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A MONOGENIC BAIRE MEASURE NEED NOT 
BE COMPLETION REGULAR *) 

ZDENA RIECANOVA 

A Baire measure v on a locally compact space X is called completion regular 
if and only if it satisfies the following condition: 

If E is any Borel set, then there exist Baire sets G and F such that G <= 
c= E c F and v(F — G) = 0. 

A Baire measure v is called monogenic if and only if any two Borel measures 
extending v are necessarily identical. 

In [1] it is proved t h a t every completion regular Baire measure is mono­
genic. The converse of this proposition is false. The following is an example 
of a Baire measure v which is monogenic, but not completion regular. 

E x a m p l e . Let X be any set with card X = Xi- Let xo e X and Y = 
= X — {x0}. Let the topology for X be the family * = : * i U f 2 ) where 

JJ/\ is the family of all subsets of Y, 
°2/2 is the family of all subsets A of X such that xo e A and X — A is finite 

or empty set. 
We easily find out t h a t the pair (X, f ) is a locally compact HausdorfF 

topological space. If xo e U e (&, then U e &2, hence X is compact and all 
sets of ^2 are compact (?<$. Evidently the set {xo} is not Go. 

Define v(F), for each Baire set F c: X to be 1 or 0 according as x0 does 
or does not belong to F. We prove that v is a monogenic Baire measure. Let JLI 
be any Borel measure extending v. If a point x e Y = X — {xo}, then {x} 
is a Baire set and ju({x}) = v({x}) = 0. Every set E <-= X is Borel because 
E U {xo} is a compact set. Since ju is defined for every E c= Y, ju({x}) = 0 
for each x e Y and card Y = Xi> we have (by [2], Theorem A, p. 141) JU(Y) = 
= 0. Hence ju({x0}) = v(X) - ju(Y) = 1. If E c K and x0 e.ff, then 1 = 
= /*({*()}) ^ //(#) ^ M K H v(X) = 1, hence //(#) = 1. If F/ c X and :r0 £ # , 
then ju(X — E) = \ and hence //(ir?) = 0. This means that v is monogenic. 
But v is not completion regular because {#0} is not Baire and if G and F are 
Baire sets such that G c {*0} c # , then G = 0 and *>(.F - 0) = i!(K) = 1 ^ 0 . 

*) This is the solution of the problem 3, [1], p. 233. 
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