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mOT^ QUASI6B0UPS 

J'AN DU.PLAK, Presov 

Let 6'2 be an oriented Euclidean plane and let (.) be a binary operation 
defined in 6"2 by a . b ----- c, if c is the image of 6 under the rotation, R[a, j-flCff 
We find easily that the groupoid $2 (.) is a medial, idempotent, elastic and 
transitive quasigroup. Moreover, the groupoid S2 (.) satisfies the interesting 
identity x . (x . y) •-- z . [(x . z) . y]. This identity will be taken as an axiom 
in the description of certain quasigroups, rot-quasigroups, which we are 
going to study. 

We remark, that a groupoid with the law of corn.position (A) in a set $ 
is denoted by M (A). Let a, b be arbitrary elements of if and let there exist 
uniquely deter rained y e i such that A[a, x] ~ 6, /t[,i/» «] = b. Then J(/4) 
is a- quasigroup. 'We shall denote A~l[a, b] ~ a:? ~'l.4[&, «] ™ |/ if and only if 
./.I. [a. .r| ••"•-•• 6, b ••••-••- ~/l[|/? «]? respectively. I t is clear that if M (A) is a quasigroup. 
tlien J (-4 !) and ,§ VJ.A) are quasigroups (see [1]). 

Definition L A rot-qiuisigroup is such a quasigroup which satisfies the identity 

(i) x . xy =-= z(#2 . ;y)<-> 

in the following the symbol M(A) =-J2(.) or J denotes a rot-guasigros.q>. 
This paper considers elem.entary properties of rot-quasigroups M(.) and 

groups of all. their automorphisms, denoted by (@ (M), °) ==•• ^ (J) . 

Theorem 1. For any x, y e M 

x . x =- a.' (idempotency), 

(2) #(y#. y) = |/? 

a? . yx •---=- #«/ . .i; (elasticity), 

(:i) ,i; . xy = fa;?/ . ;y, 

(4) J J[;r? 2/'] = yxy. 

(I.) "flic expression x . f will bo usually written .in the abbreviation xy. Thus a* . -̂•~ 
• - ,r . (// . z) t?lid ,ru.r •:» a: . ,p; ----- xy , x. 



Proof. The proof is straightforward. From (3.) we have the idempoteucy, 
(2) for x •--- z, x ----• y, respectively. Now we prove the elasticity. 8io.ee :J (.) 
IK a quasigroup there exists te£ such that x-•••••• yt for arbitrary ,>\ ye J. 
It follows from, the iderapotency and (1) that # . j/:o •--•• :*.• (//.*; . j/.e) •-- - l(//l . ;>Lr) 
• •- l{x . ?/,r). Thus a* . 2/cr ---- /(,T . yx), which implies t ----- ;r . ?f/\ H.enoe x --• •/// -
-• y(x . yx) and so x--y(x xyx). From the last identity and (2) we obtain 
x . */&• =.-• ,ry/ . a; =•- xyx. To "prove (3) assume y -•••••• 2 in (I). Then with respect In 
the elasticity we obtain (3). Finally, we prove (4), i t follows .from (2) f.h.o 
A ~Jlx, y\ •---•• // '̂ . // and because of the elasticity we obtain (4). 

We recall tha t the right (left) translation with respect to a e / is the map 
ft,< : M -» 3, x •-> a: . a (Xa : M -> i f x > a , ;r). 

Theorem 2. For cm// #, ;// e M 

(a) J4.---r.LyLw, 

(ft) .L?;..£/?/ --•-. 17:, where z -•-•• "]A[y,x\. 

(? ) J-vy -^ y * z / > 

( H ) L * -TT- i , 

(JM (^)-' - ^ - ^ ? 

(10) LJjy .:•:,- Ly;
lIj~\ I V. (LJjy)* - I . 

(11) A. 1 ^ ^ ^ LyLJjy, 

{ I 2) / / ' . -— L~Ly , 

P r o o f , ft is clear t h a t (I) -..:-> (5) .,> (6). .From (1) the iden t i ty xix . ,/•//) .. 
2{x2 , #//) follows and so Vfy --• |/(;r*;̂  , ;i;t/): if j / :-••- s. Heneo L]y • yxy. 

Fur the r (2) and (7) .-> (8) <=> (9); (6) and (8) :•:-> (10); 10 and (S) .::• (II),. IJy 
{!!) a n d (5), F4?/ -~ LyLXyJjy =• L^L^. This completes t h e proof. 

We recall t h a t a medial qt iasigroup is such a quas igroup which satisfies the 
ident i ty xy . -wz -•- a*?/? , ?/£. 

