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Matematicky €asopis 20 (1970), No. 1

CONCERNING CONNECTIONS ON ASSOCIATED BUNDLES

JURAJ VIRSIK, Bratislava

A connection i a principal fibre bundle induces a vertical projection in
cach of the tangent spaces to each associated fibre bundle, this projection
being de facto the covariant differential of sections in this associated bundle.
It is even this covariant differentiation which is important in practical com-
putations with connections, e. g. on vector bundles. Suppose there are two
fibre bundles associated to the same (or locally the same, cf. below) principal
fibre bundle in which a connection is g.ven. Then the two covariant differen-
tiations induced n both associated bundles are in some way mutually related.
If there is namely a bundle morphism of these bundles satisfying a general
cnough condition, then it preserves the covariant differentiations. This follows
from the statements of propositions 1 and la which allow us to obtain a number
of results concerning the behaviour of the covariant differential in concrete
cases, usually proved independently (c¢f. the examples below).

We consider the case of C° differentiability and finite dimension throughout
the paper. Suppose H(B, G) to be a principal bundle over B with structure
eroup @ and projection b: H—> B, and let there be given a (first order)
connection in H given by a differentiable distribution hA— T(H), < T(H)n
on H. Here T(H) is the tangent bundle to H and we denote by T(H), the
vertical subspace of T(H)p,i.e. X e T(H), =) (db)X — Opn, where 0, denotes
the zero element in 7'(B);. Thus we have for each ke H the direct decom-
position T(H),  T(H)f @ T(H), and T(H);, R} T(H); with g € G. Denote
by Vi the canonical vertical projection Vy:T(H)->T(H) given by the
connection.

Suppose now that £  E(B, F, (, H) is a fibre bundle associated to H and
denote A: H X F'— E and p : E—> B the natural projections. For each z e K
denote by T(E), < T(E), the subspace of vertical elements, i. e. n € T'(H),

(dp) n  Opz. Since the projection A satisfies A(Ry X L,.) A for each

g€, where L, : F— F denotes the action on the left of the element ge G,
we have

() AARY + L},) —di . TH) @ T(F) »T(E).
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Tor a fixed fe F denote iy : Il - H x F the natural injection & — (k. f) and
let ur  2ip: II - K. Note that di; takes the clement X € 7(H), into X
+0,eT(H), @ T(F)y. The linear mapping duys takes each 7(H), mto T(K),
where x  h(f) since

(2) ps(h) — R(f) .

On the other hand puy 0 = dp duy db and this means that du; takes
also T'({) into T'(#) whatever be fe F and that Ker duy < T'(H) .

Now we may define T'(E),  dusT(H), , where h and f are such that A(f) =«
In fact (1) gives dy, ; (T(H),,) dAidi, ., T(H),, d)u(]?;‘1 - L;") (R;‘k TH),
4+ 0,y) dAT(H), + 0r)  duy T(H); . Thus the subspaces 7'(E)} and T'(E)
are defined independently of the choice of (%, f) € 4 1(x), and we have

Lemma 1. T(E); TE)F @ T(H),.

Proof. We have T'(E)! dus(T(H),) for some pair (h,f)e i }(x) and
hence dim T'(E), + dim T'(E), — dim T'(#)z. Suppose £ T(H), NT(E),, i ¢
& (dus)X where X eT(H)} and dpé 0. Then 0 dp(dus)X  dbX -~

XeT(H); and hence X 0, & — 0.

Remark. We cannot write in general 7'(F),  dus (T(H),), since dus is
an isomorpl.sm if restricted to 7'(H);, but it need not be cither an injection
or projection of the whole 7(H),. 1t might be .nteresting to find the explicitc
conditions under which it is.

