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Matematicky €asopis 23 (1973), No. 3

ABSTRACT FORMULATION OF THE INDIVIDUAL
ERGODIC THEOREM

FRANTISEK RUBLIK, Bratislava

Let (X, %, m) be a measure space, . be a g-algebra, m be a o-finite measure
on % and T : X - X be a measure preserving transformation. For 7" —
=ToTo . ..oT, the composition 7" with itself » times, and 7°(x) = « the

n-0 N

n-1
1
individual ergodic theorem asserts: If f is integrable, then lim “~~Z f(T7x)
70

exists almost everywhere, the limit function f* is integrable and invariant
under 7. If m(X) < oo, then ff*olm = ffdm

In this paper we generalize the individual ergodic theorem. Instead of L; —
the system of m-integrable functions, we shall consider some system & of
functions which are defined on the measurable space (X, .#). The system &
satisfies some system of axioms. The present paper consists of two parts.
In the first part we shall construct the “‘theory of integration‘* i. e. with the
help of axioms we shall prove theorems analogous to Beppo-Levi’s theorem,
Lebesque’s theorem, etc. In the second part we shall formulate and prove the
,.individual ergodic theorem‘‘. Similar axiomatic methods were used in papers

131, [4], [5].-

Let (X,.#) be a measurable space.
Let Z <« & besucharingthat Ae %, Be¥ =~ AN BeA.
Let% < 2 be such a o-ring that 4 e¥, Be ¥ = AN Be%.
Let us denote 2° = {f; {x € X; f(x) # 0} €%},

"
Pi = {f; f = > owyar, Ax € &, n is an integer, |ox| < oo}
i1
P = |JA's, where E is some non-empty set, {475} are non-empty classes
sel

of non-negative measurable functions, which satisfy
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L {feZf> 0 c P

2. f € N if and only if there exists a non-decreasing sequence {f,} of non-

-negative functions belonging to %7 such that for every n, f, € 45 and f —
= Iim fn .

H=>%

I f, gePIn P! and {weX; flx) <g(®)} ¥, then fe A = ge ;.
Let us denote Z = {f,f=h — k h, k€ Z', h — k is defined}.

The ring Z, the o-ring @, the class 27 and the class 4/, are abstract analogues
of all sets of finite measure, of all sets of measure zero, of integrable simple
functions, of non-negative measurable functions for which is f fadm < s,
respectively.

In the next considerations we shall use this notation: {f,} < 47 if f, € 475
for every n,

fa 7 fif {fa} is a non-decreasing sequence of functions which satisfies f
= lim f,,

N(f) = {& € X; f(x) = 0}.

1t is easy to prove that if «, § are real numbers and f, g € 2/, then f . g € 7,
(of -+ Bg) € 1. This statement is used in the next lemma.

Lemma 1. Let {g,} be a non-decreasing sequence of non-negative functions
belonging to 21 . If f is a simple function and 0 < f < lim g,, then {g,} < A5 ~
Nn->0
= f e,
Proof. Let us denote fy = min(f, g,). Since f, is a simple function and
N(fn) = N(gn), where N(gs) € #, we have f, € ZI. Let {gn} = A475. Then both

Axiom 3 and f, = min(f, gx) < gn yield {fu} = 4. Since 0 < f, 7 f, we have
feds.

Lemma 2. Let {fy}, {gu} be a non-decreasing sequences of non-negative functions
belonging to P1.
Q) Iffn 2[00 ~ gond f < g, then {gu} c N s= {fu} c Ns;

@) If fuo A f, 90 /2 [> then {ga} « N5 {fu} <« N s;
(i) If fu 7 f. then fe N s < {fu} = As.

Proof. (i) If mis an arbitrary fixed integer, then 0 < f,, <g = lim g, and

n—=>%0

by using Lemma 1 we have {gs} = A"s = fu € 47s. Since m is arbitrary,

{gn} = N s = {fu} = Ns.

() I 0 <fu 7 f 0<gn 7 fis valid, by (i) wehave {g,} = N5 = {fa} =
c N s and also {fu} € N 5= {gu} < A,

@ii) If {fu} < A5, then from the definition of #! obviously fe 4" Let
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f €N, i. e. there is a sequence {g,} of functions belonging to %7 such that

{gn} = N sand 0 < g, 7 f, but then by (ii) the relation {f,} < .4 holds.
Lemma 3. Let f,ge PLIf f < g,then ge N5 => feN5.