Theorem 3. A. roix^msigroup is medial 
ProoV Choose ,>., y, z, w , ' e l By (H), (12) and (r>). /,„ . L,,/,v , f ; : 

/^A? •"•• LyLxyJjz, Hence ,hxzIjyw -.-•-•• .LTyLzw and so ^ , ////• - ,r// . ;:/r. 
Combining Th 3 (i, e. Theorem 3) with Th 2,6 and Th s.3 from [ I | we obtain 

the following results. 

Corollary 1. Every rot^pta-sigroup is transitive, i. e, rack loop Lsotopir la 
a r((d~qnasigfwip is neressaxily a group. 

Corollary 2, For any x e M. Lx ami Rx are automorphism* of a ml-quasigrim/* 
:i (,), i. e. LXT RreW (J) . 

2 2 4 



Corollary 3. Every rot-quasigroup J (.) is distributive, i. e. J (.) satisfies 
tht identities x . yz = xy . xz, xy . z = xz . yz. 

Definition 2. For any x, y e J2, the map Vx,y = L^L* is called a left transfer, 

Theorem 4. For any x, y e M 

(13) £jyx= Vx,^A[x9y\. 

'Proof. I t follows from (11) that L"1 = LxLyLx. Then LJjy
l = LxLxLyLx 

and with respect to (6) we have (13). 
The following result is the immediate consequence of (4) and Th 4. 

Corollary, For any x, y e M 

(14) Vx9y = LJj^. 

Theorem 5, L*t = Lfi for some t if and only if a = b; L\x = x if and only if 

a = x; Va,b — 1 if and only if a = b; Va,b ¥=• 1 ̂ 8 w o invariant points, 

Proof. I t follows from (1) that L\t = if/ => a . at'= b .bt o z(az . ij = 
•- •• z(bz , t) => az , t = bz . t => a = 6. By (3) L\x = #<=>«.<&# = # o sma;, x = 
.-• j:; <> a = #. Because of the statement (8) and the first assertion of the the­
orem, Va,i) = 1 o a = b. Let Va,&c = c. Since La

2 = JD ,̂ JE/fc = i«e. Hence 
a :••--- 6 by the first assertion of this theorem. I t follows tha t Va,b =:= V The proof 
is complete. 

Theorem 6. For any x, y, z e M there exists a unique point u e M such that 
LJJpji = I/u. The point u is given by 

(15) • u = ~xA[x(zv . y . zv),v\, 

where v e M is an arbitrary element. 

Proof. I t follows from (5) that for any t, v e 2t 

JjJUyJLJ^ = ljlJJxtlJtlJyiiJv^JZ1) 

and according to (10) 

T2T2T2 r - l r r-lr-1 
JJgJJyJjg " Xt Vb ZV V " 

if Lyt = Lzv (i. e. yt = zv, t = A~l[y, zv\ = zv . y . zv\, then 

Г2г2ľ2 __ r-lr-1 r | " 
1JXJJ 1JZ ^ Jjxt JJV — JJVJJ: 

Ш 

and by (6), L%L%L% = L%, where u =^ ~1A[xt,v\ = ~xA[x(zv .y .zv),v\. The 
nnicity of % follows directly from Th 5. 

There are two interesting simplifications of (15), namely 
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(16) u = ^A[x . zyz9z] for v -•= z9 

(17) m = ~1^t[^y,2/^] for v •= yzy. 

Sin.ee Z^2 = Lz
u9 Lfjjfll = (L^JL^L^)-'1 = L2

zL"ftL*- Hence for any J.\ I/, 3 e; ^ 

f 1 O ) Ij'llj^.JLl't, —~ Jj~'IJ^IJ" . 

Combining (18) with (16) we obtain the identity 

(19) ~^A\x . zyz9z] = -M[« . A-T/O;,*]. 

Definition II. For any a, b eM a map Pa.,b = IiaRb
l is called a right tran-<fr. 

Theorem 7. For any a, 6, c e J 

(20) Pa,& = Vj^a , 

(21) Fc,ft = P.R;c,ft. 

Proof . I t is clear that for any a. 6 e J there exists a unique element d e .9-
such that bd = J?6

2a, i, e. &df& . 6 = a9 a = d . cl&, Similarly, for any &, cf G..:/1 
there exists a unique element a eM such, that bd = jR5

2«s To complete the proof 
it suffices to show 

(22) Pd.db.b = F&d,6« 

From. (2) there follows the identity b = x . bxb. Since Lb e {S (M), Lftb •• • 
= i | ( x . bxb) = i | x . Lf(bxb) = Ifa: . Lf(xb) = I^f# . #&. Hence & = .L r̂r - ?:& 
and by (11), 6 = LdL^LdX . xb = cf(& . cfx) , #&. According to (2) and Corollary 
3 of Th 33 6 = (6 . dbd)(b . dfo) . x& = [6 . d(&df. x)] . #&. If # = 6cl. a; ami 
z = cfo? then 6 = 6^ . »&, zb = z(bz , xb)} du . & = 2(6^ . xb).. By (I) we have 
du . & = 6(6 . xb) = & . 6^6 and so ?*(dfo . &) = w(& . &#&), u(du . b) = ( k i . #;)(& , 
. &#&), d . cl& = (bd . a?) (& . bxb), x(d . db) = x . (6cl. a;) (h . bxb)9 i. e. Rd.dbX : : 