First it is clear that dA is always a projection. Let us find its kernel. W
make use of the follow.ng well-known statement: ,,.Let @ - 2/ — N be a differ
entiable projection of manifolds which is of maximal rank at m e M. Then
the points of M in which @ takes the constant value . @(m) in a sufficiently
small neighbourhood of m form an imbedded submanifold W < M, n I
The tangent space T'(W), < T(M), is exactly the kernel of d® at m  AI*
Hence the kernel of di at (k,f) is the tangent space of a submanifold
W < H X F consisting of pairs (hg, g71f), g € G. In other words, it consists
of exactly all the tangent wvectors to the curves t— (hg(¢), g(t) 1f) at + 0
where ¢t — ¢g(t) is a curve in ¢, g(0) e and e is the ,dentity of . Denote
by u : T(G)e— T(H), the canonical isomorphism of the Lie algebra of (/ onto
the tangent space to the fibre in H at k. Further denote j;: T(G).— T(F)
the canonical projection of the Lie algebra of ¢ onto the tangent space 1t f to
the orbit of G on F containing f. Note that j; is an injection iff ¢ acts frecly
on this orbit. Now using these notations we see easily that Ker d2 consist
of exactly all the elements

w(Z) 4 jrdo(Z)  w(Z) ji(Z),

where Z is any clement of T'((f), and ¢ : 0 — 0 1, i. e. do(Z) Z
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These results yield the required characterization of the mapping dus. We
see namely that dus is injective iff there does not exist such Z e T(G), that
)1(Z) 05, Z % 0, i. e. iff G acts freely on the orbit containing f € F. Since d2 is
Uways project.ve there are for each & € T(E)z elements X e T(H), and Y € T'(F)y
such that &  dAX + Y). All the elements in T(H), @ T(F);, which are
taken into &, are of the form X + (Z) + Y  js(%). The mapping duy is
projective iff one can find such Z e T((), that Y  jp(Z) for any Y e T'(F);.
Henee duy : T(H)y— T(E)z is projective iff feF is an interior point of the
‘orrcsponding orbit of G on F.

Returning to the general situation. Lemma 1 gives for cach &€ 7'(E); the
unique decomposition

(3) & dur(X) + 1,

such that dp(y) 0 and VgX 0. Thus denoting by Vg : T(E) - T(E) the
induced projection Vg(§) 7, we have

4) I’Edﬂf d‘usH .

We proceed now as follows. Let H  H(B, () and If = H(B. () be principal
fibre bundles over B and let ¢ : H > H be a homomorphism of them. Let

in [1 and H connections be given w.th the corresponding vertical projections
satisfying

(5) VI.I d(p d(]’ V” .

It £ BB, F,G, H) and E  E(B,F,d, II) arc fibre bundles associated
to H and I respectively, call a bundle morphsm y : E— E (yo, ¢)-typed if
there exists a differentiable mapping yo: F — F such that for each ke II,
[ € F the relation

(6) y(R(f)) — @(h) (yo(f))

holds. 1f we introduce analogously the mappmgs ;< 1T > £ for cach fe I
we get according to (2) the equivalent to (6) form

(7) ‘y/uf(h) Al.l;'n(/)(([(h)) ’
which implies
() dy dpy  dp,pdg .

Proposition 1. Let y : E(B, F, G, H)— E(B, F, (1, I) be « (o, ¢)-typed bundle
morphism and lct there be given connections in I and I subject to (5). Then the
associated rertical projections satisfy

) Vepdy dy Vg



Proof. First note that both sides of (9) take the tangent space at k(f) I
into the tangent space at ¢(h) yo(f) = y(k(f)) according to (6). We have by (3)
the relations dy Vg(&) dy(y) and Vipdy(d)  Vidy(y) + Vidy dug(X)
But py  p implies dp dy(y) = dp(y) — 0 and thus V;dy(y) dy(,). Hence
it suffices to show V;dydu,X) 0. But by (8), (4) and (5) we have
Vi dy dpag(X) = Vs gy dg(X)  di gy Vi dp(X) — i gy dg Vi X) 0
this yields the proposition.

The assumptions of this proposition can be modified in the following way
The bundle morphism y : E(B, F, G, H)— E(B, F, G, H) is called (yo, ¢)-antityp
ed if ¢ : I - H is a covering extension of the bundle H (i. e. ¢ is & homomorp
hism of the principal bundles over B inducing isomorphisms dg : T(H); >
~ T(H),;,) and yo being given as before satisfies for each he H, fe F

(6a) y(@R)f) — kiyo(f)
which is again equivalent to

(7a) yirp(h)  fi(R)
implying

(8a) dy dus  dyy; dg !

