Remarks on a Nonlinear Theory of Thin Elastic Plates

Matematický časopis, Vol. 20 (1970), No. 1, 62--71

Persistent URL: http://dml.cz/dmlcz/126957

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

[This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz](http://project.dml.cz)
REMARKS ON A NONLINEAR THEORY OF THIN ELASTIC PLATES

JINDŘICH NEČAS, ZITA PORACKÁ, Praha, RUDOLF KODNÁR, Bratislava

In this paper we shall discuss a certain two-dimensional boundary value problem which arises when we investigate the equilibrium of a built-in plate lying in the plane xy and subjected to a load q perpendicular to the plane xy and to forces g_1, g_2 acting in the plane xy. When denoting the axes in a three-dimensional Euclidean space by x, y, z then the u, v, w will denote the displacements parallel to them, respectively. In the paper we shall work in real spaces and with real functions.

Terminology and notation. For simplicity let Ω be a bounded region in the plane xy with a Lipschitz boundary. Let us denote by $\mathcal{E}(\Omega)$ the space of infinitely many times differentiable functions on Ω which are continuously prolongable with all their derivatives to Ω. $\mathcal{L}(\Omega)$ are functions of $\mathcal{E}(\Omega)$ with a compact support in Ω. Let $W_p^{(k)}(\Omega)$ be a system of functions having all generalized derivatives up to the k-th order integrable with the p-th power in Ω. $W_p^{(k)}(\Omega)$ with the norm $|u|^p_{W_p^{(k)}(\Omega)} = \left(\sum_{i=0}^{k} |u^{(i)}|^p_{L_p(\Omega)}\right)^{1/p}$ (addition through all derivatives) is a Banach space. Let the closure of $\mathcal{L}(\Omega)$ in the $W_p^{(k)}(\Omega)$ norm be denoted by $W_p^{(k)}(\Omega)$. In the following we shall write $W_p^{(k)}$ instead of $W_p^{(k)}(\Omega)$.

Let $W = W_p^{(2)} \times W_p^{(1)} \times W_p^{(1)}$ (a Cartesian product of spaces) and let us define for $\tilde{u} = (w, u, v) \in W$ (where $w \in W_p^{(2)}, u \in W_p^{(1)}, v \in W_p^{(1)})$ the norm by

$$||\tilde{u}||_W^2 = |w|_{W_p^{(2)}}^2 + |u|_{W_p^{(1)}}^2 + |v|_{W_p^{(1)}}^2.$$

Put $V = W_p^{(2)} \times W_p^{(1)} \times W_p^{(1)}$. Let P_1 be the space of all polynomials of the order ≤ 1 and $P \subseteq P_1 \times P_1 \times P_1$, P generated by the vectors $(0, 1, 0), (0, 0, 1), (0, y, x)$. That means the polynomials in question are of the type $\tilde{p} = (0, a + \lambda y, b - \lambda x)$. Let us denote by V/P the space of classes \tilde{u} of functions $\tilde{u} \in V$; $\tilde{u}, \tilde{v} \in \tilde{u} \Rightarrow \tilde{u} - \tilde{v} \in P$. The norm in V/P we define as usual

$$||\tilde{u}||_{V/P} = \inf_{\tilde{u} \in V} ||\tilde{u}||_V.$$

Statement 1. V/P with this norm is a Hilbert space (hence V is reflexive)

Proof. Let $V = P + R$ (direct sum). If $\tilde{u} \in V/P$, there is only one element
\(u_r \in R \) such that for any \(\tilde{u} \in \tilde{u} \) there is \(\tilde{u} = \tilde{u}_p + u_r \). In particular, \(u_r \in \tilde{u} \) (because \(\tilde{u} = \tilde{u}_p + u_r \in P \) for \(u \in \tilde{u} \)).

Now it is clear that the scalar product in \(V \mid P \) may be defined in the following way

\[
\langle (\tilde{u}, \tilde{v}) \rangle_P = (u_r, v_r)
\]

and we have \((\tilde{u}, \tilde{v}) \rangle_P - \inf_{\tilde{u} \in \tilde{u}} \left\| \tilde{u} \right\|_V \inf_{\tilde{v} \in \tilde{v}} \left\| \tilde{v} \right\|_V \left(\left\| \tilde{u}_p \right\|^2 + \left\| u_r \right\|^2 \right) \tilde{u}_r \).