= a;. (&d . #)(& . &#&). By (1) have Bd.db% = &̂  • [&tf * (& . &#&)] and so Ma,tar --•••.-
= LldLlRbx, hen.ee jBd.d& = X^£|J?&5 BdtdbR^ = J^Lf, which is the 
identity (20). If c = JR6%5 then from (20) we obtain (21), 

Corollary. Each left transfer is a right transfer and each right transfer is a left-
transfer. 

With respect to the last result, we shall speak about a transfer. To express 
a transfer more precisely we have to use either a right or a left transfer notation. 

Next we shall consider the structure of the group ^S (J) and of its subgroups. 
We list five of them: 

5? — the group generated by all left and right translations of Si (.), 
^x, — the group generated by all left translations, 
*SR — the group generated by all right translations, 
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f/T the group generated by all transfers, 
*Ss the group generated by all involutions Jlm. 

Theorem 8. The set of all transfers forms an Abelian group which is identical 
with the group ST • 

Proof . By 111 6 there exists ueM such tha t VX9yVZit ™ V«?? for 
any x, //, z91 e J . I t follows from (9) that VyfX = F,~%*. Hence the set of all 
transfers forms the group ST- By (18) we have VX9yVz,t == VZiy Vx>Vtt =

z VZtt 
Vxjj. Hence ST is an Abelian group. 

We recall that ,ff is a normal subgroup of a group S\ denoted by J#'<3 S, 
iffM'f ] = ,ff for each element / of some set generators of <&. 

Theorem 9. ST <i Ss <a SL; ST <a S?L. 
Proof . I t is clear that for any a} x9 y el, 

Aj VXM^a =:=' LJL/JjyLa, = JJJJJJJJ^ = LyL^ = V^ . 

Hence ST <I ^#« Further, from (6), (13) and Th 6 it follows that 

LJjJLra = LJjJjJja = .^iA[X(a3 LJj„lAiXta^ = £ w 

where te is given by (15), therefore % <i SL. Similarly for any a, a*? ?/ e J2 

LaVXtyL~J = LJrJjJja' = 1/o.La;, Ii^Z/|/ . X^ija' 

where ti. is given by (15). This completes the proof. 

Theorem 10. ST <i ^ . 
Proof . Prom the mediality there follows the identity Rxt. Lys = JRy£ . ..L,t-s\ 

If n ~:-- JM, z = iv^ (i. e. £ = R~y
xu9 s = Ljz)9 then RJtJu . z = -M . LJrJz. 

Hence I? EJtJu = JL F _, w. I t is obvious that LJLr}z = # . -4""lr«/, z] -~~ 
----- a: , 2?/25 therefore 

(23) RJiJiy = Rx.zyz. 

If // -_- 2. then from (23) we have 

(24) j y ^ • = j?^ ' i?^. 

Further, by (24) we have MJ^JJa
l = Jijljljllj = MJiJJixJi„l --= 

=•-- Pa,yPxy,a- Hence ^ <J ^fi . This completes the proof. 
Theorems 9 and 10 lead to the question: What do the factor-groups SSIST , 

Shj97s, SJJIST and SR/ST look like? The following theorems show it. 

Theorem 11, SSJST & ^2 (i. e. the group SSJST is isomorphic to the group 
of remainders modulo 2), 
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Proof . I t follows from. Th 6 that each element / e ^ can be written in 
the form / = Ll

x or / = I^Ly. If / = L^L^, then / e &?. If / — i-4, then 
/ ----- I%I%LX == i|F f l f a . e £„6rV. Clearly (^ T U i ^ T ) C ^ ' . Hence ^ VJ 
U X | ^ y = % . According to Th 5, / e ^?y, / + I has no invariant point and 
/ e Lft@T has exactly one invariant point. This implies {ST C\ L1/ST —: 0 
and the proof is completed. 

Theorem 12. {Sh\
cS8 & &2. 

