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M a t e m a t i c k ý časopis 20 (1970), N o . 1 

REMARKS ON A NONLINEAR THEORY OF THIN ELASTIC 
PLATES 

JINDRICH NECAS, ZITA PORACKA, Praha, RUDOLF KODNAR, Bntip l iva 

In this paper we shall discuss a certain two-dimensional boundary value 
problem which arises when we investigate the equilibrium of a built-in plate 
lying in the plane xy and subjected to a load q perpendicular to the plane xy 
and to forces g\, gi acting in the plane xy. When denoting the axes in a three 
dimensional ELiclidean space by x, y, z then the u, v, w will denote the dis 
placements parallel to them, respectively. In the paper we shall work in r »al 
spaces and with real functions. 

Terminology and notation. For simplicity let Q be a bounded region ig the 
plane xy with a Lipschitz boundary. Let us denote by e(Q) the space of infinitely 
many times differentiate functions on Q which are continuously prolongable 
with all their derivatives to Q . Q(Q) are functions of e(Q) with a compact 
support in Q. Let W(p\Q) be a system of functions having all generalized 
derivatives up to the k-th order integrable with the p-t\\ pow er in Q. W(* (Q) 

k 

with the norm M|njf'(r.>) Q^ u(i)\\PLp{n)Y v (addition through all derivati\es) 
i 0 

is a Banach space. Let the closure of Q(Q) in the W(f\Q) norm be denoted 
by Wp\Q)- In the following we shall write W(^ instead of W(*\Q). 

Let TV Wf W(P Wf (a Cartesian product of spaces) and let us 
define for u (w, u, v) e W (where w e Wf\ u e W(}\ v e TVll)) the norm by 

11̂  \w \wh2) I + IMIiV + I v\ iV • 
P u t V = 1V̂ 2) Wf X Wf. Let P x be the space of all polynomial* ot 

the order ^ 1 and P C Pi X Pi X Pi, P generated by the vectors (0, V 0), 
(0, 0, 1), (0, y, x). That means the polynomials in question are of the type 
p (0, a + Xy, b — AX). Let us denote by V/P the space of classes u of func 
tions u e V \ u,~u e u o u — v e P. The norm in V/P we define as usual 

AWV/P —jnf|l5||pr. 

Statement 1. V/P with this norm is a Hilbert space (hence V P is reflexive) 
Proof. Let V P -f B (direct sum). If % e V/P, there is only one element 
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u
r e Tl such that for any u e u there is u up+ur. Tn particular, ur e i7 

(because M uv uve P for a eu). 

Now it is clear that the scalar product in V|P may be denned in the following 
w ay 

(u, v)v P — (ur, Vr)y 

and we have (%,U)VP— Mlr/H inf \ufv m f ( foil2 + ^r 2) ur % 

Now, let q e LJ2(Q), r/i e L2(Q), g2 £ Li{&) where by .f) we denote the boundary 
offi . 

We shall study the existence of a weak solution of the following system of 
equations (system wrhich describes the physical problem mentioned at the 
beginning) 

D 82w 82w 82w q 
A2w ax oy + 2 T + 

li 8x2 8y2 8 x 8y li 

8a 8T 

+, °> 
8x 8y 
8T 8OU 

+ o, 
8x 8y 

(i) 

where 

(Уx 
E 

I ,,-

E 

ì — / t -

8u 1 I8w\ 'Єv l 8wy 

8x 2 \8x] f\8y 2 \8y ] ] 

8v 1 Í8wV Í8u 1 (?wV\ 

8y 2 \8y] ** \8x 2 \8x] j 

E 

2(1 + //) 

8u 8v 8w 8w 
+ + 

8y 8x 8x 8y 

h the plate thickness 
E the compression modulus of elasticity 
fi the Poisson number 
D the plate stiffness 

under the boundary conditions 

8w 
w 0 

8n 
on Ü 
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oxtix + tily — gi 
on Ü , 

xnx + oyrvy = g-z 

nx, nlf are the components of a normal to Q. 