Proof. Since f, g € #1, there are sequences {f,}, {¢a} of functions belonging

to Pisuchthat 0 <f, 7 f, 0 <gu 7 g.

Let g € /5. By (iii) of Lemma 2 {g,} < .47. Since f < g, by (i) of Lemma 2

{fu} = A5 and it implies f € 4.

Theorem 1. If f € Z and f is non-negative, then f € .

Proof.f=h —k b, kePand b > k.

From the non-negativity of the measurable function f it follows that there
is a sequence {f,} of simple functions for which 0 <f, ~ f. Since ke 21,
there is a sequence {h,} of functions belonging to 2/, 0 < hy, A h. Let us

d-</, /f min(h, f) = f and f, < hn, we have {hs} = N5 = {f}} « N This
means that f € 47 and thus f e ZL

Theorem 2. If 0 < g < f, where f € 7' and g is measurable, then g € P

Proof. Since fe 2! there is a sequence {f,} of functions belonging to %7,
0 <fu 7 fand {fu} = A5 for some s € K.

Since ¢ > 0 is measurable, there is a sequence {g,} of simple functions such
that 0 < g, 7 ¢. If we denote g, = min(f,, g»), then g, is simple. The inclusion
N(g)) = N(fn) implies g* € 2. The last relation together with 0 < g, < f,
give {g,} = .

Theorem 3. If f is a measurable function, then

) Jed=J' ] eF;

() |[fleZ=f+ [ €.

Proof. (i) If f+, f~ € Z, then f+, f~ € #t by Theorem 1 and therefore | =
=(ft—f)e. Let feP, ie. f=h — k, where h, k € ZL. If the number
f(®) > 0, then ft(x)= h(x) — k(x) < h(xz) and it follows that 0 < f+ < h.
Since [+ is measurable, by Theorem 2 f+ e #! < Z. Since also —f € Z and
(=)t =f,wehave feZ = f+, f- € P.

() |fl e Z = |f| e Z* and since f+, f- are measurable and 0 < f+ < [f|,
0 <f- < |fl, we have ft, f~ € L

If f is measurable, then B € . implies f*. yz and f~. yp are measurable.
Moreover the obvious inequalities 0 < f+ . yp < ftand 0 < f~ .y < f hold.
Therefore using Theorems 2 and 3 we can assert.

Theorem 4. If f€ # and B €%, then [ . yp € 2.
Theorem 5. If f, g € 7 and f < h < g where h is measurable, then h € &.



Proof. Since f <h <g, we have 0 < ht <gt, 0 < h < f-. Since g,
€21 and h*, h— are measurable, it follows from Theorem 2 that A+, h— € 21,
hence h € Z by Theorem 3.

Theorem 6. Let f € 2 and g be a measurable function. If {x € X; f(z) +# g(x)} €
€€, then g€ P and moreover feMss = {f€P; fteNs, [~ €N} if and
only if g e Ms,.

Proof. Since

weX; flo) #9()} = {zeX; ft2) Zgt@)} U v e X; f(2) #g-(v)} it is
sufficient to prove: If f € 47 and ¢ > 0 is measurable, then {x € X; f(x) #
+# g(x)} €€ implies that g € #! and moreover fe A 's< g€ ANs5. Let fe ;.
The set 4 = {x € X; f(x) > g(x) > 0} is measurable. From Theorem 2 and
Lemma 3 it is obvious that g . y4 € 47, i.e. there is a sequence {ga} of functions
‘belonging to 27 N 2! such that {g,} < A5 and 0 < g, 7 g.ya. Since B =
= {xeX; 0<fx)<<g®)}e¥ < X, the function ¢ . yp is measurable and
there is a sequence {,} of functions which are elements of 2° N 27 such that
0<hy #g.yp. If we denote g, = gn + hy, then g, € #7 N 2L Since
{e € X; gy(@) > gn(x)} belongs to €, we have {g;} < A5 andfor 0 <g, 7 g¢.
. (x4 -+ x8) = ¢ we have g € 4 °s. The proof of the converse implication is
analogous.