Note that a covering extension ¢ of II assigns to each connection .n H a con
nection in H according to

(5&) VI[ — d(p 1 V}{ d(p .

Proposition 1a. Let v : E(B, F, G, H)— E(B, F, G, H) be a (yo, ¢)-antityped
bundle morphism and let there be given connections in H and H subject to (5a)
Then the assoctated vertical projections satisfy (9).

The proof runs analogously to that of Proposition 1.

If now yp: B—> E is a local section in E then its covariant differential s
usually defined as

(10) Vy — Vi(dy)

or — if Y eT(B)z, where p is defined in a neighbourhood of 2 € B

(11) Viy  (Ve) () Vedy) (Y).

We give the analogous meaning to V associated with F and get (9) in the form
(12) Vylry)  dyVyy.

Note that if ¢ : H— H is a reduction of the structure group ¢ to its sub
group G (i.e. H = H and ¢ is the inclusion map) then (5) means that the
connection in H is reducible to that in H. Applying Proposition 1 to # F
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implying £ E, and y  idg we refind the coincidence V.V of both the
induced covariant d.fferentials. On the other hand if especially H  H and ¢
is the identity, then the condition (6) or (6a) on y expresses the fact that the
induced mappings y; : Ey—> Bz commute with the action of the associated
groupoid (c. f. [1] or [2]) on E and E.

This leads directly to a number of applications but first let us generalize
Proposition I to the case of several fibre bundles where then y may play the
10le of a ..multiplication* connected with some structure (e.g. the tensor
multiplication connected with the tensor product of vector bundles, cf. below)

The indices 7 run always from 1 to the integer 4 = 1. Let there be given
connections in the principal bundles H(B;, (;) by means of the differentiable
distributions &; - T'(H;),, < T(H;),,.

Let

(13) V0. : T(H;) > T(H;)

be the vertical projections related to these connections. Then H  I; X

By ... B4, Gix...x G4) is a principal fibre bundle and
(b, ... ha)—>T(H), ® ... ® T(Hy),, is a differentiable distribution which
defines a connection in /. Here and in the following we identify as usually
the tangent space T(H), , ...,, with T(H1), @ ... ® T(H )
projection related to this connection satisfies

The vertical

ha*

(14) Vll V]ll _+ e + I’I[A’
where 7, (X) 0 unless X e T'(H;).
IfE  EMB ...X BaF, 0 x ... x Gy, H)is a fibre bundle associated
to I, we get a projection V; as above and it satisfies
(19) Vidap  dig (Vy A4 oo+ Vi)

for cach feF. At the same time suppose that there are fibre bundles %,
Ki(Bi, Fi, Gy, I1;) associated to II; and denote again by pu; H; > K,

fi € Fi, the associated mappings. The product £ E; X ... X K, is a fibre
bundle over By X ... X Ba with the above defined associated groupoid /[
A bundle morphism y : By X ... X Ex— E is called yo-typed if there is a dif
ferentiable mapping v : F1 X ... X F > F such that for cach (h1, ..ha) eIl
and (fi,...f1)eF1 ... F,therelation

(16) y(fa(fr), --- ha(fa))  (hn ... X ka) yo(fi, --- fa)

holds, which is again equivalent to

(17) V(ﬂ/l (1), .. /i"f,, (h4)) Poa s 1a) (b, ... Ra),
1 y
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implying

(] 8) d?/(d,“/l + e —Jr_ dﬁt/,;) dll‘()o(fx,...ft) .
1

Using this relation we prove analogously to Proposition 1

Proposition 2. Let y:Ei((B1,F1,G1, H1) X ... X Eq(By, Fa,Gq. Hy) -
—EB1 X ... X B4, F, Gy x ... X Ga, Hy X ... x Hy) be a yo-typed bundle

morphism and let there be given a connection in each H; (i 1....A). Then
the associated vertical projections satisfy
(19) Vipdy dy(Vy, + ...+ V).

Thus we have generalized the situation of the preceding propositions only
for ¢ idy since the more general case is then obtained by combining Pro
position 2 with Proposition 1 or la.

