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MATEMATICKY CASOPIS
ROENIK 23 1973 ¢isLoO 3

EDGE-COLOURINGS OF PERMUTATION GRAPHS

BOHDAN ZELINKA, Liberec

G. Chartrand and F. Harary [1] and the first author with J. B.
Frechen [2] have defined the concept of permutation graph as follows.

Let G be a graph whose vertices are labelled w1, v2, ..., vy and let « be
a permutation on the set {1,2,...,p}. Then by the a-permutation graph
P,(G) of G is meant the graph consisting of two disjoint, identically labelled
copies of ¢, say G and (', together with p additional edges x;, 1 < ¢ = p,
where x; joins the vertex labelled v; in ¢ with the vertex labelled vy in G'.
To avoid a possible confusion, we often label a vertex of G’ as v; rather than v;.

Now in [2] the problem is asked : Let (0, denote a cycle of length ». Determine
for what permutations « on {1, 2, ..., n} the graph P,(C,) has the chromatic
index 3, or, equivalently, 4.

The chromatic index of P,(C,) does not exceed 4, because each of the cycles
O, and O, in P,(C,) has the chromatic index at most 3 (the chromatic index
of a cycle cannot exceed 3), therefore the edges of each of these cycles can be
coloured by the colours 1, 2, 3 and each edge joining a vertex of €, with
a vertex of (') is then coloured by the colour 4.

This problem is closely related to a problem considered by Watkins [3].

Here we shall give some characterisation of such permutations. Of course,
some more simple and practical characterisation would be needed. But it is
obviously difficult to characterize some set of permutations which in general
is not a group.

For any integer » = 3 let %(n) be the set of permutations « on {1,2,...,n}
for which the graph P,(Cy) has the chromatic index 3. At first we shall prove
a theorem for n even.

Theorem 1. Let n be an even integer greater than three. Then W(n) is the sym-
metric group Sy, of the order m, i.e. the set of all permutations on the set {1, 2, ...,n}.
Proof. The graph Py(C,) consists of two cycles €', and € (both of the
length n) and of edges joining vertices of €', with vertices of €, and forming
a linear factor of P,(Cy). As n is even, the edges of U5 can be coloured by two
colours 1, 2 and so can the edges of C,. Any edge of Py(Cr) joining a vertex
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of €y with a vertex of O, will be coloured by the colour 3. Thus we obtain
a 3-colouring of the edges of Py(Ch).

For n odd the situation is more complicated. We shall investigate a graph
Py(Cyp) for some odd. n and some « whose chromatic index is 3. On the cycle C,,
in the graph P,(C,) we shall introduce some colouring of vertices which will
be called a v-colouring. (The v-colouring need not be an admissible vertex-
-colouring in the usual sense, i.e. two vertices joined by an edge need not have
different colours.) The v-colouring of ' corresponding to the given admissible
edge-colouring (with 3 colours) of P(Cy) will be defined as follows: Let vy, ..., vp
be the vertices of Cy, let wwiqq for ¢ = 1, ..., n be the edges of Oy (the sub-
scripts are taken modulo n). For any 4,1 < ¢ < n, the edges v;—1v4, vv411 have
different colours in the edge-colouring, therefore their colours are some two
of the colours 1, 2, 3. The vertex v; in the v-colouring will be coloured by
a colour different from these two colours and belonging to the set {1, 2, 3}.
Thus the »-colouring is uniquely determined.

Lemma 1. Any v-colouring ¢ of Cy (for n odd) corresponding to an admissible

3-colouring of edges of Py(Cn) must satisfy these conditions:

(A) Not all vertices of Oy have the same colour.

(B) If for some i, 1 < i < m, the vertices vii1, ..., Viix, Where k is some odd
integer, have all the same colour and the vertices vq, vi1p11 have colours different
Jrom this colowr, then the colours of vi and viip1 are different from each other.
(C) If the situation s the same as sub (B) with the exception that k is even, then
the colours of v; and viir41 are equal to each other.

(Here the subscripts are always taken modulo n.) On the other hand, any vertex-
-colouring of Oy satisfying (A), (B) and (C) is a v-colouring corresponding to some
admissible 3-colouring of edges of Py(Ch).

Proof. Consider a »-colouring corresponding to some admissible 3-colouring
of edges. Assume that (A) is not satisfied. Then all vertices of €', have the same
colour, say 1. This means that an edge of the colour 1 is incident with no
vertex, therefore all edges of €y have the colours 2 and 3, which is impossible,
because n is odd. Thus (A) must be satisfied.