Lemma. Let a = lim a,, ay = lim ann, where {a,}; ;. {aum}, ., are non-

Nn—->00 m-»o0
-decreasing sequences of real numbers. If we denote by = max(ai, tsk, . . ., Gr),

then by 7 a.

Theorem 7. Let {fu} be a non-decreasing sequence of functions belonging to P
such that fo A f. If {fa} CMsy={f€P;, fteN,, [-€N;}, then fe P

and f e Ms, .

Proof. I. Let {fu} be a non-decreasing sequence of functions belonging to
P Foreachn = 1, 2, ... let {fum}_; be a non-decreasing sequence of func-
tions belonging to 2/ for which 0 < fun 7 fo. If we put g =
— max(fir, fox, - - -» frx), then {g,} is a non-decreasing sequence of non-nega-
tive simple functions (maximum of two simple functions is a simple function).
Since gr — max(fix, ..., fir) < max(fi, ..., fr) = fx, we have 0 < g; < fi

and therefore {fu} = A's= {gn} = A%5. As {fu} < A4 and by the lemma
0 <gn 7 [, we have f € 4.

IT. Let {f»} be a non-decreasing sequence of measurable functions belonging
to? Then 0 <ff A f+ f [ >0 Bince {fi} c 4, ,thenby I ff e A,
Since a limit of a sequence of measurable functions is measurable, /~ is a meas-
urable function. Since 0 < f~ < f;, where f; € 47;, using Theorem 2 and
Lemma 3 we obtain f~e 4, ie. f= (f+t —f1eZ and f € M5,
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Since fp N f implies —f, # —f and {fs} = M, implies {—f,} < M,
by means of Theorem 7 we obtain.

Theorem 8. Let {fu} be a sequence of functions belonging to P and f, . f. If
{fu} © Msy, then f € P and f e Ms,:.

Theorem 9. Let {fu} be a sequence of functions belonging to  and f = lim f,, .

Nn->%0

If {fu} c My, then fe P and f e My, .
Proof. Let us denote gy = inf f, by = inf f, . Since {g,} is a non-decreasing

n>k nz=k
sequence of measurable functions and lim gx = sup (inf f}) = lim inf f, we
k-0 k=1 n>k k-0

have gr 7 fr. From 0 < gz < fi" follows that {g;} = A7, ie. f+r e A (by
means of Theorem 7). Similarly for the non-decreasing sequence {hz}; , we

have {hx} < A7, 0 < by 7 f~ and therefore f~ € 47.
Theorem 10. Let {fu} be a sequence of functions belonging to 2 and f = lim f,, .

N0

If there is g € 21 such that |fn| < g for each n, then f € 2.
Proof. Since 0 <f! <g¢, 0 <f, <g, where g e 4 for some sk, it
follows from Lemma 3 that {f,} < .#s,, hence f = lim f, belongs to & by

N->0

Theorem 9.

2.

Let us denote 2t = {fe?; f+e V= f €A} In this part we shall
suppose that

4. If f, g € #+ are such that the sum f -+ ¢ is defined, then (f + g) € #'.

If in the axioms of part 1 we take instead of & the set of all non-negative
rational numbers, we see that 2+ substitutes for the class of integrable func-
tions for which f fdm = 0.

Theorem 11. If, g € Z and (of + pg) where a, p are real numbers is defined,
then (of + pg) € 2.

Proof. Clearly (by means of Theorem 3 (i)) it is sufficient to consider
a,f=0andf, ge P If f € Z, then by Axiom 4 and by the induction nf e
e 2 for any non-negative integer n, hence the non-negative function «f <
< ([«] + 1). f belongs to P! by Theorem 2. If f, g € 2! and «, § are non-negati-
ve real numbers, then of, fg belong to #! <« #+. Thus, (af + fg) € 2+ <
= & and (af + pg) belongs to Z! by Theorem 1.

Now we put the definition of the m-leader.

Let us suppose that ay, ..., a, is a finite sequence of real numbers and that
m is a positive integer. A term a; of the sequence will be called an m-leader,
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if there exists a positive integer p such that 1 < p << m and such thatz gty =
j=0
=0 j

The following lemma holds.

Lemma. The swm of the m-leaders of a finite sequence of real numbers is non-
-negative. (For proof cf. [1].).