Proof. Similarly to the proof of Th I I we shall show that cSs U La.Ss is 
a disjoint decomposition of the group fSia, I t follows from (6), (1.1) and Th 0 
that each e lement / = L™1 .•• . i«J e % can be rewritten in the form 

/ .•.•-,- L; or / = 4 ; L | or / = La or / = i a l if , 

If / = L^ or / = L\Irh, then / e f#s. If / - 1% or / = i t f i j , then / 6 LaWs. 
Hence % C (&s U j ^ s ) . Since (S^ U La&s) C S?5, we have <SL = ^ U L« 
^ , which is a disjoint decomposition of fSi, because La ^ ^v-

Theorem 18. % / ^ y ^ ^ 4 » 
Proof . I t is easy to show that "ST U L/ST U 1 /^ - , U £ ^ - . is the disjoint 

decomposition of % . 

Lemma 1. Let n he a positive integer, If B% = 1 for some element a e i?, f/nji-
iP2

l = 1/or all z el, 

Proof . From (24) we have Bx = M^M^R^ If ary = 2 (i. e. 1/ = _4--[^', -I --
= z;*;2), then 

14 = i2;^lr^i22i?^---l[a.|2] = M^ZMZBMZ, 

Thus 

p?* / I? - ! I? p \w __ p - i p ^ p 

Since iff = I, BM9 = I?flLr2, Hence JB? = 1. 

Lemma 2. Each element f e &R can be written in the form 

liaiKa-y * . . Ma.n or Ka^ M(h . . . Man or i «i 5 ff-2 > 

taker t a%, a%, . . ., a# are suitable elements of M and n is a positive integer. 

Proof . Let Jg? = {Bx : x e l } U {B^1 : x e l } be the base to the group "SR, 
We proceed by induction 011 the length of a w o r d / e ^ .R. Clearly, the assertion 
is valid for n = 1 and m- = 2 (see (24), Assume that g e €SR is of the length 
n + 1 > 2. If gr = i?a/, where 

/ == Rra] . .. i £ = R£R?t ° h, h = R£ . . . R-l 
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|Те» Ьу (23), 

RaRn]R„]»h--=Ra].ajmt°K, 

which is the. required form off/. Similarly we do the rest of the proof. 

Theorem 14. Lei a e J, be a fixed element and let, (Ra*- be the subroup of W (r£) 
unrated by Ra <= '/JR. Then ^ui^r & </?«/. 

Proof; It follows from (23) and (24) that 

Rx.zvz - RMJiv
l - RMjn^ --=-• R;RJi:,ir 

If ://•••• fr xy ...a- (i. e. s - " ' T i ^ #J, # - -'*-A\u, y]), then R,f
lRlEu •:.. 

wbered .•• 'Mf/M-, / /] . ~"1 ,̂4p'? ̂ ]^~~M[£, / / ] . Thus for arbitrary elements « j , . 
h]. . . .. blt.. a. b there exist e, f e M, such that 

jPe,f:--- 1?{% ..» R"aRhi . . . RhnPa.j>, 

Ray . . . RaJ
J

ej •:--•• A1!,! . . . RhnJ
>atb-

{fence the deeoni positions 7?ai . . . l o % #V r I?&j . . . Run ĈV &*'<••' not dis 
and so .hey are equal. Analogously 

oi.ut 

Rl(] ... R£VЯ..~ R„] ... Eb]ßr. 

Thus 

* * /#* • - UI>v%', 
ieX' 

where, V is the set of all integers. Therefore ^RI^T m \Ra). Clearly, the maj> 
i'i';///T ••'•- /?*. is an isomorphism. 

'The results are summarized in the diagram 

ҐĆR 

—9^ ţ „, 

{Ś (Æ) 

... which x/ 3, ?M demotes that $ is a normal subgroup of x/ of the index <n ;MH! 
xJ ••>- >/4 denotes that S is a subgroup of <$/. 

Now we shall consider the finite rot-qua-sigroups. 

2 2 9 



Theorem 15. If J (.) is a finite rot-gnnsigroup, then card i> •••••• -\p •••• 3. wh*'f< 
p l« a positive integer, 

Proof . Let 1 = {«j , . . . , « » } . I t is obvious that ^ - [L^, Lar L'^, /.;;,: 
is rf. subgroup of ^ which, acts on the set ,H by 

Thin action leads to the orbit decomposit ion^/ .^ of J : 

1 ----:: J f {«i) U Jt'{a*) U . . . U M'(fitl), 

Clearly, card Jf (ai) -~ 4 for i -•-- 2, *1 . . . , w a n d s#
;(«i) •---• {a-i). Therefore. 

card J ~ 4 ( e a r d J / J f - I) 4- I ..̂  4f» - 35 where f) — card J/.j#. 
E x a m p l e . Let {£?p, -}••) be an Abelian group of remainders modnlo /; an.<! 

'i ••-• &v X 3£$. .Define the binary operation, by 

M x J --> J , (a, 6) . (c, d) =1,: (a -f 5 --• d, a -j- c ::- 6). 

.If p is odd, then. M (.) is a rot-qiiasigroup, I t can be easily shown, that the ia*;t 
assertion Is true. 
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