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Matematicky &asopis 20 (1970), No. 1

REMARKS ON A NONLINEAR THEORY OF THIN ELASTIC
PLATES

JINDRICH NECAS, ZITA PORACKA, Praha, RUDOLF KODNAR, Britislwa

In this paper we shall discuss a certain two-dimensional boundary valuc
problem which arises when we investigate the equilibrium of a built-in platc
lying in the plane zy and subjected to a load q perpendicular to the plane ay
and to forces ¢1, g2 acting in the plane xy. When denoting the axes in a three
dimensional Euclidean space by «, y, z then the u, v, w will denote the dis
placements parallel to them, respectively. In the paper we shall work in r-al
spaces and with real functions.

Terminology and notation. I'or simplicity let 2 be a bounded region ig the
plane zy with a Lipschitz boundary. Let us denote by ¢(£2) the space of infinitely
many times differentiable functions on £ which are continuously prolongable
with all their derivatives to 2 . 2(Q2) are functions of ¢(2) with a compact
support in Q. Let W (2) be a system of functions having all generalized

derivatives up to the k-th order integrable with the p-th power in 2. W (Q)
%

with the norm |ully gy (O u®|f,0)! ? (addition through all derivatives)
0

is a Banach space. Let the closure of Z(£2) in the W;f')(!)) norm be denoted

by W®(2). In the following we shall write 17" instead of W{P(2).
Let W W®  w®» WP (a Cartesian product of spaces) and let us
define for w  (w, w,v) € W (where we WP, we WP, ve W) the norm by

el lwwe | 4 el + [0l -

Put V=w WPHx WP. Let P; be the space of all polynomials ot
the order < 1 and PC P; ¥ Py X P1, P generated by the vectors (0, 1, 0),
(0,0,1), (0,y, ). That means the polynomials in question are of the type
p  (0,a + Ay, b — ix). Let us denote by V/P the space of classes % of func
tionsw e V; 4, v €% < % — v € P. The norm in V/P we define as usual

tllyp — inf [y

uU€u

Statement 1. VP with this norm is a Hilbert space (hence V P is reflexive)
Proof. Let VP 4 R (direct sum). If % € V/P, there is only onc element
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%, € R such that for any weu there is v  w,+ w,. In particular, wu, ¢ 4

(because & u, € P for u € ).

Now it is clear that the scalar product in V]|P may be defined in the following
way
(@, )y p — (Wr, V)

=, 2

and we have (%, e— @i,  inf [wlfinf ()2 - W@ 2) Uy 3.

1EU uewn
Now, let g € Ls(2), g1 € La(2), g2 € L2(2) where by 2 we denote the boundary
of Q.

We shall study the existence of a weak solution of the following system of
cquations (system which describes the physical problem mentioned at the
beginning)

D o?w 2 aw q
A2w o oy + 2 T )
J/ x> y2 ox oy h
do ‘T
() + 0,
cx oy
ot oy
+ 0,
ax oy

where

+

E ou 1 [ew)? ov 1 [ow)\?
Or + + ,
I 2 ]ex 2 \ox oy 2 \oy
F v n 1 [ow 2+ ou n 1 {ow)?
g, 2 »
oo elay 2 \ey o " 2 \ow

FE ou ov ow ow
+ + s
2(1 + )

h the plate thickness
E  the compression modulus of elasticity
I the Poisson number
D the plate stiffness
under the boundary conditions

oy ox ox 0y

ow .
w 0, on 2,
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Ozlg + Ty — 1 on O,
Ty + OyNy = g2
%z, ny are the components of a normal to Q.
Remark. The equations (1) are to be satisfied in the sense of distributions.

The vector (w, w,v) e V is a weak solution of the given boundary value
problem if for any vector (@, i, ¥) € V there is

D [o2w 2w Q2w 0% 02w 0%
+ 2 — + dedy
h \ 022 oat oxoy oxoy oy? cy>
[ [ e2w n cw Lo 2w ) dedy +
C o 2 —— 1| @ dady
J\aaz ™ g oxdy Y
2]
N ([ oa N on v N v d
a T — T — 4+ o,— | dady
JU7 e oy + ox " oy Y
0
1
L qw dxdy — | g1@ ds g:0ds 0.
@ 0 O

(In general, for the definition of a weak solution see ¢. g. [1]).