Assume that (B) is not satisfied, i.e. that there exists some 7 and k so that »;
and v;1541 are of the colour 1 and w441, ..., v44% are of the colour 2. (The colours
were chosen without the loss of generality.) Then in the edge-colouring the
edge vv;41 must have the colour 3. The edge v;41v442 must have the colour
different from 3, because it has a common end vertex ;.1 with the edge v;v;1
coloured by 3, and different from 2, because it joins two vertices of the colour 2.
Therefore v;,11v442 has the colour 1. Analogously we can prove that the colour
of vi+2vi+3 Is 3, the colour of vi4sv414 is again 1 ete. and finally the colour
of virk—1vi+x is 3. But then the colour of v14xvi+x+1 must be different from 3,
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further different from 2, because v;4x has the colour 2, and also from 1, be-
cause v;5+1 has the colour 1. We have obtained a contradiction.

By a similar method we can prove that (C) must also be satisfied. Similarly
we can also prove the inverse assertion of the lemma.

A v-coloring which satisfies (A), (B) and (C) will be called a w-colouring.
Now we shall explain, why we have defined this concept. In the graph Py(Cy)
the edge joining a vertex of Cy, with a vertex of C), must be coloured evidently
by the colour of this vertex in the corresponding »-colouring (which is a w-co-
louring). If we introduce by the same way the v-colouring of O, then any
pair of vertices vy, v;, where v; is in Oy, v; is in C;, and the edge vv; belongs
to P,(Cr), must be coloured by the same colour in the corresponding v-co-
lourings (which are w-colourings).

Now we shall speak about w-colourings of cyclically ordered m-tuples.
Let [y1,....yn] be some cyclically ordered n-tuple. (This means that the
n-tuples [y1,...,9al, [¥2, ..., Yn-y1l, [Y3, ..., Yn, Y1, 92], ... are considered
as equal.) A w-colouring of this n-tuple is a mapping ¢ of the set {y1,..., yn}
onto {1, 2, 3} such that the conditions (A), (B), (C) are satisfied, where we
write y; instead of v;.

The set of w-colourings of the cyclically ordered n-tuple [1, 2, ..., n] will
be denoted by M(n). Now we can express a theorem.

Theorem 2. Let n be an odd integer, n = 3. Then the set Y(n) consists of all
permutations o on the set {1, 2, ..., n} such that for some two elements ¢, d of W(n)
the equality ¢ = da holds.

Remark. Here da means (as usual) the superposition (product) of the
mappings o and d.

Proof. Consider the graph P,(Cy) for o € W(n). Let ¢ be the w-colouring
on O, and d the w-colouring of C, corresponding to some admissible edge-
-colouring of P4(Cy) by three colours. The vertices v; on €y can be considered
simply as numbers ; so can the vertices »; on (. Thus the w-colourings ¢ and d
are considered as w-colourings of the cyclically ordered n-tuple [1, 2, ..., n].
In the graph P.(Cy) any pair v;, vx) is joined by an edge and thus (according
to the above considerations) the colours of these vertices in corresponding
w-colourings are equal; this means ¢(¢) = da(¢). As this holds for an arbitrary 7,
we have ¢ = da. It is evident that also for every « for which ¢ = dx holds
(for some ¢ and ® from W(n)) we can colour the edges of P,(Cy) by three
colours.

Thus we have characterized the elements of (n) with the help of the
set MW (n). From the equality ¢ = Do the mapping « cannot be determined
uniquely, because ¢ and ® are many-to-one mappings. But if we know the
set MW(n), we can construct also (n).
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Now we shall study B(n) for odd . At first we shall prove a theorem.

Theorem 3. In a w-colouring of the n-tuple [1, 2, ..., n] for odd n all three
colours occur.

Proof. According to (A) not all numbers 1, ..., » have the same colour.
Assume that in some w-colouring ¢ only the colours 1 and 2 occur. For some
sandkyleted) = 1,¢6 + 1) =¢(i +2) = ... =¢(i L k) = 2,¢(6 + kg + 1) =
= 1. Then, according to (B), the number k; must be even. Now if for some £k,
wehavee(t + ki + 1) =¢(t + kb1 +2)=...=¢(0 + k1 + ko) = 1,¢(¢ + k1 +
~ ko + 1) = 2, this k2 must also be even. Thus we continue further and

at the end we must have a sequence of even numbers ki, ..., k, such that
m

> ki = n. But n is an odd number, which is a contradiction.

=1

Now let ®(n) be the group generated by all cyclic permutations of the
n-tuple [1, 2, ..., %] and by the mirror permutation u defined so that u(:) =
=n-+1—ifori=1,...,n.

