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ROT- QUASIGROUPS

JAN DUPLAK, Presov

Let &2 be an oriented Euclidean plane and let (.) be a binary operation
defined in 62 by a . b = ¢, if ¢ is the image of b under the rotation R[a, - 90°].
We find easily that the groupoid &2 (.) is a medial, idempotent, elastic and
transitive quasigroup. Moreover, the groupoid &2 (.) satisfies the interesting
identity « . (x.y) = z. [(x . 2) . y]. This identity will be taken as an axiom
in the description of certain quasigroups, rot-quasigroups, which we are
going to study.

We remark that a groupoid with the law of composition (4) in a set 2
is denoted by 2 (4). Let a, b be arbitrary elements of 2 and let there exist
uniquely determined y € 2 such that Afa, ] = b, A[y, «] = b. Then 2(4)
is a quasigroup. We shall denote 4-[a, b] = x, 1A[b, a] = y if and only if
Ala, ] = b, b = Aly, a], respectively. It is clear that if 2 (4) is a quasigroup,
then 2 (4-1) and 2 (~14) are quasigroups (see [1]).

Definition 1. A4 rot-quasigroup is such a quasigroup which satisfies the identity
(1) T ooy — 2wz )9

In the following the symbol 2(4) = 2(.) or 2 denotes a rot-guasigroup.
This paper considers elementary properties of rot-quasigroups 2(.) and
groups of all their automorphisms, denoted by (¢ (2), °) = % (2).

Theorem 1. For any x, y € 2

T.x =2 (idempotency),

(2) x(yx . y) =y,

z.yx = a2y . x (elasticity),
(3) x.xy = yxy .y,
(4) Az, y] = yay.

(1) The expression x .y will be usually written in the abbreviation xy. Thus x . yz=—
=& .(y.2)and ayx = x . Yr = Y . 2.



Proof. The proof is straightforward. From (1) we have the idempotency,
(2) for » = 2z, x = y, respectively. Now we prove the elasticity. Since 2 (.)
is a quasigroup there exists t € 2 such that « = y¢ for arbitrary x, y € 2.
It follows from the idempotency and (1) that x . yz = a(yx . y2) = t(yt . ya) =
= f(x . yx). Thus 2 . yx = t(x . yx), which implies { = x . yz. Hence 2 = yt =
= y(z .yx) and so x = y(x . yx). From the last identity and (2) we obtain
x.yx = zy . x = xyx. To prove (3) assume y = z in (1). Then with respect to
the elasticity we obtain (3). Finally, we prove (4). It follows from (2) that
A1z, y] = yx . y and because of the elasticity we obtain (4).

We recall that the right (left) translation with respect to « € 2 is the map
Rp: 259, x—>a.0a(Ly:2—>2,2—>a.zx).

Theorem 2. For any x, y € 2

(5) L2 — LyLyy,

(6) LoLy = L2, where z = ~14[y, z],
(7) , Ly = yy,

(8) Lt =1,

(10) LL,—L'Elie (L1, 1
(11) L'=1— L,L,L,,

Proof. It is clear that (1) = (5) = (6). From (1) the identity x(x .ay) =
— z(xz . xy) follows and so Lly = y(xy .xy), if y =2 Hence Ly — yxy.
Further (2) and (7) = (8) = (9); (6) and (8) = (10); 10 and (8) = (11). By
(11) and (5), L3, = LyLyyLy = LiL,. This completes the proof.

We recall that a medial quasigroup is such a quasigroup which satisfies the
identity ay . wz = aw . yz.

Theorem 3. A rot-quasigroup is medial.

Proof Choose z, v, z, we 2 By (11), (12Yand (5), L, — L, L, L} —
— 2L, — LyL,, L, Hence Ly, Lyw — Ly L.w and so x2 . yw — 2y . 2w,

Combining Th 3 (i. e. Theorem 3) with Th 2.6 and Th 8.3 from [1] we obtain
the following results.

