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REGULARITY AND APPROXIMATION THEOREMS 
FOR MEASURES AND INTEGRALS 

BELOSLAV RIECAN 

There are unified theories of measures and integrals (see [1], [2], [5]) study­
ing functions whose domains is a partially ordered set S; if S is a set of sets 
(ordered by the inclusion), then the measure theory is obtained; if S is a set 
of real functions (ordered as usually), then the integration theory is obtained. 

A similar method is used in the present paper where we study regularity 
and approximation from a general point of view. In the first three sections 
we present three various problems (regularity, approximation, completion). 

The general postion leads also to a generalization of the notion of measure. 
A measure can be studied as a function JLI : S -> R, where S is a lattice; of 
course, S and ju satisfy some further conditions. In the fourth section we study 
the regularity of a measure on a lattice and in the fifth section the regularity 
of a measure defined on a logic. 

1. Regularity 

Let S be a partially ordered set with two binary operations denoted by + 
and —. Moreover, let S be a conditionally r/-complete, a-continuous lattice, 

00 

i.e. if x, y G S, xn <, xn+i ^ x, xn G S (n = I, 2, .. .), then there exists \/ xn 
«=i 

00 oo GO 

and (\/ xn) n y = \/ (xn n y); and dually. (We shall write xn / \/ X\, or 
n-\ M=] ?'=1 

oo 

xn \ f\ :ri,resp.) We shall assume 
i - i 

1.1. (a + b) — (c -f- d) ^ (a — c) -f- (b — d) for every a, b, c, d G S. 
1.2. (a — b) — (c — d) ^ (a — c) -f- (d — b) for every a, b, c, d G S. 
1.3. If a, b, c G S, a ^ b, then c — a ^ c — b, a — c <, b —- c. 
1.4. If a,b,c G S, a <, b <, c, then c — a <, (c — b) -f (& — a), c < (c — 

-b) + b. 
As an example we can present the lattice of all real — valued functions 

(or all measurable or all integrable functions etc.; + and — are interpreted 
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as usual operations), or more generally a lattice ordered abelian group. Another 
example is the lattice of all subsets of a set (or all measurable sets; -f- or —, 
resp. are the set theoretical union, or difference, resp.) or more generally a Boo­
lean ring. 

Now let J : S -> E be a function satisfying the following conditions: 
1.5. If a, b e S, a ^ b, then J (a) <, J(b). 
1.6. J (a + b) ^ J (a) + J(b) for every a,b eS. 
1.7. If x\, X2, u\, u2 e S, x± S x2, x\ ^ u\, x2 ^ u2, then J((Hi U H2) — 

— x2) ^ J (^ i — x\) + J(u2 — x2). 
1.8. If x\, x2, c\, c2 eS, x\ ^ x2, x\ ^ c\, x2 ^ c2, then J(x2 — (ci n c2)) ^ 

^ J(x\ — ci) + J(x2 — c2). 
1.9. If a eS, an e S (n = 1, 2, . . .) and an / a, or an\ a, resp. then 

J(an —- a) -> 0, or J (a — aw) -> 0, resp. 
R e m a r k . Since an ^ a implies J(a) ^ J (a — aw) + J(an), we obtain from 

the lim J (a — an) = 0, lim J(an) = J (a). Similarly for non increasing sequen­
ces. 

Again, J can be interpreted as an integral (linear positive continuous functio­
nal defined on a linear lattice) and on the other hand as a measure defined 
on a ring, or more generally as a subadditive measure (i.e. a function J defi­
ned on a ring, J(0) = 0 and satisfying 1.5, 1.6 and 1.9). 

Finally we must express regularity in the general case. Let C and U be 
subsets of S (in the case of a measure J or G, resp., U can be interpreted as 
a system of compact, or open measurable resp. sets) satisfying the following 
conditions: 

1.10. If a, b eC, then a + b eC, aUbeC, a nb eC. 
1.11. It a, be U, then a + beU,aUbeU,anbeU. 
1.12. If a eC, be U, then a — beC,b — aeU. 
1.13. To any a e S there are c eC, u eU such that c ^ a ^ u. 
1.14. If c e S, cn e C (n = 1,2, . . . ) and cn \ c, then c eC. 
1.15. If u G # , un G U (n = 1, 2, . . .) and un / u, then u eU. 

Theorem 1.1. Let T be the set of all regular elements, i.e. such elements x e S 
that 

inf {J(u —- c); u e U, c e C, c ^ x ^ u} = 0. 
Then T is closed under the operations +, —. If xn eT (n = 1, 2, . . .) xn / x e S 
or xn \ x G S, then x eT. 

Before proving Theorem 1.1 we want to mention two special cases. The 
case of a measure (or more generally submeasure) is clear: If S is a (3-ring 
of sets of finite measure, then the family T of all regular sets is a 6-ring; if 
moreover S is a cr-algebra, then J7 is a cz-algebra, too. 

Now take the integral. Let So be the set of all simple integrable functions, 
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C, or U resp. be the set of all integrable limits of all non increasing, or non 
decreasing, resp. sequences of functions of SQ. I t follows from Theorem 1.1 
that every integrable function can be approximated by functions belonging 
to C, or U resp. 

P r o o f of Theorem 1.1. The fact tha t T is closed under the operations -f 
and — follows from the conditions 1.1, 1.2, 1.5, 1.6, 1.10, l . H , 1.12. 