Rearrangeing the sccond integral (using integration by parts) we obtain
that the vector & — (w, u, v) € V is a weak solution of the given problem if
the following equation folds for any g = (@, @, %) e V

. D [&2w o2 Pw 2 | Pw O
(2) F(z)p = b 2 — — ) dady +
h \ dx? ox2 oxoy oxoy oy> oy*
£
N " ew o +8w om . ow om N w ew N
0. g T - T XAy
J \ér ox ’ oy oy Y o oy oy Ox Y

, o on or o5
-+ Oz 4+t + T -+ oy dxdy
X ox oy

1
L J q dady — J g1t ds ‘[ggﬁ ds=0.

L 1) 0

1t is casy to verify that the operator F(z) € [V — V*] defined by this equation
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is the potential (see [2]). Hence there exists a functional g(x) for which the
following condition must be satisfied

grad g(a) = F(a) .

The equation F(z)p 0, V€ V now implies that we can investigate critical
points of g(z) instead of solving (2). By a calculation it is found that

5 . D |(o2w)? 5 (2 ? o [orw)? dd
(3) g(a) o2 + e + oy xdy +
. J~ ) ou 2+ ov\? n
T + (I —p) - oy
+1' dzd b ) (7)) aa
2 S IPYY | ay) | YT
N E ou 6w2+av 8w ov [ow)® a_uawzdd
2(1  p?) | ox \ox oy \ oy T oy \ ox te ox \ 0 o

Yy
Q
E ow ov\ ow ow 1
+ + dedy — — | qw daxdy — | g1u dQ — | gav A2 .
2(1 4+ u) \oy ox) ox oy h
Q Q Q 0
Let us denote the integrals on th(, right-hand side of (3) by J1, ..., Js respec-

tively so that g(x) Z Jy —
5 :
gle) + > J;.
j6

z J; and let us consider the functional f(a) =

In [2] it is shown that f(x), g(«) are weakly lower semicontinuous on V.
The functional g(z) may further be written in the form

' . D |[o2w)? , 2w 2+62w2dd
(4) g(a) = on |\ 200 + oady » xdy +
Q
E, ou ov 1 [ow)\? 1 [ow)\*]?
-+ + + + — dady +
2(1 — u2) |\ ox oy 2 \ ox 2 \oy
O
E ou 1 [ow)\%\? ov 1 aw 2\ 2
+ + + + dzdy -
J 2L+ p) [\ ox 2 \ ox oy 3J




L cw ow cu v\ |?
F + + dady
H1 ) {ox oy oy ox

1 . .
; qu dady — ngu do — ‘[ggv dQ .
)

Q 0 0
In the following, let g1, g> be such elements of La(£2) that
JI' gile + 4y)ds 0., ! g2(b Azx)ds 0
Q o

Now let us define the functional G(3) in V P as follows for & € V' P putting
G(%) = f3), where a € V, 2 €5 is arbitrary. One can see from the form of the
functional f(x) that the definition is meaningful.

Statement 2. G(3) is weakly lower semicontinuous on V P.

Proof. Let G, —a9 in V P (where the symbol ~denotes a weak conver
gence), i. c. for any i € V P
(ans Wy p > (a0, )y p-
According to the definition
- — ~
o

(*) (in, %C)V P (“n,r ’U'r)V; ( 0, ﬁ)V P (&0.1' s ar)V .

Therefore it is sufficient to show

(%n,r, @) — (%o.r, %) for any e V .

(Namely, using the weak lower semicontinuity of f(a) we obtain the desucd

result.)
This, however, follows by (*) and by the fact that

w— U, U, uUupeP, wecR, P R.

Remark. Let us use the notation U - (u, v); by the space V P we mu
understand the space W x (W®)?/P’, where P’ is the space of polynor ials
of the type {a 4+ Ay, b — Ax}. Now, the integral J1 is equivalent to the 1oim
of the element w in W (see e. g. [1]); J2 on the other hand is equival nt
to the norm of the class U (&, #) in (IWQ)*/P. Here, the inequality ./
< ¢|U| is evident and the inequality Js > ¢’'|U|2 can be obtained i~ ny
Korn’s inequality (see [3]). We shall therefore write |w ;> instead t J
and ||]2 instead of J2.
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Theorem 1. 7'liere is

(Y ey
lim inf —’—(f ) c>0.
Hlstw I m !