R e m a r k . The equations (1) are to be satisfied in the sense of distributions. 

The vector (w, u, v) e V is a weak solution of the given boundary value 
problem if for any vector (w, u, v) e V there is 

D I82w 82w 8Hv 82w 82w 82w\ 
+ 2 + dxdy 

h \8x2 8x2 8x8y 8x8y 8y2 8y2 J 

~ fd2w 82w 82w \ 
— Ox + On + 2 r iv dxdt/ + 

K8x2 8y2 8x8y J 
Ü 

+ 
8ů 8ů 8v 8v\ 

\ax + T — + T ^ — + (7^-— dxdy 
8x 8y 

qîv dxdy 

8x 

giíí ds 

дУ) 

gzv ds 0 . 

(In general, for the definition of a weak solution see e. g. [1]). 

Hearrangeing the second integral (using integration by parts) ^ e obtain 
that the vector a — (w, ^l, v) e V is a weak solution of the given problem if 
the following equation folds for any j5 = (w, u, v) e V 

(- F(xЏ = 

+ 

D BЧv '84) 

h \a*2 8x* 
+ 2-

82w 82w 

+ 
82w 82iv\ 

8x8y 8x8y 8y2 8y2

1 

dxdy + 

ÍÌ 

cгv 8w 8w 8w 8w 8w 8w 8w \ 
ox + Oy -j T + T dxdy + 

8x 8x 8y 8y 8x 8y 8y 8x ) 

( 8a du 8v 8v\ 

ox + T + T + oy \ dxdy 
cx 8y cx oy) i 

Һ 
qw dxdy 

8x 

g\ü ds g«v ds — 0 . 

It is easy to verify that the operator F(a) e [V -^ V*] defined by this equation 
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is the potential (see [2]). Hence there exists a functional g(a) for which the 
following condition must be satisfied 

grad gr(a) = F(a) . 

The equation F(a) /§ 0, V/5 e V now implies t h a t we can investigate critical 
points of (/(a) instead of solving (2). By a calculation it is found that 

(3) »(«) 
D 

2Һ 

' d2w\ д2w (82w\2} 

dx2) \dxdy) \dy2) \ 

E \ íдu дv Í8uYl8v) 

\8x) \8yj + 
1 a Idu dv 

+ + 
2 \dy dx) J 

+ 
E 

2(1 џ*) 

E 

I du ídw 

dx \ dx 

dxdy -f-

Í 

dv ídw 

8( 

E \Í8wV l8wVA 

l-^)]\dx) \8y) \ 

dv í d du l dw\\ 

dx] dy\dy) ^ dy\dx) fÁdx\dyj\Xy 

J I du dv\ dw dw 1 

+ dxdy- — 
2(1 + //) \dy dx) dx dy h 

£} 

qw dxdy g\u dü — gгv dÙ 

Let us denote the integrals on the right-hand side of (3) by J i , . . . , Js respec-
_ 5 8 

tively so that #(a) ^ Jj — 2 ^ a n c^ ^ u s c011^*!61* the functional /(a) = 
s ; i j e 

ff(«) + 2 J j -

In [2] it is shown that /(a), gf(a) are weakly lower semicontinuous on V. 
The functional gr(a) may further be written in the form 

(̂ ) 
D d2wY I d2wV d2w) rt"'-J»lU)+iW + v , ,d r f ,+ 

íi 
2 ! /o . . . \2 l2 

J 2(l-,i«)[V»x d,j) 2 \9x/ 
í> 

2 \ 2 

31 

+ i £ r+ I r i i + 
J 2(1 +p) [\8x 2 \8x) ) 

8v 1 / 8 w \ V 

d„dy + 

dxdy + 
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н 
Чi ,,) 

?w cw i Clí cv^ 

+ + 
dx dy \dy 8x/ 

dxdy 

qw dxdy — g\u dí) — g2v dÙ . 