If now y; : B— E; are local sections in F;, then p(yp1 X ... X 94) is a local
section in /1 X ... X K, and (19) takes again the more usual form

(20) (Ve awd vl X oo Xpa)  dp(Vygn + o0+ Vi pa)

Consider the special situation with By = ... — B,  B. It is now natural
to investigate beside I = H; X ... X H4 the principal bundle X

CIH(B, G X ... X (4). which is the ,restriction of H to the diagonal
in B X ... X B Denoting by u: JH— H the natural injection, we sce
casily that the connections in H; define a connection in [JH, where the cor
responding vertical projection satisfies

(21) dLH Ir Y/ (VIh + + VII4) le .
Suppose now that there is a fibre bundle associated to [JH. There exists then
always a fibre bundle E(B x ... X B, F, Gy x ... X G4, I) associated to [{
such that the bundle associated to [JH is the ,.restricted” bundle £ defined
analogously to [JH. Denote again ¢; : [/ — E the natural injection.

Lemma 2. The vertical projections in T(E) and T(TIE) satisfy
(22) dig Vg Videy.

Proof. For a fixed f.e F define again the natural maps 4, : H > F

The relation

(23) GOR

follows immediately from the very definition of (117 and [J/. We have by (15)
Vidpy —dp; Ve and Vo pd(Opy)  d(Opg) Vo which implies by (23)
and (21) dei Vo, A(Opy) = dgy dur Vigy dﬁ/' Vi den Vi d/‘(,’ deyy |25

di; A(Ogy). On the other hand if yeT(OF) then du, V i(n)  dei(n)
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de; Vi(n), since d,j; takes clearly elements tangent to fibres in 7((JE) into
elements tangent to fibres in 7'(F). Combining these two results we obtain (22)
since according to (3) each element & e T([JE) can be decomposed into &
d(Oyy) (X) + n, where e T(TE) .
If now y: E1 X ... X E4— E is a bundle morphism there exists a unique
bundle morphism y,: (1 X ... X E4) - OF satisfying

(2%) VE = U V0>

where z: [1(E1 X ... X Ea)—> E1 X ... X E4 is defined analogously as ¢;.
From the above and Lemma 2 we obtain at once the

Corollary. If in the assumptions of Proposition 2 we have B = ... = By — B
and y s defined by (24) then

(25) de; Vg dyg=dy (Vi 4 ... + Vi) deyg

or, by means of covartant differentials,
. (4)

1)
(26) VRO ... Oya) = dyqdg' (Veyr + ..o + Vipa),

where y; are local sections in E; defined in neighbourhoods of x € B, Y € T(B),

and y10 ... Owa ts the natural section in J(E1 X ... X E4) given by the sec-
) (4)
tions ;. Note that (26) is well defined since Vyy1 + ... + Vyp, e T(E1), @ ...

.. @ T(EA)I == dlE(T(C(El X oo X EA));U)

If E(B, F, G, H) is a vector bundle then there is a canonical identification
of T(E), with Hp which takes 0, € T'(E), intv 0 € Ey). If y : E — E is a vector
bundle morphism, then dy |T(E), = plg . Thus in this case (12) can be
written in the form

@)

(27) Vylyy) = »(Vyy),
<ince V. belongs now to E, if Y € 7'(B), and it is the usual , linear‘‘ covariant
differential.

Suppose now that Eq, ... E 4, E appearing in (20) and (26) are vector bundles
and let y: B X ... X E4— E be multilinear on each fibre. This means that
if we fix any point (21. ... 24) € B1 X ... X E4, thenall the mappingsy; : E;—~ E
defined by y;(2) — v(21. ... 2; 1, %, 2141, ... 24) are vector bundle morphisms.
From: this and the above remark we obtain (20) in the form

(28) (Vyroee vy v (o X o0 X py) =
A @)
-zy(qu N oo Xy X Vl’xy"i X Pir1 X ... X P4)
i1

and (26) in the form
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(29) Yy (il ... Op.)