Definition. We shall denote T € & if and only if T : X
and satisfies:

i) If f, g € 2 are such that the sum f -+ g is defined, then (f + g(T')) € " =
> (f+9) e P

() feZ = f(T)e 2.
Now we want to formulate the “maximal ergodic theorem:.

- X, T is measurable

Theorem 1. Let & be a o-algebra and let f € P be such that x € X = f(x) # —o°.

n-1

Let us denote by A the set {x € X; In: 3> f(Mx) > 0. If T € Zand M €& 13
j=0
such that T2M = M, then f . x4nu € 2.
Proof. Let us denote
file) = [(TUz), A =2 e X:3pl < p<j flo)+fila) ...+ fpale) = 0L

Eviden‘oly A.j e &, Aj & Aj.‘q and 4 = UA]' s

Let n > 1 be an arbitrary fixed integer. Let us take the sequence fo, fi, .. -, fau-1
and let us denote

x) = {m; fu(x) is the n-leader of the sequence fy(x), ..., faul:
N;={xeX;jecd(»)}

Since the sum of the m-leaders of a finite sequence is non-negative

0= > J fo -
jedla)
Since T“iAn_j - T'"’J'{x eX;Ipl<p<n—j :fg Bk . ) = 0=
=freX;pl<p<n—j: f; L L h O]
— {x € X; fy(x) is n-leader of fo(x), ..., fau(2)} =
=lecXijecdln) =N,

A, = Ny
we have

n-1 n~1

03 5@ - 17140, @) = 2 H1@) - L, (190,



The equality T-7M = M implies ya/(T7x) = yu(x) and this gives
n-1
1
0 < IZf(fo) cauldx) .y, ).
70

Since f . yar - x4, , €7 (see Theorem 4), we have that functions f(7Y) . yu(17) .
- %4, (T7) belong to Z. Using Theorem 11 and with respect to the nonnegati-
vity of the last sum we obtain

n-1
1
—%“zf(Tf) (M) . x4, (@7) € P+,

n
1
By the asumptions concerning T’ we have fyyr — z %4,62 % LetxeX . Ifng =1
n
71

is the smallest integer such that « € 4,,, then for n > ny the equalities n =

n

1 m + 1 , _
=nNg+m and — E Xa, (@) = — hold. Hence if n — oo (i.e. if m — 0),
n nog + m

71

n
1 X°
we havewz x4, /' x4 and therefore
n

J-1

n

1
0=t xaz;zm, Al 1w

j=1

‘ 1
i1 . XM;“EXA, A Fiem.
i1

By Theorem 4 f . 5, .., € 7. Now we want to show that f . %4 belongs to P+,
Ul v, .y, then by means of Theorem 2 and Lemmgy 3 Iy X

n n
1 1
X ’; %4, € N5 foreachn = 1,2, .. .. Since for eachn > If . 5, -~~§m;€
n
=1 i=1
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n

1
e P+it follows that f- . yu z x4, € N's for each n > 1. By Theorem 7
n

=1
I vouc Uond thus flanuc Z
Lemma. If f,, \ f and {fa} are functions belonging to P+, then f € 2.

Proof. ft — f; < fr — f; implies f7 < f; and therefore ff € A4 = ff e N/,
Since {fu} = Z+, it follows that {fa} < ;.5 for some s € E. Hence by Theorem
8 we have f e Z.

If the following axiom is true,

5. If f e 4, for each s € E, then f € 29,

we can prove

Lemma. If T € &, then T~ (%) < €.

Proof. et 4 e% and B — 1 14, Then
—y8(x) + yaTx) = —yplx) + yT-1A(2) = 0P, ie. —yn+ yu(T)e P+
Both —yg + ya(T) € #+ and g4 € Zimply (x4 — yB) € P+. Since (y4 — yB)t =
= %4 — Xu~p W have (x4 — %4np) EN's= (B — Yunp) €N s.Since A NBe
€%, by means of Theorem 6 we have y4 €45 = ypeNs. Since {x € X;
x4(%) £ yo(®) = 0} €% and feANs=> 0=y, <f, we obtain y, €4 for
each s € . This means yp € A5 for each s € ¥/ and by Axiom 5, B €%.

