Ol'ga Vavrová

A Tote on the Completeness of L_q

Matematický časopis, Vol. 23 (1973), No. 3, 267--269

Persistent URL: http://dml.cz/dmlcz/126890

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
A NOTE ON THE COMPLETENESS OF L_q

OĽA VAVROVÁ, Košice

There is a connection between the completeness of L_q and the completeness of the metric space of all sets of finite measure (see [1]). It has been shown in [2] that the completeness of the measure space can be formulated and proved by means of some properties of the families of sets of "small measure". We use a similar method in the present paper to prove a generalization of an L_q-completeness theorem.

First we introduce a sequence $\{G_n\}^{\infty}_{n=0}$ of sets of extended real valued measurable functions defined on a set S and satisfying some axioms. An example of such a sequence is the following. Let (S, \sum, μ) be a finite measurable algebra, $G_0 = \{f\text{-measurable, } \int_S |f|^q d\mu < \infty, G_n = \{f, f \in G_0, \int_S |f|^q d\mu < 2^{-n}\}$.

The operations $f + g$, xf etc. are defined as usually, only we put $\infty + (-\infty) = (-\infty) + (\infty) = 0$, $0 \cdot \infty = 0$. Hence we list the axioms:

I. If $f \in G_n$, then $|f| \in G_n$, $n = 0, 1, 2, \ldots$

II. If $f \in G_m$, g is a measurable function such that $|g| \leq f$ on S, then also $g \in G_n$.

III. If $f, g \in G_n$, then $f + g \in G_n$, $f \cdot g \in G_0$ for $f, g \in G_0$.

IV. If $f_n \in G_0$, $n = 1, 2, 3, \ldots$, $f_n \nrightarrow f$, $f_{n+1} \not\subset f_n \in G_n$, then also $f \in G_0$ ($f_n \not\subset f$ if $f_n(x) \leq f_{n+1}(x)$ and $\lim_{n \to \infty} f_n(x) = f(x)$ for every $x \in S$).

V. If $\{\lambda_n\}^{\infty}_{n=1}$ is a sequence of real valued constant functions and $\lim_{n \to \infty} \lambda_n = 0$, then to any n there is m such that the constant function $f(x) = \lambda_m$, $x \in S$, belongs to G_n.

VI. For every real nonzero constant λ and positive integer n there exists an index m such that $f \in G_m$, implies $\lambda f \in G_n ((\lambda f)(x) = \lambda f(x)$ for every $x \in S$).

VII. If $f_n \to f$ (i.e. for every $x \in S$ $\lim_{n \to \infty} f_n(x) = f(x)$), $f_n \in G_{k+1}$ for $n = 0, 1, 2, \ldots$, then $f \in G_k$.

267
VIII. If \(f \in G_0, \; M = \{ x : |f(x)| < \infty \} \) and \(g \) measurable, \(g \cdot \chi_M \in G_i, \) then \(g \in G_i. \)

Theorem. Let \(q \geq 1, \; A = \{ f \in G_0, \; |f|^q \in G_0 \}, \; U_n = \{ (f, g) : |f - g|^q \in G_n \} \) \((n = 0, 1, 2, \ldots)\) and \(\mathcal{B} = \{ U_{n+1} \}. \) Then \((A, \mathcal{B})\) is a complete uniform pseudometricizable space. Furthermore, there is a translation invariant pseudometric \(d \) on \(A \) such that \(d \) and \(\mathcal{B} \) generate the same uniformity on \(A, \) and \(\lambda \in \mathcal{B}, \{f_n\}_{n=1}^\infty \) in \(A, \) \(d(f_n, 0) \to 0 \) imply \(d(\lambda f_n, 0) \to 0. \)

Proof. Let \(q > 1. \)

We prove the completeness of \((A, \mathcal{B}).\) The base \(\mathcal{B} \) of \(A \) is countable. Hence \(A \) is complete if every Cauchy sequence is convergent (see [3]). Let \(f_n \to f \) denote the convergence in \((A, \mathcal{B}).\) It means: \(f \in A \) and to every \(k \) there exists \(N_0 \) such that \((f_n, f) \in U_k \) for \(n \geq N_0. \) A sequence \(\{f_n\}_{n=1}^\infty \) is Cauchy in \((A, \mathcal{B})\) if for each \(k \) there exists \(N \) such that \((f_n, f_m) \in U_k \) for \(n, m \geq N. \)