In the following, let g\, g2 be such elements of L2(Q) that 

\ gi(a -f hj) ds 0 , f g2(b Xx) ds 0 

Now let us define the functional C7(a) in V P as follows for a e V P putting 
C7(a) = / (a) , where a e V, a e a is arbitrary. One can see from the form of tlu 
functional /(a) that the definition is meaningful. 

Statement 2. (7(a) ?s weakly lower semicontinuous on V P. 

Proof . Let §« -^ t?o in VP (where the symbol---denotes a weak convei 
gence), i. e. for any u e V P 

(oU, U)v P > (ao, « V P • 

According to the definition 

(*) (~&n,u)vP (Kn,rUr)v; (ao3)VP (ao.r,2r)V. 

Therefore it is sufficient to show 

(a?г,r, u) (ÖLO.Г, u) for аny u e V . 

(Namely, using the wTeak lower semicontinuity of /(a) we obtain the desucd 
result.) 

This, however, follows by (*) and by the fact that 

u — Up ur, Up e P, ur e E, R . 

R e m a r k . Let us use the notation U - (u, v); by the space V P we m i\ 
understand the space W2

2)X (W$P)2/P', where P' is the space of polynoi ials 
of the type {a -f- Xy, b — Xx}. Now, the integral J\ is equivalent to the lonn 
of the element w in TVi~) (see e. g. [1]); J2 on the other hand is equhal nt 
to the norm of the class U (U, v) in (Wi^f/P. Here, the inequality ,/ 
^ c||U||2 is evident and the inequality J2 ^ c'\U\\2 can be obtained is l y 

Korn's inequality (see [3]). We shall therefore write \w w> instead t / 
and || U\ 2 instead of J2. 
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Theorem 1. There Ls* 

hm mt —- c > 0 . 
S? !->+«> \u\ 

Proof. From formula (3) we obtain 

(3) o(i) w\;v« Ui2
r7 ii(i), 

wheie R(u) > J 4 J.5 (because J3 ^ 0). From formula (4) w7e obtain 

(0) G(v) w ^ k(u) , 

where k(u) 0. Let us estimate -Z4 + I5 using Schwartz's inequality. (Note 
rtv dw 

that to E L\, , EL\ and that w ,r(1 c iv||^/" where c does not 
ex cy 

depend on iv: these facts follow from the Sobolev imbedding theorems ) 

Let u E u be arbitrary. Then 

J4 < Ci( tt J|8i) f v w")1 \W wa < CjHUI \\w\]vi , 

J 5 <: c2( u\w? -1- v n^riHIW^ < Cz\\U\\ \\w\\*v* , 

so that we have 

J 4 -f- J5 ^ c U| w 1^) for any u e u , 

i.e., J 4 J5 ^ c |U | | F / p |M|^( . 

Let now % \ p r > 0 (we can consider r 1). 
Cr(^) ^ rl c\tJ\vjP\uA\f > r1 or\w }Vo> r(r c|M|̂ <->) ^ m 

for those u satisfying | ^ | ^ 2 ) ^ (r a)/c (we can choose a convenient a )? 

e. g. a 1). In this case we can see that 

0(1) 
> a . 

u\ 
/ a 

rf w u > , using formula (6) we obtain an estimate 
c 

T a T — a 
tf(g) > i(5) > 

c c 
so that 

t7(ľг) 1 a 1 a 1 - a 
- ^ > — 

|SI c cr c c c 

( 7 



In any case we have 

G(u) I 1 - «\ 
„ 5= min a, 

PII \ c / 
Theorem 2. If g\ g% — 0, then for any q e L2(Q) there exists a solution 

of the problem in question. 

1 
Proof. When writing 

A . 
qw dD = (w, q) it is sufficient to prove 

(*) \imin{(G(U)-(iv,q))- + oo 
||«||->ao 

because G(u) — (w, q) is a lower weakly semicontinuous functional in a reflexive 
Banach space V\P, thus by (*) it has an absolute minimum on V P and the 
point that minimizes G(u) — (w, q) is a solution of the given boundary value 
problem with g\— g± 0 (see e. g. [4J). Let us prove (*). 
For any A' > 0 we shall find R > 0 such that for \\u\\ ^ R 

(7) G(U) - (w, q) > K . 