A Q)
2 i . Oy 1O VewiOwe 10 .0 )
il
Example 1. Let £1, ... £, be vector bundles and let /' 1 ... F,
Then the associated space E can be written as F1 @ ... ® K4 although in
practice where B; ... B4 is almost always supposed it is the bun

dle (& which is denoted by this symbol and called the tenscr product of &,
The fibres of £ (and consequently of [CE) consist of tensor products of the

fibres of B1, ... Ea at the corresponding points. Denotingy : By ... K, ~F
the bundle morphism that assigns to (z1....z4) the element z; I
we see that it is ®-typed, where ® : F1 X . . x F4—F1 ... F, i taw

natural tensor mult‘plication. In this way we can write — either (28) or (29)
in the form

4 0
(30) (Vi oo ) 0O . @pa) Dprx o x Vigx o xya.
i
or
A %)
(31) Vipi® oo xpa) D pi® . xVpp® . xyy

i1

which are well-known formulas and show that the V. corresponding to various
vector bundles behave as differentiation with respect to the tensor product

If B, —...E4 — E, then it shows that V, is a derivation of the algebra
which is the sheaf of germs of local sections in the tensor algebra bundle over £

Here and in the following we use, as it is common, the same symbol ¥ for
all covariant differentiations induced by a fixed connection in a fixed principal
fibre bundle.

Note that this is in fact the only interesting example of the application of
Proposition 2 to vector bundles. Namely ify : B; X ... E4— Eis multilincar
where E isnow an arbitrary vector bundle over By X ... X By, then it can b
always split to a mapping £ ¥ ... X H4—> B ® ... @F 4 of the above example
and a vector bundle morphism §: K@ ... <E4 > E, and if y is jo-typed
then 7 is (o, id)-typed, where o is given by the commutative diagram ir
the category of vector spaces

FIX---XFA ~>F1®...XFA

AN /
AN /
70\ /7o
N\ Ib ¥
Thus in the following since the covariant differential is really interesting
mostly in the linear case, we shall give some examples of the application ot
the first propositions.
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q q
Example 2. Let /£ be a vector bundle and let y ./ : QE — AE (ory

14
&y xE—StE) be the natural antisymmetrization (or symmetrization)
q q /
operator. Then it is clearly (yo, id)-typed, where yo: QF — AF (or yo: I' -
>S7F) is the antisymmetrization (or symmetrization) projection of the fibre
types. We obtain, combining (27) with (31), the formulas

4
(32) Vilyr oo A wa) 21/)1 oA VWA A v

il
A
(33) Vi O .. Owa) Zy)lo e VO .o Owa

il
Example 3. Let & H(B, F, G, H) be agam a vector bundle and K} (13, £
(/. H) \ts ,,p-times contravar,ant and q-times covariant tensor power Thus
P q

kY F o ( F¥. Let ¢ Cp:E’ >E" | be a fixed contraction bundle
morphism, where the contraction acts upon the a-th contravariant and 0 th
covariant indices. The relation (27) shows then that the contraction commutes

with Vy. Especially for p ¢ 1 we derive in this way the relation
(34) Vo, &+ n, V& Y(y. &),

where & and # are local sections in B and E*, respectively, over a neighbouthood
of &, where Y e T(DB),.

In general, f E(B,F,d, H) and EB, F,Q, H) are vector bundles and
yo F— Fisa homomorphism which commutes with the action of G, it induces
n a natural way a (yo, id)-typed bundle morphism y: E— E commuting
with the covariant differentiation. Conversely, if y : E— E is a (yo, id) typed
bundle morphism, then y¢ commutes necessarily with the action of ¢ On
the other hand in this linear case a bundle homomorphism y is a section in
9+ E. which is again a vector bundle associated to H.

Lemma 3. y is a typed bundle morphism iff Vyy 0 for any Y e T(B) and
any connection in H.

Proof. In fact, applying Proposition 2 and especially (27) and (31) to the
ntural pairing (E* x E) @ E— E, we get for any local section & in K

Vi(r(£) (Vyy) (&) 4+ v(V4E).