Let \(\{f_n\}_{n=1}^\infty \) be a Cauchy sequence in \((A, \mathcal{B})\) and let \(i \geq 1 \) be given. By V there is \(\lambda > 0 \) such that

\[\frac{1}{\lambda^{p-1}} \in G_{i+1}, \text{ where } p = \frac{q}{q-1}. \]

By VI there is \(m_i \) such that

\[(\lambda q)^{-1} G_{m_i} \subset G_{i+1}. \]

Since \(\{f_n\}_{n=1}^\infty \) is Cauchy, there exists \(k'_i \) such that

\[(f_n, f_m) \in U_{m_i} \text{ for all } n, m \geq k'_i. \]

From (2) and (3) it follows that

\[(\lambda q)^{-1} |f_n - f_m|^q \in G_{i+1} \text{ for all } n, m \geq k'_i. \]

The inequality

\[a \cdot b \leq \frac{a^p}{p} + \frac{b^q}{q} \quad (a, b \geq 0) \]

implies \(a = \lambda, \; b = |f_n(x) - f_m(x)|, \; x \in S): \)

\[|f_n - f_m| \leq (\lambda q)^{-1} |f_n - f_m|^q + \frac{1}{p} \lambda^{p-1} \quad (n, m \geq k'_i). \]

But (1), (4), (5), III and II imply

\[f_n - f_m \in G_i \text{ for all } n, m \geq k'_i. \]

Let \(\{k_i\}_{i=1}^\infty \) be a strictly increasing sequence of integers such that \(k_i \geq k'_i \) (for example, \(k_i = \max \{k'_i, \ldots, k'_i\} + 1 \)). Then (6) implies \(f_{k_{i+1}} - f_{k_i} \in G_i \) \((i \geq 1), \) since \(k_{i+1} > k_i \geq k'_i. \)

268
Put now \(h_0 = |f_k|, \ h_i = |f_{k+i} - f_k|, \ i = 1, 2, \ldots \). Then \(\sum_{i=0}^n h_i \leq \sum_{i=0}^\infty h_i \),

\[
h_n = \sum_{i=0}^n h_i - \sum_{i=0}^{n-1} h_i \in G_n, \text{ hence } \sum_{i=0}^\infty h_i \in G_0 \text{ according to IV.}
\]

Finally define

\[
f(x) = f_k(x) + \sum_{i=1}^\infty (f_{k+i}(x) - f_k(x)),
\]

if \(\sum_{i=0}^\infty h_i(x) \) converges and

\[
f(x) = 0
\]

in the opposite case. Then \(f \) is a measurable function, for which \(|f| \leq \sum_{i=0}^\infty h_i \in G_0 \), hence \(f \in G_0 \) according to II. Put \(M = \{x:\sum_{i=0}^\infty h_i(x) < \infty\} \). Evidently \(f_k \cdot \chi_M \rightarrow \rightarrow f \cdot \chi_M \). According to VII and to VIII \(f_k \Rightarrow f \). Now it is not difficult to prove that \(|f|^q \in G_0 \) and also \(f_n \Rightarrow f \).

The base \(\mathcal{B} \) gives on \(A \) a base of neighbourhoods of 0, which form a topology on \(A \): the discrete product of these neighbourhoods forms a topology on \(A \times \times A = \{(x, y) : x \in A, y \in A\} \). Since the function \(f(x, y) = x + y \) from \(A \times A \) into \(A \) is a continuous function (III) and the function \(g(x, x) = xx \) from \(\mathcal{B} \times A = \{(x, x), \ x-\text{real number}, x \in A\} \) into \(A \) is a continuous function too, \(A \) is a linear topological space. One can easily define on \(A \) a translation invariant pseudometric \(d \), such that \(d \) generates the same uniformity on \(A \) as \(\mathcal{B} \), and the following holds true: for every sequence \(\{f_n\}_{n=0}^\infty \) of elements of \(A \), if \(d(f_n, 0) \rightarrow 0 \), then \(d(\lambda f_n, 0) \rightarrow 0 \) for every real number \(\lambda \ ([4,5]) \).

In a case \(q = 1 \) the proof is simple.

Let us remark that the space \(A \) needs not be separated.

REFERENCES