Corollary 1. Ewery rot-quasigroup is transitive, i. e. each loop isotopic to
a rot-quasigroup s necessarily a group.

Corollary 2. For any x € 2, L, and R, are automorphisms of a rot-quasigroup

2(.), i e L, R, e¥% (9)
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Corollary 3. Every rot-quasigroup 2 (.) is distributive, ¢. e. 2 (.) satisfies
the identities © . yz — xy . ¥z, ¥y 2 — ¥z Yz,

Definition 2. For any x, y € 2, the map V. = L2L; is called a left transfer.
Theorem 4. For any z, y € 2
(13) LL!'=7V, Ayl

Proof. It follows from (11) that L' = LyLyL;. Then L L' = L,L,L,L,
and with respect to (6) we have (13).
The following result is the immediate consequence of (4) and Th 4.

Corollary. For any x, y € 2
(14) Vew = LIz

ayz
Theorem 5. L2t = Lt for some t if and only if a = b; Lix = x if and only if
a = x; Vap = 1if and only if @ = b; Va,p # 1 has no invariant points.

Proof. It follows from (1) that L% — = a.at =0 . bi=z(g:.0) —
—zebe Heaz . t—be ta-Db By Ly wva.ar—2< 100 v —
= & < a = 2. Because of the statement (8) and the first assertion of the the-
orend, Vop 1< b Tet I, e ¢ Sinee 1L.° = L2 12 - L7 Honee
@ = b by the first assertion of this theorem. It follows that Vg, = 1. The proof
is complete.

Theorem 6. For any x, y, z € 2 there exists a unique point w € 2 such that
LIZLE = L. The point u is given by
(15) - u— tdalen .y . z0) 0],
where v € 2 is an arbitrary element.
Proof. It follows from (5) that for any ¢, v € 2
L2L} = LiLyLiLysLyLyy
and according to (10)
DI — L,L0L
WLy — L. (e =—nvit Ay - 20 oy ool then
Bl L L —LlL,

and by (6), L2L2L? = L2, where u = “1A4[xt, v] = 1A[x(zv .y . 20),v]. The
unicity of u follows directly from Th 5.
There are two interesting simplifications of (15), namely
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(16) % = 1A[x . zyz,2] for v = z,

(17) u = LA[xy.yzy] for v = yzy.
Since L.,? = L7, L2I2I2 — (LZLZL%) ! — L2217, Hence for any o, y,2€ 2
(18) DELE - L2

Jombining (18) with (16) we obtain the identity

(19) Alx . zyz2] = 1A[z . ayz,z].
Definition 3. For any @, b € 2 @ map Pap = R,R," is called a right transfer.
Theorem 7. For any a, b, c € 2

(20) Pay = Vegtap

(21) Vew = Priep.

Proof. It is clear that for any a. b € 2 there exists a unique element d € 2
such that bd = R,%a, i. e. bdb .b = a, a = d . db. Similarly, for any b, d € 2
there exists a unique element @ € 2 such that bd = R;a. To complete the proof
it suffices to show

(22) Paav.o = Vea.

From (2) there follows the identity b = x.baxb. Since Ly e % (2), Lib —
= Lz . bwb) = Lz . L3(bab) = L}z . L¥xb) — Lix . 2b. Hence b = Lix.uxb
and by (11), b = LgLyLgx . b = d(b . dx) . 2b. According to (2) and Corollary
3 of Th 3, b=(b.dbd)(b.dx).axb—=1[b.d(bd.x)].2b. If w=10bd.x and
z = du, then b = bz .xb, 2b = 2(bz . xb), du . b = 2(bz . 2b). By (1) we have
du.b=b(b.ab) =0b.bxb and so u(dw .b) = u(b . bxb), u(du .b) = (bd . 2)(b .
bab), d .db— (bd .z) (b.bxh), x(d .db) — x . (bd .2) (b .bxb), i o RBigux —
=z . (bd . z)(b . bxb). By (1) have Rg.apx = bd . [bd . (b . bxb)] and so Rg.pax —
= LLL:Rx, hence Rgap = L% IZRy, R, R;' — L2,1% which is the
identity (20). If ¢ = R,%a, then from (20) we obtain (21).