Proof. From formula (3) we obtain

(3) 0@ wye U

-t

I 1{(%2) ’

where R@) > Jy Js (because J3 > 0). From formula (4) we obtain

(6) Gy w e k@),
where k(%) 0. Let us estimate I4-+ I5 using Schwartz’s incquality. (Note
cw ow
that wely, . €lyg and that w e  cwl,y where ¢ does not
ey

depend on w: these facts follow from the Sobolev imbedding theorcms )
Let % € &t be arbitrary. Then

Jr <ea(uny b oowp) lwie < U wlhys
Js < cea( ulire = v ) wlive < e|U w2 »

<o that we have

Ji+Js <c Ul wlye foranyuei,

i.e., Ja  Js <c|17]1,v,l,||wf|fi;(,

~
>

Let now %y p r >0 (we can consider » 1).

2

G@) 2 r2 clOlvpwlie > awio o dwlye) > r

for those 3 satisfying |wl|ye < (r  «)/c (we can choose a convenient o )
e.g. 2 1). In this case we can see that

G(u)
- > o
|
P . .
It ow, > , using formula (6) we obtain an estimate
c
- roo o r— o
Gw) > k(u) > ,
¢ c
<o that
(@) | o 1 o 1 —o
N2 > -
i | ¢ cr C ¢



Tn any case we have

G(u) . ( 1—-0()
- > min |a, B

@

iz

Theorem 2. If g1 g2= 0, then for any q € Ly(Q) there exists a solution
of the problem in question.

1
Proof. When writing ; qu dQ = <{w, ¢ it is sufficient to prove
h
Q2

() Jim inf (@) — <w, ) = + @

because G(it) — (w, ¢ is a lower weakly semicontinuous functional in a reflexive
Banach space V|P, thus by (§) it has an absolute minimum on ¥ P and the
point that minimizes G(#) — <w, ¢> is a solution of the given boundary value
problem with g1 = g2 0 (see e. g. [4]). Let us prove (}).

For any K > 0 we shall find R > 0 such that for |jii]| > R

(7) G(i) — <w, ¢ > K .
We have [7[2 = (]2 + [0 let 1 > max (gl ).
For |[w|lz» > 7, using formula (6) we obtain .
G@d) — <w, @) > lwlip + k@) — [wlie lglne > [0 (v — q) >

> n(n— lq) > nlgl > K .
If |lw|| < 71, then using (5) we obtain
G(id) — <w, ¢ = il — |l llgll — Ol ||z > 102 — rilgl — c|T 7 >
> 01T = erf) — rulgll -
If we now choose 72 > 0 such that
ra(ra— Cr}) — nillgll = K,

then for ||U]| > r2 we have G(&i) — w, ¢> > K .

Finally put R2= s 4 73; then for |&|| > R there is ||U|2 > R2

for ||w|f2 > 77 the relation (7) is true; for |w|2 < 7° we have ||U|2 >
75, so that (7) is true again, what was to be proved.

w|2 and

o > 2
ri +r; —r

In the following considerations we shall study a wider problem:

Let H be a Hilbert space and such that V|P is a subspace of H . Let F be
a bounded linear functional on H. Instead of the symbol 7% we shall simply
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write % and instead of G(i) we shall write f(x) (according to the definition
of G(@)).
We shall put

M, {Fel* lim inf (f@) (v, F)) =+ o};

[il v1p>o0

M; — {F e H* lim inf (fu) (u,F)) — ¢+ + o0};

Ulv/ip>o

M, {FeH%* lim inf (fw) (u,F)) = — oo}.

U lv/p—>0

We shall show that M + 0; for F € A, there exists an absolute minimum
of the functional f(u) — (%, F), hence a solution of certain boundary value
problem as it follows from the foregoing considerations (especially from the
proof of Theorem 2.)

Theorem 3. The set M is convex.
Proof. Let F'1, Fo € Ms; then for ' (1 — A)F1 4 AF»(0 << 2 << 1) we have

S @ F) = @) — () @, ) — 2 Fy) =
(1 2@ — @@ F) + 2@ G F),

hence F e M; .
For F e H*, |F| 1 we define a real-valued function corresponding t» the
chosen H in the following way:

Aa(F)  sup {o; oF € M} .

Then 24 (F) > 0 (from this it is clear that M, & ). Namely, by Theorem 1 the
existence of such R > 0 follows that for |[uly;p > R we have f(u) > a« u v p
(for some o > 0) so that all right-hand sides with a sufficiently small norm
belong to the M. From this there also follows an existence of a neighbourhood
of zero at H*, the whole belonging to the ;.

cu ) .