Theorem II. Let & be such a o-algebra that X — U Ay, where A, € X and

n-1
let f € 2.
n-1
() Let TeZ. If {xeX; fx) = —co}€¥, then lim 1jn > f(TVx) ewists
n->00 3=0

outside a set belonging to €. If {x € X; |f(x)| = oo} €¥, then the limit function
f* is invariant under T (i.e. f*(Tx) = f*(x) oulside a set belonging to%);

(i) If T : X - X is such a measurable transformation that gi, g» are non-
-negative, (g1 + g2) € N s = (91 + 92(T)) € N s and if the limit function f* exists
outside a set belonging to €, then f* € 2.

Proof. (i) Let {x € X; f(x) = —oo} = 0.
Suppose « < f are rational numbers and B = B(«, f) is the set of points x
for which

n-1 n-1
1 1N
lim inf— Zf(fo) < a< f < limsup Zf(fo).
nz1 n n>1 n
§=0 =0

206



We may assume without loss of generality that B > @, for otherwise the argu-
ment can be carried out with f replaced by —f.
Let C < B(a, ) and € € 4.

n-1

Let us denote 4 = {x e X; In: > (f(TVx) — B . ye(Tix)) > 0}.

Since (f — B . xc) € ? (because of C € %), by means of Theorem I we have

n-1

1
(f — B .xc). xa € P*. If x € B, then there is n such that — X‘fj(x) > f.
n e
=0
Since f is non-negative, we have

n-1 n-1
> (fTix) — B . yo(Tix) > ZO (Tix) — B> 0.

j=0
This means that B(x, f) = A and therefore (f. x4 — 8. xc) € Z+. If {Cu}y,

is an increasing sequence of sets belonging to # for which | J Uy = B, then
n=1

(f-24— B 20,) N (f.2a— B . xB). The functions {(f.xa — B . x¢,)} belong to

2+ and therefore (f. x4 — f.yB) € Z. If we denote 4, = f-1({+0}), then

B-a, = Pt . (fxa — (fxa — BxB))xx-4, belongs to # by Theorem 11. Since

0 < ypna, =[x, it follows from Theorem 2 that yz.,, €% and therefore

x8, (f — B)xB, (« — f)yn belong to Z.

If x € B, then Z fTiz) — B)yp(Tiz) = i f(Tix) — f) > 0 for some positive

7=0

n-1
integer n, hence (f — p)ys € Z+. If @ € B, then > (« — f(TVx)) > 0 for some
=0

positive integer n, hence (x — f).yp € P+ by T -'\B = B and Theorem 1.
Thus, (« — B)ys = (¢ —f) . x5 + (f — B) . x8 belongs to #*+ by Axiom 4
and 4, B = 0.

We have y; < f for any f > 0 and therefore 0 € 4s for each s € £. Since
((x — B) . x8)~ = (B — @) . xB, by the definition of #+ we obtain (8 — «) . yp €
e N5 for eachs el ie. (f — «) .y € #°. The last relation implies B € %.
Hence

{x e X: lim Z f(Tiz) does not exist} = | J B(«, ) €%

n>00 N («,8) rational
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If D= {zeX; flx) = —oc} €%, then 7D €% for each n =0, 1,
For g = f. (I — yxp) the inclusion

oo

o€ X; g*@) £ L@} < U (@ e i fT) # 9T} = Y T-0D

1
- z f(l'x) exists outside a set belonging to . Let f: X — R.

holds, ie. lim
w>o N
Jj=0

Sinee [f(x)| < o0, it is easy to prove that f*(z) = f*(Tx) outside a set belonging
to #. It is a trivial consequence of the elementary properties of Cesaro’s
convergence. Let D = {x € X; |f(x)] = w0} €% and ¢ =f. (I — yp). Clearly
f* = g* outside a set belonging to ¥ and therefore f* is invariant under 7'.
(i1) The limit of a sequence of measurable functions is a measurable function
and therefore f* is measurable (we can put f*(x) = 0 if the limit f* does not

exist in ).
n
Since f € 2, for some s € £ we have |f| e 475, whence it follows that — . |[f| =
n
1

=—.(f)+ ... +|f)eAfs and by the assumption concerning 7'
%

1
;;.(if] + @) + ... + |f@* 1)) eANsforeachn = 1,2, ....

n-1 n-1
1 1
Since —“zf(Tf)[ = *—z |f(T7)], by means of Theorem 9 |f*| € .4 and
n n
-0 | =0
thus f* € 2.
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