K 
We have ||£||2 = |M|2 + ||L7||2; let n > max (%| | , ) . 

Iqll 
For |M||flf) ^ r± using formula (6) we obtain 

G(u) - (w, q) ^ |M||^f) + k(ti) - IMI^f) ||q||L2(t?) >\w(\w - q\) > 

> ^ i - l t e l l ) > n\\q\\ > K • 

If \\w\\ < Ti, then using (5) we obtain 

G(U) - <w, q> > Hilll-- ||t~|| \\q\\ - c\\U\\ ||t~||- > \\U\\2~ ri\q\\ - c\0 r\ > 

> I l t 7 | | ( | | ^ | - c r j ) - n ^ | . 

If we now choose r2 > 0 such that 

r2(r2-Cr\) - r,\\q\\ > K9 

then for ||U|| ^ r2 we have G(u) — (w, q) ^ K . 

Finally put R* — r\ + r\\ then for \u\\ > R there is ||U||2 ^ R* — w\ 2 and 
for |M||2 ^ r\ the relation (7) is true; for |M||2 < r\ we have ||U||2 ^ r2 + r\ — rj 

r^, so that (7) is true again, what was to be proved. 

In the following considerations we shall study a wider problem: 
Let II be a Hilbert space and such that V\P is a subspace of H . Let F be 
a bounded linear functional on H. Instead of the symbol u we shall simply 
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writo u and instead of G(u) we shall write f(u) (according to the definition 
of (7(g)). 
We shall put 

M8 {F e U*; J i m inf (f(u) (u, F)) = + 00} ; 
\u |K/P->OO 

MI -{Fe H*; Km iuf (f(u) (u, F)) - c * ± 00} ; 
H |F/P->QO 

Mz {F eH* ; J i m inf (f(u) (u,F)) = - 00} . 

We shall show that J / s + 0; for F e M,9 there exists an absolute minimum 
of the functional f(u) — (u, F), hence a solution of certain boundary value 
problem as it follows from the foregoing considerations (especially from the 
proof of Theorem 2.) 

Theorem 3. The set M is convex. 
Proof . Let Fi, F2 e Ms; then for F (1 - X)Fi + XF2(Q < X < 1) we have 

f(u) (u, F) = f(u) - (1 X) (u, Fi) - X(u, F2) = 
(1 X) (f(u) - (u, Fi)) + X(f(u) (u, F2)), 

hence F e Ms . 
For F e H*, |F I 1 we define a real-valued function corresponding t i tho 

chosen H in the following way: 

hi(F) sup {a; oF e Ms} . 

Then XH(F) > 0 (from this it is clear that Ms + 0). Namely, by Theorem 1 the 
existence of such R > 0 follows that for | | ^ |F /P > JZ we have f(u) > a u v P 

(for some oc > 0) so that all right-hand sides with a sufficiently small norm 
belong to the Ms. From this there also follows an existence of a neighbourhood 
of zero at H*, the whole belonging to the Ms. 

I Really, f(u) (u, F) ^ a u \v p c\u)V/P ||F |7_*; F, \\F\\H* ^ ^ " CM . . 

We shall prove several theorems concerning XH(F). 