Now, let \(q \in L_2(\Omega), g_1 \in L_2(\tilde{\Omega}), g_2 \in L_2(\Omega) \) where by \(\tilde{\Omega} \) we denote the boundary of \(\Omega \).

We shall study the existence of a weak solution of the following system of equations (system which describes the physical problem mentioned at the beginning)

\[
D \Delta^2 w = \frac{\partial^2 w}{\partial x^2} \sigma_x + \frac{\partial^2 w}{\partial y^2} \sigma_y + 2 \frac{\partial^2 w}{\partial x \partial y} \tau + \frac{q}{h}
\]

(1)

\[
\frac{\partial \sigma}{\partial x} + \frac{\partial \tau}{\partial y} = 0,
\]

\[
\frac{\partial \tau}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0,
\]

where

\[
\sigma_x = \frac{E}{1 - \mu^2} \left[\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + \mu \left(\frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \right) \right],
\]

\[
\sigma_y = \frac{E}{1 - \mu^2} \left[\frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 + \mu \left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) \right],
\]

\[
\tau = \frac{E}{2(1 + \mu)} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial w}{\partial y} \right],
\]

\(h \) the plate thickness

\(E \) the compression modulus of elasticity

\(\mu \) the Poisson number

\(D \) the plate stiffness

under the boundary conditions

\[
w \frac{\partial w}{\partial n} = 0, \quad \text{on } \tilde{\Omega},
\]

63
\[
\begin{align*}
\sigma_{x\mu_x} + \tau n_y &= g_1 \\
\tau n_x + \sigma_{y\mu_y} &= g_2
\end{align*}
\] on \(\Omega\),

\(n_x, n_y\) are the components of a normal to \(\partial\Omega\).

Remark. The equations (1) are to be satisfied in the sense of distributions.

The vector \((w, u, v) \in V\) is a weak solution of the given boundary value problem if for any vector \((\bar{w}, \bar{u}, \bar{v}) \in V\) there is

\[
\int_{\Omega} D \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 \bar{w}}{\partial x^2} + 2 \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 \bar{w}}{\partial x \partial y} + \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 \bar{w}}{\partial y^2} \right) \, dx \, dy + \\
\int_{\Omega} \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial x}{\partial x} + \frac{\partial^2 w}{\partial y^2} \frac{\partial y}{\partial y} + 2 \frac{\partial^2 w}{\partial x \partial y} \frac{\partial x}{\partial x} \frac{\partial y}{\partial y} \right) \bar{w} \, dx \, dy + \\
+ \int_{\Omega} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \right) \frac{\partial \bar{w}}{\partial x} \, dx \, dy \\
\frac{1}{h} \int_{\Omega} q \bar{w} \, dx \, dy \left(\int_{\Omega} g_1 \bar{u} \, ds \right) \left(\int_{\Omega} g_2 \bar{v} \, ds \right) = 0.
\]

(In general, for the definition of a weak solution see e. g. [1]).

Rearranging the second integral (using integration by parts) we obtain that the vector \(\tilde{\alpha} = (w, u, v) \in V\) is a weak solution of the given problem if the following equation holds for any \(\tilde{\beta} = (\bar{w}, \bar{u}, \bar{v}) \in V\)

\[
F(\alpha) \tilde{\beta} = \int_{\Omega} D \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 \bar{w}}{\partial x^2} + 2 \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 \bar{w}}{\partial x \partial y} + \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 \bar{w}}{\partial y^2} \right) \, dx \, dy + \\
+ \int_{\Omega} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \right) \frac{\partial \bar{w}}{\partial x} \, dx \, dy \\
\frac{1}{h} \int_{\Omega} q \bar{w} \, dx \, dy \left(\int_{\Omega} g_1 \bar{u} \, ds \right) \left(\int_{\Omega} g_2 \bar{v} \, ds \right) = 0.
\]

