds. Let S(S) denote the set of all ^-closure operations for a semigroup A*?. 
Evidently M(S) <z <g(S). I t is clear that L, R, M e J (S) . 

Let U e¥ (S) . We define U*e£(S). If .xl <= ASY
? then a? e U*(.4) if and only 

if U(x) n A #: 0 . .For U5 V e&(S) we have 

IHI u <; v => u* <; F*? 

(<>) u** <; u. 

(See [I'M 

Let U G ^ ( / S ) . We shall introduce the equivalence U 011 a semigroup /ST by: 
for x, y e S, xUy if and only if U(x) = U(2/). For any element x of *Sf, let Uz; 

denote the U-cIass of S containing x. (See [4].) 
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Ir follows from Theorem 4 [4] that 

(JO) U = U* => Ux 6 J ^ U ) for every x e 8* 

Theorem 1 [A] implies that 

(II) A ~ U Uc for every non-empty set ,4 of JF(L/*). 

Lemma 2. Every maximal subgroup G of a semigroup 8 is an H-class <>j N, 
Proof . Let e be an identity of a maximal subgroup G of 8. If :r e 6f Ih^n 

evidently x G H(e) and e e H(x) and so by (2) and (4) H(x) »-•••• H(e). Thus we 
have x e He and so G c; He. I t follows from [5] that H0 -.• Rf; n JU> is a sub­
group of #. Since 6f is a .maximal subgroup of 8, hence G ™- H<> which implies 
that G is an H-class, 

Theorem 8. The following conditions on a semigroup 8 are equivafo.nl: 
1. H*CTO "holds for all U etf(8) where H ,\ H* £ U; 
2. H*aU holds for some U e<g(S) where H ••• H* g U: 
:i H < H*; 
4. H - H*; 
5. 8 is a union of groups and G± U G% is a quasi-ideal of 8 for every pair "J 

maximal subgroups Gj, G% of 8: 
i'h 8 is a union of groups and G18G2 c Gy u G% holds for every pair of maxim >tl 

subgroups G\, G% of 8. 

Proof. 1 => 2. Evident. 
2 . -- 3. Tli.is follows from Theorem ,1. 
3 > 4. Let H ^ H*. By (8) and (9) we have H* ^ H** < H and lu-ure 

H •• • H*. 
4 :••> 5. Let H — H*. Since P <; H, hen.ee, by (8) we have P* <; H* -•• H. 

According to Theorem 8 [4], *Sf is a union of groups. '.Let (Ji (i ••••••• 1. 2) be m.<x.i • 
ma! subgroups of $. I t follows from Lemma 2 th.at Gi is an H-class and so, by 
(.10), Gt e ,F(H). Since H =-• H^ 6 i ( S ) , hence 6/1 u f/2 e ;F(H) and so 6', u //, 
is a quasi-ideal of 8. 

5 :-•••> 6. Let 8 be a union of groups and let 6j u <% be a quasi-ideal of 8 for 
every pair of maximal subgroups G\, 6% of Af. Tlien G\8G% c: (f/f. u G'AS l'"^. 
H ,SY((/i U G2) ci ftU GV 

II --••> 'I. Let /? be a union of groups and let G18G2 cz G\ U G'2 hold, for ev^-> 
pah of maxima! siibgroups of #. We shall prove that H g H*. Let •••:• •-/ .1 • 
e#"(H*). I t is known that $ is a union of maximal subgroups. Lemma 2 Impta^ 
tha t every H-class is a maximal subgroup of 8. According to (I 1); A is a U«:H-MI 

of maximal subgroups of 8, Let x e AS n 8A. Then x -~ g\S\ ~~ s±g-i for s* »,<,?»• 
A'I , .s*2 £ AS'; for some g% e G\ c: A. and for some g% e G% ci .4 where G\. (}-> ;uo 
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maximal subgroups of S, Let e% be an identify of a group G% (i •••••-••• 1, 2). Thus 
we have .1: •-- f/,1̂ 1 ~~ 01*7181 == e\s%g% e G\SG% c G% U ©2 c: AL Therefore AS n 
n 6xt cz /I and so J is a quasi-ideal of S. This means that A E,jF(H). (Since 
^(H*)c;: :F(H), hence, by (0), H fg H*. Since ^ is a union, of groups, hence # 
is regular and intraregular. According to Theorem (>, we have HGH and HO., 
by Lemma 1, H*aU where H j. H* •- H g U e ^ ( # ) . 

Put O(A) ••• A for each J cr tf. Then O G J ( A S ) , O = O* and for every 
U e#'(,S'), 

o < Ü 

hold 

Theorem i . The following conditions on a semigroup S are eguivahnf.: 
1. OerU AoZrf* /or «K U e«V?); 
2. OryU holds for some U er4'(S); 
:*. P*rrU holds for all U eW(S); 
4. P*rxli holds for some U eW(S): 
r>. H*nP: 
<>. Every uon-empty subset of S is a quasi-ideal of S, 
1, For every x, //, 2 G *SY, either xzy — x or xzy ~- «/. 

1 •• 2 and .1 -> 4. Evident. 
2 :• 0. It follows from Theorem 1 that H <, O and so, by (12), H ~~ O, 
4 •:• <5. rrheorem 1 implies that H ^ P^ and so P S, H <, P*. By Lemma 12 

I 1 |, we obtain P ••-•-: O. This implies H g P* =̂ 0 * -=- O. Hence, by (12), H --- O. 
5 •-.• 0. Let H*dP. i t follows from Theorem 1 that H £ P, Since P :§ H. 

heuce H -.-•• P and. so P*rrP. Hence (by 4 .=> 6) H =-- O. 
l> - •• 7. Let H -=- O.Let x, ?/, 2 G $. Evidently, /I -~ (x, y) is a quasi-idea I of.S'„ 

Thou xzy e AS n *8f/i e ./I and thus we have either xzy = x or xa;f ~ y. 
7 ;• I. 3 and 5. Let X2// G {X, f} hold for every x, y, z e S. Then xyx • x 

for every pair of elements x. «/ from S. I t follows from Remark I that PrrP 
and xy •-••• xzv/ for every z eS. This implies that either xy — x o:r xy ™ ?/ HI id 
so every non-empty subset of S is a subsemigroup of S. Hence P ==- O and. 
so OrjG* It follows from Lemma 1 t h a t O a U (for all U e ^ S ' ) ) , P * T U (for all 
U£ff>(S)) and H*crP. 

Remark 2. It follows from the proof of Theorem 9 that every element" of >S 
is an id.empotent (see lie.in.ark I). This implies that: 

The conditions of Theorem 9 and the following condition on a semigroup S are 
equivalent: 

s. Every element of S is an idempotent and it satisfies at least one of the condi­
tions of Theorem. X. 
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