Theorem 4. Jf a > XH(F), then oF e Mt (so that for a > XH(F) there is no 
absolute minimum of f(a) — a(u, F)) 

Proof . Let a >XH(F). If lim inf(/(5) a(u, F)) c + ± 00, then for 
\u -*+co 

a ><r_ > XH(F) there should be lim inf (f(u) — oi(u,F)) K 4= ± 00. 
_» _» I & l~*+0° 

Really, lim inf (f(u) — oi(u, F)) + °° cannot hold because 01 > XH(F) 
u «-+co 

and if lim inf (f(u) — oi(u, F)) — 00 then 
u -> °° 
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cc == lim inf (f(u) oi(u, F)) ^ lim inf (f(u) a(ic, F)) c 4= GO 
I ill -» °o « ->4GO 

Moreover, we have 

/(S) *-!(«. f ) (/(«) - o(«, F)) °l + /(«) (I ^ I 

(/(«) a(«,ÍT)) * / ( « ) I °l 

and 

- - #1 
lim inf (/(%) Oi(w, F)) ^ lim inf 
ft > <* or (ni|-> °° 

which means t h a t 

± 00 + K > °A C + 00 ( 0 e J / , -> lim inf f(u)\ 1 \ 00 
ff I lis -> °° ^ a J J 

which is a contradiction. 

Theorem 5. Function A//(F) is continuous. 

Proof. At first letF0 he such that A//(F0) < + 00. Let E > 0 he arbitrary (but 
fixed). By the preceding there is r : 0 < r < A//(F0) such that D {F; F H < 
< 1} C J / , . Let us take a cone C {aF;a > 0,FeD - A//(F0)Fo} A//(F0)F0 

so that C is a convex cone with a vertex at the point A//(F0)F0 and containing 
all the points of D. From the convexity of Ms it follows that the points of 
the type aA//(F0)F0 + (1 a)F, F e D, a e (0, 1) belong to Ms. Furthermore, 
let 7\" be another cone, K {aF; a ^ 0, F e /) A/y(Fo)F0} + A//(F0)F0. 
One can easily see that V {aF; a ^ 0, F e K n {F; F A//(F0)F0 *} 
is <i convex cone with a vertex at the origin and F0 e Jnt V. Now, the set 
Int A Int (V n {F; |F|| 1} is the neigbourhood of F0 we were looking 
for 
Certainly, let Feint A: A//(F)F lies on the ray aF, a > 0. We must show 
that A//(F)F lies in the s -neighbourhood of A//(F0)F0. But it is cleat that 
AH(F) < A//(Fo) e is impossible (byr the definition of A//(F) and for all the 
interior points of M {aF; 1 ^ « ^ 0, FeD- A//(F0)F0} + A//(F0)F0 

belong to il/s and in the case of A//(F) A//(F0) £ the point A//(F)F would 
lay in Int M) and having A//(F) > A//(F0) -| £ we can easily find that on the 
ray OF0, ft ^ 0 there is a point OFo e il/* with cr > A//(Fo), which is a contra­
diction. 

Now let A//(Fo) 00. Choose // > 0 and consider a ,,cone" A' {aF: 
I ^ O O . F e / ) .2/^Fo} + 2KFo. I t is clear that Int KC Ms. Now for 
all F<=Vn{F; \\F\n* 1} we have A//(F) > 77, where V {aF; a 0, 
F e {.r; ||.r| /*} n A'} and V n {F; ||F H* 1} is the neighbourhood we were 
looking for. 
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Finally we shall mention another property of the function foi(F). Let B ~^ II 
and let us suppose that the identical imbedding / / -> B is totally continuous 
Let Bn C B, Bn closed subspaces of B (n 1,2,. . .) such that lim Bn B 

W->CO 

(i. e. (V v e B) (-»„ e Bn) [lim v vn B 0]). 
M->co 

rFhe following theorem is true 

Theorem 6. / / we denote hy Dn {F e B*; v e Bn Fv - 0} then 

lim ( inf Xn*(F)) oo 
M->CO F'B l . T e D n 

Proof. It is sufficient to prove thai 

lim ( sup F //*) 0 . 
"-*30 E** L E I)» 

Let us suppose that this does not hold. Then there exists such an Fn e I)n 

that Fw //v «s for some £ > 0. Let vcli be arbitrary; then F^D Fnvn 

I i(v vn) > 0 so that Fw > 0 in B*. But the identical imbedding B* -> //* 
is totally continuous hence Fn -± 0 in / /* so that Fn H+ > 0, which is a con 
tni diet ion. 
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