It is easy to verify that the operator \(F(\tilde{\alpha}) \in [V \to V^*]\) defined by this equation...
is the potential (see [2]). Hence there exists a functional \(g(\tilde{z}) \) for which the following condition must be satisfied

\[
\nabla g(\tilde{z}) = F(\tilde{z}).
\]

The equation \(F(\tilde{z}) \not\equiv 0, \forall \tilde{\beta} \in V \) now implies that we can investigate critical points of \(g(\tilde{z}) \) instead of solving (2). By a calculation it is found that

\[
g(\tilde{z}) = \int_{\Omega} D \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 \right] dx dy +
\]

\[
+ \int_{\Omega} E \left[\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 + (1 - \mu) \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] dx dy +
\]

\[
+ \frac{1}{2} \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 dx dy + \int_{\Omega} E \left[\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \right] dx dy +
\]

\[
+ \int_{\Omega} E \left[\frac{\partial u}{\partial x} \frac{\partial w}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial w}{\partial y} \right] dx dy - \frac{1}{h} \int_{\Omega} w dx dy - \int_{\Omega} g_{1u} d\Omega - \int_{\Omega} g_{3v} d\Omega.
\]

Let us denote the integrals on the right-hand side of (3) by \(J_1, \ldots, J_8 \) respectively so that \(g(\tilde{z}) = \sum_{j=1}^{5} J_j - \sum_{j=6}^{8} J_j \) and let us consider the functional \(f(\tilde{z}) = g(z) + \sum_{j=6}^{8} J_j \).

In [2] it is shown that \(f(\tilde{z}), g(\tilde{z}) \) are weakly lower semicontinuous on \(V \). The functional \(g(\tilde{z}) \) may further be written in the form

\[
g(\tilde{z}) = \int_{\Omega} D \left[\left(\frac{\partial^2 w}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 w}{\partial y^2} \right)^2 \right] dx dy +
\]

\[
+ \int_{\Omega} E \left[\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \right] dx dy +
\]

\[
+ \int_{\Omega} E \left[\left(\frac{\partial u}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 + \frac{\partial v}{\partial y} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \right) \right] dx dy +
\]

65
In the following, let g_1, g_2 be such elements of $L_2(\Omega)$ that
\[\int_\Omega g_1(a + \lambda y) \, ds = 0, \quad \int_\Omega g_2(b + \lambda x) \, ds = 0. \]

Now let us define the functional $G(\tilde{z})$ in $V P$ as follows for $\tilde{z} \in V P$ putting $G(\tilde{z}) = f(\tilde{z})$, where $\tilde{z} \in V$, $\tilde{z} \in \tilde{z}$ is arbitrary. One can see from the form of the functional $f(\tilde{z})$ that the definition is meaningful.

Statement 2. $G(\tilde{z})$ is weakly lower semicontinuous on $V P$.

Proof. Let $\tilde{z}_n \rightharpoonup \tilde{z}_0$ in $V P$ (where the symbol \rightharpoonup denotes a weak convergence), i.e. for any $\tilde{u} \in V P$
\[(\tilde{z}_n, \tilde{u})_{VP} \to (\tilde{z}_0, \tilde{u})_{VP}. \]

According to the definition
\[(*) \quad (\tilde{z}_n, \tilde{u})_{VP} = (\tilde{z}_0, \tilde{u})_{VP}. \]

Therefore it is sufficient to show
\[(\tilde{z}_n + \tilde{u}) \to (\tilde{z}_0, \tilde{u}) \text{ for any } \tilde{u} \in V. \]

(Namely, using the weak lower semicontinuity of $f(\tilde{z})$ we obtain the desired result.)