Corollary. Each left transfer is a right transfer and each right transfer is a left
transfer.

With respect to the last result, we shall speak about a transfer. To express
a transfer more precisely we have to use either a right or a left transfer notation.

Next we shall consider the structure of the group ¢ (2) and of its subgroups.
We list five of them:

% — the group generated by all left and right translations of 2 (.),
%1, — the group generated by all left translations,
%r — the group generated by all right translations,
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%r — the group generated by all transfers,
%s — the group generated by all involutions L2.

Theorem 8. The set of all transfers forms an Abelian group which is identical
with the group Y.

Proof. By Th 6 there exists u € 2 such that Vi,V,: = Vu: for
any 2,4,z te2. It follows from (9) that Vy,, = V,;},J. Hence the set of all
transfers forms the group 7. By (18) we have Vu,y Vet = Vo Vot = Vo
Ve,y. Hence %7 is an Abelian group.

We recall that # is a normal subgroup of a group ¥, denoted by #' < %,
if fAf1 = A for each element f of some set generators of Z.

Theorem 9. ggp < g,g <1 gL; gqv <1 g}_’,.
Proof. It is clear that for any @, z, y € 2.

V. I - PRI = DL = DI =V,

zya '

Hence p <« %s. Further, from (6), (13) and Th 6 it follows that
LLL'— [ LLL'-1* I2L2 _ 12

1arz,01 "2 ~1a1z,01 u

where u is given by (15), therefore s < 9. Similarly for any a, 2, y € 2
Lan,chll = LaLiLZLnl = LoLy . LyLy . LyLn’al

¥y e
2 2 272 -
L"‘lA[z,u] L—l.z\[x,a] LyL—lA[y,a] o V'l“ = lA[y,a] ’

where w is given by (15). This completes the proof.

Theorem 10. 9y <1 %p.

Proof. From the mediality there follows the identity Ryt . Lys = Ryt . Lys.
Hu—Rl z—Laliet—FRus=1" then BER'u. 2 —-u L1z
Hence RRR'u=R;; . u. It is obvious that L L)'s=a Ay z]=
= 2 . zyz, therefore

(23) RR.R' = Ry.zpe.

If y = z, then from (23) we have

(24) RR -—R'B_

Further, by (24) we have B P R' - ERE'R - RR'R R, —

= Pu.,yPry.q. Hence ¥p < Yp. This completes the proof.
Theorems 9 and 10 lead to the question: What do the factor-groups %s/%r,
G1|Gs, G| r and Gr/%r look like ? The following theorems show it.

Theorem 11. s/9r ~ &5 (i. e. the group Gs/Gr is isomorphic to the group
of remainders modulo 2).
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Proof. It follows from Th 6 that each element f € @5 can be written in
the form f—I2 or f— LZI2 If f— L[? then fe%y. If f— L2, then
f=LLL. =12V, cL:Gr. Cleatly (970U L3%,) C%s. Hence %p U
U L%p = %s. According to Th 5, f € %7, f # 1 has no invariant point and
fe L:%y has exactly one invariant point. This implies @r N L%y —
and the proof is completed.

Theorem 12. /95 ~ Zs.

Proof. Similarly to the proof of Th 11 we shall show that ¥s U L,%¢ is
a disjoint decomposition of the group %;,. 1t follows from (6), (11) and Th 6
that each element f = Lj' ... Lj* € ¥y, can be rewritten in the form

f-Liorf—LLiorf- Lgorf— L1
Iff—ILior f— L:L;, then fec%s If f= L, or f— L L2 then fe L, %s.
Hence ¢1, C (95 U L,%s). Since (Ys U L,%s) C Ys, we have ¥, — G5 U Ly,
%5, which is a disjoint decomposition of %, because Ly ¢ ¥s.