Lemma 2. If ¢ € W(n), f € ®(n), then ¢f € W(n).

Proof is simple. At any cyclic permutation and at the mirror permutation
the conditions (A), (B), (C) are evidently preserved and thus they are preserved
also at any permutation of ®(n).

From this lemma a theorem follows.

Theorem 4. Let n = 3 be an odd integer. If o € W(n), f € ®(n), then off € W(n).

Proof. As « € N(n), there exist elements ¢, d of W(n) so that ¢ = dx. Accord-
ing to Lemma 2 we have ¢ € W(n). For the element «f we have ¢f = duf,
where ¢ € W(n), d € W(n), therefore off € (n).

Now we shall determine 2B(n) and (n) for some small 7.

For n = 3 the set M(3) consists of the triple [1, 2, 3] and the triples obtained
from this by the permutations of ®(3) and by interchanging colours. As ®(3)
is the symmetrical group &3 of the order 3, any triple consisting of (all) the
numbers 1, 2, 3 is a w-colouring and A(3) is the symmetrical group of the
order 3.

For n = 5 the set W(5) consists of the quintuple [1, 2, 3, 3, 3] and the
quintuples obtained from this by the permutations of ®(5) and by interchang-
ing colours. The set 2(5) consists of the permutations which transform some
triple of consecutive (in the cyclic order) elements again onto such a triple
(of the elements coloured by the same colour). Evidently the remaining terms
are two consecutive terms, therefore the set M(5) consists exactly of all per-
mutations which transform some pair of consecutive terms again onto a pair
of consecutive terms. In other words, the complement of 9[(5) in &; is the set
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of all isomorphic mappings of the cycle €5 onto its complement (which is
also a cycle).

For the case n = 7 we shall determine only (7). It consists of [1, 2, 3, 3,
3,3, 3] and [I, 2, 3, 1, 1, 3, 3] and all septuples obtained from these by the
permutations of ®(7) and by interchanging colours.

Finally we shall prove again some general theorems.

belonging to N(n) maps Cy, isomorphically into its complement.

Remark. For n = 5 we had an onto-mapping, because U5 is self-comple-
mentary. In general we have an into-mapping, i.e. a mapping onto some
subgraph of the complement of Cy.

Proof. Assume that there exists « ¢ 2{(») which does not map €, isomorphi-
cally into its complement. This means that at least one edge of U, i.e. a pair
of consecutive (in the cyclical order) numbers of {1, ..., n} is mapped by o
again onto an edge. Then there exist some ¢, j so that «(i) =j, (¢ + 1) =
=j-+1or af -+ 1)=4—1. Let ¢ be the w-colouring such that ¢(¢) = 1,
¢t + 1) = 2, ¢(k) = 3 for other k. Let d be the w-colouring such that d(j) = 1,
W+ 1)=2 if ai +1)=4-+1, and d(j+1)=3 if ¢t 1) =j— 1,
D j—1)=2if a¢+1)=j—1 and dj—1)=3 if a(i +1)=j+ 1,
d(k) = 3 for other k. The mappings ¢, d are in MW(n), because they satisfy
(A), (B), (C). And now ¢ = dx, therefore « € ¥(n), which is a contradiction.

Theorem 5. For any odd integer n = 3 any permutation on {1, 2, ..., n} not

Y%

Fig. 1
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Now a permutation « of the set {1, ..., n} in which for someiandj,i - we
have ofi) = j, a(j) = 7, a(k) = k for all k different from ¢ and j, will be called
an elementary exchange.

Theorem 6. Let « be an elementary exchange on the set {1, ..., n}, where n is
odd, n = 3. Then o € U(n).

Proof. For n = 3 this was proved above. Let n = 5. Let () = j, «(j) = 1,
a(k) = k for another k. There exists some [ such that both [ and [ - 1 (taken
modulo ») are different from both ¢ and j. Let ¢ be such a w-colouring that
o) =1,¢(l + 1) = 2, ¢(k) = 3 for all other k. This is evidently a w-colouring
and ¢z is also a w-colouring, which implies o € 2(n).

Theorem 7. For every odd integer n = 3 the set W(n) is either equal to the
symmetric group S, of the order n, or is not a group.

Proof. The elementary exchanges form a full system of generators of the
symmetric group. As they all (according to Theorem 6) belong to 2[(n), the
theorem is proved.

For n = 3 the set (3) is a symmetric group S3 of the order 3, as proved
above. For n = 5 the permutation « for which «(?) = 2¢ (mod 5) for 7 =

=1, ..., 5is not in Y(5). For this a the graph P,(C5) is the well-known Petersen
graph (Fig. 1).
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