This, however, follows by (*) and by the fact that
\[\tilde{u} - u_p \to \tilde{u}_r, \quad u_p \in P, \quad u_r \in R, \quad P \subset R. \]

Remark. Let us use the notation $U = (u, v)$; by the space $V P$ we may understand the space $W^{(2)}_2 \times (W^{(1)}_2)^2 / P'$, where P' is the space of polynomials of the type $\{a + \lambda y, b - \lambda x\}$. Now, the integral J_1 is equivalent to the norm of the element w in $W^{(2)}_2$ (see e.g. [1]); J_2 on the other hand is equivalent to the norm of the class $U = (\tilde{u}, \tilde{v})$ in $(W^{(1)}_2)^2 / P$. Here, the inequality $J_1 \leq c \|U\|^2$ is evident and the inequality $J_2 \geq c \|U\|^2$ can be obtained from Korn's inequality (see [3]). We shall therefore write $\|w\|_{W^{(2)}_2}$ instead of J_1 and $\|U\|^2$ instead of J_2.

66
Theorem 1. There is

$$\liminf_{\tilde{u} \to \infty} \frac{G(\tilde{u})}{|\tilde{u}|} = c > 0.$$

Proof. From formula (3) we obtain

$$G(\tilde{u}) = w^{\frac{p}{p+2}}_m \tilde{U}^{\frac{p}{p+1}}_m R(\tilde{u}),$$

where $R(\tilde{u}) > J_4$ (because $J_3 \geq 0$). From formula (4) we obtain

$$G(\tilde{u}) = w^{\frac{p}{p+2}}_m k(\tilde{u}),$$

where $k(\tilde{u}) = 0$. Let us estimate $I_4 + I_5$ using Schwartz's inequality. (Note that $w \in L_1$ and that $w w^c = c w^{\frac{p}{p+2}}$ where c does not depend on w; these facts follow from the Sobolev imbedding theorems.)

Let $\tilde{u} \in \tilde{u}$ be arbitrary. Then

$$J_4 \leq c_1(w^{\frac{p}{p+2}}_m + v^{\frac{p}{p+2}}_m) \leq c_1(\|U\| \|w\|^{\frac{p}{p+2}}_m),$$

$$J_5 \leq c_2(w^{\frac{p}{p+2}}_m - v^{\frac{p}{p+2}}_m) \leq c_2(\|U\| \|w\|^{\frac{p}{p+2}}_m),$$

so that we have

$$J_4 + J_5 \leq c |U| \|w\|^{\frac{p}{p+2}}_m \text{ for any } \tilde{u} \in \tilde{u},$$

i.e.,

$$J_4, J_5 \leq c |\tilde{U}|_{V_1}[\|w\|^{\frac{p}{p+2}}_m].$$

Let now $\tilde{u} \not\in P$ for $r > 0$ (we can consider $r > 1$).

$$G(\tilde{u}) \geq r^2 c |\tilde{U}|_{V_1} \|w\|^{\frac{p}{p+2}}_m \geq r^2 c r \|w\|^{\frac{p}{p+2}}_m \geq r \alpha$$

for those \tilde{u} satisfying $|w|^{\frac{p}{p+2}}_m \leq (r - \alpha)/c$ (we can choose a convenient $\sigma > 0$). In this case we can see that

$$G(\tilde{u}) \geq \alpha.$$

If $w \not\in \mathcal{A}$, using formula (6) we obtain an estimate

$$G(\tilde{u}) \geq r \alpha k(\tilde{u}) \geq r - \alpha,$$

so that

$$G(\tilde{u}) \geq r \alpha c \geq \frac{1}{c},$$

$$\frac{1}{c} \geq \frac{1}{c} \alpha \geq \frac{1}{c} \alpha 1 - \alpha \geq \frac{1}{c}.$$
In any case we have
\[G(\tilde{u}) \geq \min \left(\alpha, \frac{1 - \alpha}{c} \right). \]

Theorem 2. If \(g_1 - g_2 = 0 \), then for any \(q \in L_2(\Omega) \) there exists a solution of the problem in question.

Proof. When writing \(\frac{1}{h} \int_{\Omega} qw \, d\Omega = \langle w, q \rangle \) it is sufficient to prove \n
\[\lim_{|q| \to \infty} \inf \left(G(\tilde{u}) - \langle w, q \rangle \right) = + \infty \]

because \(G(\tilde{u}) - \langle w, q \rangle \) is a lower weakly semicontinuous functional in a reflexive Banach space \(V|P \), thus by (*) it has an absolute minimum on \(V P \) and the point that minimizes \(G(\tilde{u}) - \langle w, q \rangle \) is a solution of the given boundary value problem with \(g_1 = g_2 = 0 \) (see e.g. [4]). Let us prove (*).