But the left hand side is equal to the second term of the right hand side .f y is
tvped. On the other hand V,y — 0 implies V,(p(&))  »(Vy&) for any local
section &, which implies (7) as one can see from the proof of Propositior I
We apply this fact to the following
Example 4. Let E(B,F,G, H) be a vector bundle and »o: F > #* an
isomorphi;sm which commutes with (/. Then the corresponding y:E K-
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defines a metric in £ which is autoparalell under any connection in H. If
operates effectively on F, dim F = n, then the existence of such a y¢ implies,
of course, that ( is isomorphic with a subgroup of O(n). Conversely, any
autoparalell metric in £ can be obtained from such a y9 commuting with the
action of G.

Example 5. Let H = H(B, SO(n)) be a principal bundle over B with the
structure group SO(n), n = 2», v > 2 (especially let H be the principal bundle
of oriented orthonormal frames of a Riemenn manifold). The group SO(n) ope-
rates naturally on C» and also on the Clifford algebra e C'» of C». In this way
we obtain the vector bundles £ (B, C», SO(n), H) associated to H (especially
the complexified tangent bundle to B), and e E(B, e C*, SO(n), H) (especially
what one may call the Clifford bundle of the oriented Riemann structure on B),
where the fibres of @ ' are the Clifford algebras of the corresponding fibres
of £ endowed with the quadratic form induced by H. Let there be given
a connection in H. The injection # — e E is clearly typed and thus Proposition 1
shows that the restriction of the covariant differentiation to # via e E coincides
with the one defined directly on E. More generally, from a situation analogous
to that in Example 2 we obtain the formula

4
Vipro...op)=>ypre...0Vyp, ... 09,.
il

Let now H(B, Spin (n)) be such that ¢ : H — H is a covering extension of H,
where Spin(n) is the reduced Clifford group associated with the natural metric
in C7 (c. f. [3]), i. e. it is the subgroup of all elements A € GL(2?, C) satisfying

(35) Ay A=t = Aly,, det(4}) = 1, a(M)A = T,
where y4 € GL(27, C) are matrices for « = 1, ... n satisfying
(36) Yoays + vaya = 20asl

1 € GL(27, O) is the unity matrix and « is the main antiautomorphism of the
Clifford algebra e C» (c.f.[3]), which is identified with the algebra of all
27 X 27 complex matrices, i. e. elements of (0?)* ® C?'. It is well known
that Kerp N H, consists of exactly two points for each x e B, since Spin(n)
is a covering group of SO(n), the projection being given by A — (A?%) in (36).
Let E(B, Cr, SO(n), H) be the vector bundle above and let & =— & (B, C?,
Spin(n), H) be the vector bundle associated to H if Spin(n) operates naturally
(effectively) on C%. Ths elements of % may be called spinors over K and they
correspond to the usual spinors on the oriented even dimensional Riemann
manifold B in the mentioned above special case. In this case the elements
of H are the spinframes (cf. [4], [5]). There is a unique connection in H induced
by the connection in H and hence a covariant differentiation in e. g. * x &.
Let po: @ Cn> (C2)* ® 0% be the natural isomorphism of algebras which
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takes the vectors ey (« 1, ... n) of the canon:cal frame in C? into the matrices
ya of (35). The jsomorphism v, satisfies

(37) h(yo(&)) — R (yo(wwo(A) 1))

for each &€ o (', A e Spin(n), L e H, where qo: A — (AY) is the covering
homomorphism Spin(r) > SO(n). In fact, since A € Spin(n), n e (C¥)* ¢ ¥
smplies A(n)  AnAd 1, this is for & e C* equivalent to (35). Further y¢ is an
isomorphism of algebras and from there we conclude that (37) holds for any
te o (. But (37) means that there is a unique (yo, ¢)-antityped bundle
isomorphism vy : @ - &* ® & which, according to TProposition la, takes
the covariant di.fferentiations in @ £ and &#* ® & one into the other. In other
words one can identify the Clifford algebra bundle of E with the bundle of (1,1)
spinors over K and consequently inject the tensor algebra bundle of ¥
into the tensor algebra bundle of & — including the covariant differentiations
on them induced from any connection in H. We can express this also by saying,
that the covariant differentiation in the bundle of spinors over K is a ,,correct*
extension of the differentiation on F, a result again well-known at least
m the special case of spinors on B.

It is now clear how one could immediately obtain other results regarding
the behaviour of the covariant differential of spintensors by applying Propo
sition la to other antityped bundle morphisms.
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