Theorem 13. 4, /Yp ~ Z4.
Proof. It is easy to show that ¥y U L,%r U L:%, U L%, is the disjoint
decomposition of ¥;,.

Lemma 1. Let n be a positive integer. If Ry = 1 for some element a € 2, then
W =1forallzc 9.

Proof. From (24) we have R, = R'R R . If ay =z (i.e.y = A} x,2] =
= zuz), then

x:‘-R—l

a-1z,21

Rz.RA_‘ l[x’z] e R‘lR _R

2artVollazs
Thus
Rﬁ = (Rz—alszRzaz)n - R,

20z
Yivipn PR . Dpn n
Since B2 —1 B -— R'E_ Hence B! — 1.

R'R

zae

Lemma 2. Fach element f € G can be written in the form
. plp-l -1
By Roy ... By, 0r By R, ... By or Py, g,
where ay, az, . . ., a, are suitable elements of 2 and n is a positive integer.

Proof. Let # = {R, :x € 2} U {R;' : v € 2} be the base to the group ¥z.
We proceed by induction on the length of a word f € . Clearly, the assertion
is valid for » = 1 and » = 2 (see (24). Assume that g € ¥, is of the length
n + 1> 2. If g = R,f, where

f—R' R -_RB'R'-BLLE -R' BRI

an ?
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then by (23),
g=—RE R'ch- R! k,

o
@y "ottty

which is the required form of ¢. Similarly we do the rest of the proof.

Theorem 14. Let a € 2 be a fived element and let {Ry> be the subroup of % (2)
generated by Ry € . Then Gp|Gr ~ (R,>.

Proof. It follows from (23) and (24) that
Rozy: = RR.R' = R.R;'R, = B'R

7y vy

Hoy-—t sy—u(l e 2=~ U}l yl, 2= du y)), then BE'RE = By,
where d = “1A[u, y]. 1A[t, yly1A4[L, y]. Thus for arbitrary elements ay, ..., a,,
by, ....by, a, b there exist e, f € 2 such that

P, R! FER RP,

“Yay by

Ra{ oo Ra,npg,f = Rbl e e Rbnpa,b.

Hence the decompositions Ry, ... Ra, 9, Ry, ... Ry, 97 are not disjoint
and so they are equal. Analogously

1 sl p -1
R B9, -R' R'%

Thus

Yr/%r = U Ri%r,
ied
where ./ is the set of all integers. Therefore ¥g/% 7 ~ (R,). Clearly, the map
R!%p — RS is an isomorphism.
The results are summarized in the diagram

in which o7 % % denotes that & is a normal subgroup of .7 of the index » and
o — # denotes that Z is a subgroup of .&7.
Now we shall consider the finite rot-quasigroups.



Theorem 15. If 2 (.) is a finile rol-quasigroup, then card 2 = 4p — 3, where
P is a positive inleger.

Proof. Let 2 = {a, ..., a,}. It is obvious that # = {L;, L,, L, L}

is a subgroup of %1, which acts on the set 2 by
2x H#—>2, (¢, Li)>Lix.
This action leads to the orbit decomposition 2/ of 2:
,,@:,%”(al)uyf(ag)u U%(an)

Clearly, card J# (a;) = 4 for i = 2, 3, ...,nand #(a1) = {a1}. Therefore,
card 2 = 4 (card 2/# — 1) + 1 = 4p — 3, where p = card 2/7.

Example. Let (25, +) be an Abelian group of remainders modulo p and
2 = Zp X %,. Define the binary operation by

2 XQ%Q? (a,b).(c,d):(a—{—b——d,——a—l—a»ﬁ’—b).

If p is odd, then 2 (.) is a rot-quasigroup. It can be easily shown that the last
assertion is true.
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