For any \(K > 0 \) we shall find \(R > 0 \) such that for \(\|\tilde{u}\| \geq R \)

\[G(\tilde{u}) - \langle w, q \rangle \geq K. \]

We have \(\|\tilde{u}\|^2 = \|w\|^2 + \|\tilde{U}\|^2 \); let \(r_1 \geq \max (2\|q\|, \frac{K}{|q|}) \).

For \(\|w\| \geq \|\tilde{w}\| \geq r_1 \) using formula (6) we obtain

\[G(\tilde{u}) - \langle w, q \rangle \geq \|w\|^2 - \|\tilde{w}\|^2 + k(\tilde{u}) - \|w\|^2 \|\tilde{u}\| L_4(\Omega) \geq |w| (|w| - |q|) \geq r_1 r_1 - |q| \geq K. \]

If \(\|w\| \leq r_1 \), then using (5) we obtain

\[G(\tilde{u}) - \langle w, q \rangle \geq \|\tilde{u}\|^2 - \|w\| |q| - c \|\tilde{U}\| \|w\|^2 \geq \|\tilde{U}\|^2 - r_1 |q| - c \|\tilde{U}\| r_1 \geq \|\tilde{U}\| (\|\tilde{U}\| - cr_1^2) - r_1 |q|. \]

If we now choose \(r_2 > 0 \) such that

\[r_2 (r_2 - Cr_1^2) - r_1 |q| \geq K, \]

then for \(\|\tilde{U}\| \geq r_2 \) we have \(G(\tilde{u}) - \langle w, q \rangle \geq K \).

Finally put \(R^2 = r_1^2 + r_2^2 \); then for \(\|\tilde{u}\| \geq R \) there is \(\|\tilde{U}\|^2 \geq R^2 - \|w\|^2 \) and for \(\|w\|^2 \geq r_1^2 \) the relation (7) is true; for \(\|w\|^2 \leq r_1^2 \) we have \(\|\tilde{U}\|^2 \geq r_1^2 + r_2^2 - r_1^2 \) and \(r_2^2 \), so that (7) is true again, what was to be proved.

In the following considerations we shall study a wider problem:

Let \(H \) be a Hilbert space and such that \(V|P \) is a subspace of \(H \). Let \(F \) be a bounded linear functional on \(H \). Instead of the symbol \(\tilde{u} \) we shall simply
write \(u \) and instead of \(G(\tilde{u}) \) we shall write \(f(\tilde{u}) \) (according to the definition of \(G(\tilde{u}) \)).

We shall put

\[
M_s = \{ F \in H^*; \lim_{\| \tilde{u} \|_P \to \infty} \inf (f(\tilde{u})) (\tilde{u}, F) = + \infty \};
\]

\[
M_t = \{ F \in H^*; \lim_{\| \tilde{u} \|_P \to \infty} \inf (f(\tilde{u})) (\tilde{u}, F) = c \neq \pm \infty \};
\]

\[
M_t = \{ F \in H^*; \lim_{\| \tilde{u} \|_P \to \infty} \inf (f(\tilde{u})) (\tilde{u}, F) = - \infty \}.
\]

We shall show that \(M_s \neq \emptyset \); for \(F \in M_s \) there exists an absolute minimum of the functional \(f(\tilde{u}) - (\tilde{u}, F) \), hence a solution of certain boundary value problem as it follows from the foregoing considerations (especially from the proof of Theorem 2.)

Theorem 3. The set \(M \) is convex.

Proof. Let \(F_1, F_2 \in M_s \); then for \(F = (1 - \lambda)F_1 + \lambda F_2 (0 < \lambda < 1) \) we have

\[
f(\tilde{u}) (\tilde{u}, F) = f(\tilde{u}) - (1 - \lambda) f(\tilde{u}) (\tilde{u}, F_1) - \lambda f(\tilde{u}) (\tilde{u}, F_2) =
\]

\[
(1 - \lambda) f(\tilde{u}) (\tilde{u}, F_1) + \lambda f(\tilde{u}) (\tilde{u}, F_2),
\]

hence \(F \in M_s \).