Theorem 4. If ¢ > iy(F'), then oF € My (so that for o > Ay(F') there is mo
absolute minimum of f(a) — o(u, F))

- - - - |
Really, f(u) (,F) > aulpp clulype [|Flas; {F, F ) < N

a.
C

-

We shall prove several theorems concerning Ay (F').

Proof. Let o > Ay(F). Ifllim inf (f(u) o(u, F)) ¢+ + o, then for
% —>+400
o >c, > Ag(F) there should be | llim inf (f() — o1(u, F)) K + + co.
A+
Really, lim inf (f(@) — o1, F)) 4+ oo cannot hold because a1 > Au(F)
U €+

and if lim inf (f(w) — o1(a, F)) — oo then
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© = %im inf (fw) o(a, F)) > lim inf (flu) o@, F)) c+ ©

o>

Moreover. we have

01

f@) o, F) (fu) — o(u, F)) o +f(ﬁ)(1 01)

and

lim inf(f@) o, F) > lim inf[(f(az) o f(ﬁ)(l “1)}

o> O fu> «

which means that

o R c
4o+ K > G‘ o+ oo(()eﬂ[s—> lim inff(u)(l 1) oo)

n> o

which is a contradiction.

Theorem 5. Function Ay(F) is continuous.

Proof. At first let /'y be such that 2z(Fo) < 4 co. Let ¢ > 0 be arbitrary (but
fixed). By the preceding there is » : 0 << r << A5(Fo) such that D {F; F g <
<1} C M. LetustakecaconeC  {aF;a > 0,FF €D — Ag(Fo)lFo}  Au(Fo)Fo
so that € is a convex cone with a vertex at the point Ay (Fo)Fy and cont: ining
all the points of D. From the convexity of 3 it follows that the points of
the type adn(Fo)Fo + (1 o), FeD, ae(0,1) belong to 3. Furthermore,
let X be another cone, K {aF; a 20, FeD Ag(Io)lo} + Au(Fo)Fo.
One can ecasily see that 17 {al'; a > 0, Fe Kn{F; F g(Fo)lFy ¢}
15 & convex cone with a vertex at the origin and F¢e Int V. Now, the set
Int .1 Int(Vn{F; |F| 1} is the neigbourhood of Iy we were looking
for
Certainly, let # e Int A: Ag(F)F lies on the ray aF, a > 0. We must show
that 2y(I')F lics in the ¢ -neighbourhood of Ay (Fo)Fy. But it is clear that
Au(F) < An(Fo) ¢ is impossible (by the definition of Agx(#') and for all the
mterior  points  of A {alF; 1 >2a >0, FeD— IygFo)Fo} + 2u(Fo)Fy
belong to A, and in the case of Ax(F) Ai(Fo) ¢ the point Ag(£)F would
layvin Int M) and having Ag(I") > 2a(Fo) 4 ¢ we can ecasily find that on the
ray «fFy, @ = 0 there is a pomt oFg e My with ¢ > 4;(Fo), which is a contra-
diction.

Now let Ag(Fo) 0. Choose It > 0 and consider a ,,cone” X' {aF:
I ~a>0, FeD 2BF, + 2RFy. It is clear that Int A C J/,. Now for
Al FeVn{F; |[Fly 1} we have Ay(F) >R, where V' {aF; a 0,
I e v | Ry Kyand VA {; |F g« 1} is the neighbourhood we were
looking for.
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Finally we shall mention another property of the function Ay (F). Let B I
and let us suppose that the identical imbedding H — B is totally continuous
Let B, CB, B, closed subspaces of B (1, 2, ...) such that lim B, B

n->w
(i.e.(V veB)@v,eBy)[lim v v, p 0]).
n—>0

The following theorem is true
Theorem 6. /f we denote by D,  {Fe B*;ve B, Fv -0} then

lim ( inf  Ap«(F)) oo

n»o I"p 1.I'eD,

Proof. It is sufficient to prove that

lim ( sup Fo) 0.
NS0 P P D
Let us suppose that this does not hold. Then there exists such an #, € D,
that F, ¢ for some ¢ > 0. Let v ¢ B be arbitrary; then F,o  F,v,
F.(v  w,) >0sothat ', > 01 B*. But the identical imbedding I}* — H*
1s totally continuous henee £y —~ 0 in H* so that F, ;+ >0, which is a con
tradiction.
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