For \(F \in H^* \), \(|F| = 1 \) we define a real-valued function corresponding to the chosen \(H \) in the following way:

\[
\lambda_H(F) = \sup \{ \sigma; \sigma F \in M_s \}.
\]

Then \(\lambda_H(F) > 0 \) (from this it is clear that \(M_s \neq \emptyset \)). Namely, by Theorem 1 the existence of such \(R > 0 \) follows that for \(\| \tilde{u} \|_P > R \) we have \(f(\tilde{u}) \geq \alpha \tilde{u} \| \tilde{u} \|_P \) (for some \(\alpha > 0 \)) so that all right-hand sides with a sufficiently small norm belong to the \(M_s \). From this there also follows an existence of a neighbourhood of zero at \(H^* \), the whole belonging to the \(M_s \).

\[
\left(\text{Really, } f(\tilde{u}) (\tilde{u}, F) \geq \alpha \tilde{u} \| \tilde{u} \|_P \quad \text{and} \quad \| \tilde{u} \|_P \| F \|_H; \quad \left\{ F, \| F \|_H \leq \frac{\alpha}{2c} \right\} \subset M_s \right).
\]

We shall prove several theorems concerning \(\lambda_H(F) \).

Theorem 4. If \(\sigma > \lambda_H(F) \), then \(\sigma F \in M_1 \) (so that for \(\sigma > \lambda_H(F) \) there is no absolute minimum of \(f(\tilde{u}) - \sigma(\tilde{u}, F) \)).

Proof. Let \(\sigma > \lambda_H(F) \). If \(\lim_{|\tilde{u}| \to \infty} \inf (f(\tilde{u}) - \sigma(\tilde{u}, F)) = c \neq \pm \infty \), then for \(\sigma > \sigma_1 > \lambda_H(F) \) there should be \(\lim_{|\tilde{u}| \to \infty} \inf (f(\tilde{u}) - \sigma_1(\tilde{u}, F)) = K \neq \pm \infty \). Really, \(\lim_{|\tilde{u}| \to \infty} (f(\tilde{u}) - \sigma_1(\tilde{u}, F)) \) cannot hold because \(\sigma_1 > \lambda_H(F) \) and if \(\lim_{|\tilde{u}| \to \infty} (f(\tilde{u}) - \sigma(\tilde{u}, F)) = - \infty \) then
\[
\infty = \liminf_{|u| \to \infty} (f(u)) \geq \liminf_{|u| \to \infty} (f(u)) \quad c \equiv \infty
\]

Moreover, we have
\[
f(u) \sigma_1(u, F) = (f(u) - \sigma(u, F)) \frac{\sigma_1}{\sigma} + f(u) \begin{pmatrix} 1 & \sigma_1 \\ \sigma & \sigma \end{pmatrix}
\]
and
\[
\liminf_{|u| \to \infty} (f(u)) \sigma_1(u, F) \geq \sigma_1 \liminf_{|u| \to \infty} \left[(f(u)) \sigma(u, F) \sigma \begin{pmatrix} 1 & \sigma_1 \\ \sigma & \sigma \end{pmatrix}\right]
\]
which means that
\[
\pm \infty + K \geq \sigma_1 C + \infty \begin{pmatrix} 0 \in M_s \to \liminf_{|u| \to \infty} f(u) \begin{pmatrix} 1 & \sigma_1 \\ \sigma & \sigma \end{pmatrix} \infty \end{pmatrix}
\]
which is a contradiction.

Theorem 5. Function \(\lambda_H(F) \) is continuous.

Proof. At first let \(F_0 \) be such that \(\lambda_H(F_0) < + \infty \). Let \(\varepsilon > 0 \) be arbitrary (but fixed). By the preceding there is \(r : 0 < r < \lambda_H(F_0) \) such that \(D \) \(\{F; \ F_H < \leq r\} \subset M_s \). Let \(s \) take a cone \(C \) \(\{aF; a \geq 0, F \in D - \lambda_H(F_0)F_0\} \lambda_H(F_0)F_0 \) so that \(C \) is a convex cone with a vertex at the point \(\lambda_H(F_0)F_0 \) and containing all the points of \(D \). From the convexity of \(M_s \) it follows that the points of the type \(2\lambda_H(F_0)F_0 + (1 - \alpha)F, F \in D, \alpha \in (0, 1) \) belong to \(M_s \). Furthermore, let \(K \) be another cone, \(K \) \(\{aF; a \geq 0, F \in D - \lambda_H(F_0)F_0\} + \lambda_H(F_0)F_0 \). One can easily see that \(V \) \(\{aF; a \geq 0, F \in K \cap \{F; F \lambda_H(F_0)F_0 - \varepsilon\} \) is a convex cone with a vertex at the origin and \(F_0 \in \text{Int} \ V \). Now, the set \(\text{Int} \ V \cap \{F; \ |F| < 1\} \) is the neighbourhood of \(F_0 \) we were looking for.

Certainly, let \(F \in \text{Int} A: \lambda_H(F_0)F \) lies on the ray \(aF, a > 0 \). We must show that \(\lambda_H(F)F \) lies in the \(\varepsilon \)-neighbourhood of \(\lambda_H(F_0)F_0 \). But it is clear that \(\lambda_H(F) < \lambda_H(F_0) \) \(\varepsilon \) is impossible (by the definition of \(\lambda_H(F) \) and for all the interior points of \(M \) \(\{aF; 1 \geq a \geq 0, F \in D - \lambda_H(F_0)F_0\} + \lambda_H(F_0)F_0 \) belong to \(M_s \) and in the case of \(\lambda_H(F)F \) \(\varepsilon \) the point \(\lambda_H(F_0)F \) would lay in \(\text{Int} \ M \) and having \(\lambda_H(F) > \lambda_H(F_0) + \varepsilon \) we can easily find that on the ray \(aF_0, a \geq 0 \) there is a point \(\sigma F_0 \in M_s \) with \(\sigma > \lambda_H(F_0) \), which is a contradiction.

Now let \(\lambda_H(F_0) \) \(\infty \). Choose \(R > 0 \) and consider a „cone“ \(K \) \(\{aF; 1 \geq a \geq 0, F \in D - 2RF_0\} + 2RF_0 \). It is clear that \(\text{Int} K \subset M_s \). Now for all \(F \in V \cap \{F; |F| < 1\} \) we have \(\lambda_H(F) > R \), where \(V \) \(\{aF; a \geq 0, F \in \{x; |x| > R\} \cap K\} \) and \(V \cap \{F; |F| < 1\} \) is the neighbourhood we were looking for.
Finally we shall mention another property of the function $\lambda_H(F)$. Let $B \subset H$ and let us suppose that the identical imbedding $H \to B$ is totally continuous. Let $B_n \subset B$, closed subspaces of B ($n = 1, 2, \ldots$) such that $\lim_{n \to \infty} B_n = B$ (i.e. $\forall v \in B \exists v_n \in B_n [\lim_{n \to \infty} v = v_n \in B]$).

The following theorem is true

Theorem 6. If we denote by $D_n = \{F \in B^*; v \in B_n \to Fv = 0\}$ then

$$\lim \inf_{n \to \infty} \lambda_{B^*}(F) = \infty$$

Proof. It is sufficient to prove that

$$\lim_{n \to \infty} \sup_{F \in D_n} F_{H^r} = 0.$$

Let us suppose that this does not hold. Then there exists such an $F_n \in D_n$ that $F_n \in H^r$ for some $\varepsilon > 0$. Let $v \in B$ be arbitrary; then $F_n v = F_n v_n + F_n (v - v_n) > 0$ so that $F_n \to 0$ in B^*. But the identical imbedding $B^* \to H^r$ is totally continuous hence $F_n \to 0$ in H^r so that $F_n \to 0$, which is a contradiction.

REFERENCES

Received January 18, 1968