Let xn eT, xn / x e 8, e > 0. Take cneC,uneU such that cn <, zn < un 

and J(un — xn) < e 2~n, J(xn — cn) <e 2~n. If we choose k such that J(x — 
— xk) < e/2, then ck <, xk <, x and according to 1.4, 1.5 and 1.6 

J(x — ck) < J(x — Xk) + J(xk — ck) <e. 

Put vn = ( J ui. Then vn e U according to 1.11 and 

^ \ J(u( ^ J(vn — xn) ^ y J(Ui - - Xi) < s 

/=1 

according to 1.7. According to 1.13 there is u e U, u ^ x. Then (with respect 
to 1.3, 1.6 and 1.11) 

J((vn n u) — xn) < e, vn r\u eU, vn O u ^ xn. 

Put wn = vn C\u e U. Since wn ^ wfl+i, wn <, u and /S is conditionally com-
00 

plete, there is w = \/ wn. According to 1.15 w e U. Since wn / w, there is m 
H = l 

such that 

J(w — wm) < e . 

Then 

J(w — a:) ^ J(iv — ^ w ) + J(wm —- a:w) < 2s. 

Hence to any e > 0 there are w e U, ck e C such tha t c* <; a; ^ iv and 

J(w — ck) < 3e. 

Therefore 

inf {J(u — c); u e U, c e C, u ^ x ^ c} = 0, 

i.e. x eT. The dual assertion can be proved analogously. 
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2 . Approximation 

Now we shall assume that S is a conditionally r/-complete and distributive 
lattice. On the other hand no further algebraic structure on S is assumed. 

Let J : S -» R be a function satisfying the following conditions: 
2.1. If a, 6 eS, a ^ b, then J(a) S J(b). 
2.2. J(a U 6) + J(a n 6) = J(a) + J(6) for all a, 6 e S. • 
2.3. If an eS, an <; an+i,or an ^ aw+i (n == 1, 2, . . .), resp. and {J(an)}^=l is 

b mnded, then there is a e S such tha t an / a, or an \ a, resp. and J(an) -> 
- J(a). 

Lemma 2.1. Let at, 6. e $ (i = 1, 2, . . . , »), «i <: 02 = . . . 5 an. Then 

J(an u (U &«)) - J(a„ n (U 6,)) = 2 [<I(«* U h) - J[at n 6,)]. 
7 = 1 ? ' = 1 t = l 

Proof . We prove the lemma by the induction. Evidently J(ai U 61) — 
— J(ai n 61) ^ J(ai u 61) — J(a i n 61). Let 

«/(** U (U h)) ~ J(a* n (|J bt)) ^ 2 iJ(ai u fe0 - J(at n 6 « ) ] . 
? = 1 i = l i = l 

Then 

A r + l A - + 1 

«/(a*+i U (U bi)) - J(a*+i n (U &0) = 
z - l / = 1 

* * 
= J(afc+i U 6A;+I U ak u U 6 0 — «/((«*+i n ( U 6 0) u (a*+1 n 6*+0) = 

?;=i t= i 

* * 
= J(ak+i U 6*+i) + J (a* U U 6 0 ~ «/((a*+i u 6*+i) n (a* u U 60) ~ 

1=1 j - i 

A- * 
- -/(a* j-i n ( U 60) - J(ak+i n 6*+i) + e/(a*+i n ( U 60 n 6*+0 g 

; = i < = i 

Jfc A-

^ «/(a*+i u 6ib+i) - J(ak+\ n 6*+i) + / (a* u U h) ~ J(ak n ( U &0) -̂  
*=1 i-\ t 

^ «/(a*+i u 6*+i) - /(ajt+i n 6^+1) + y [J (at u 60 — J (at n 60] = 

= V [-/(a* U 60 — J(a% n 60]. 

Lemma 2.2. Let aif 6, e S (i = 1, . . ., n)> ai ^ a% *> . . . >. a„. Tfow-
w >/ n 

./(an u (fl &«)) - -IK n (fl M) = 2 [J{at u &«) - <I(«* n 6,)]. 
i=i / 1 ;=i 
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Theorem 2.1. Let L be a sublattice of the lattice S. Put M = {a; a e S} V e > 
> 0 3 b e L, J (a U b) -— J (a n b) < e}. TAew £ Ac set M is monotone, i.e. a e S, 
an e M (n = 1, 2, . . .) an / a, Or aw \ a, rasp, implies a e M. 

Proof . Let an / a. Let bn eL be such elements tha t 
£ 

J(aw U bn) — J(aw n bn) < — . 
2n 

n 

Put cn = ( J 6*. Then cn e L (n = 1, 2, . . .) and according to Lemma 2.1 
i=i 

we have 

J(a?i U cn) — J(an ncn) ^ 2 [^(a* u &<) ~~ ^ ( a * n &*)] < e- i ! 

The sequence {cn}™^ is non decreasing. Moreover 

J(ci) ^ J(cw) = J(c„) — J(cn n a„) + J(cn n a„) ^ 

^ J(cn U aw) — J ( j n n a„) -f J(aw) ^ e + J(a), 

hence {J(cw)}^=i is bounded. Therefore there is c e S such that cn / c. Then 

J(c) = lim J(cn), 

J (a U c) — J (a n c) = lim [J(a% U cn) — J(a« n cn)] ^ £. 

Now for sufficiently large n it follows 

J(a U c„) — J(a n cw) = J (a U cn) — J(a) — J(cw) -f J (a U c„) <; 

^ J(a U c) — J(a) — J(c) + J(c) — J(cn) + J(a U c) = 

= J(a u c) — J (a r\c) + J(c) — J(cn) < 2£ 

and a e 21. The proof for non increasing sequences is analogous. 
E x a m p l e 2.1. Let S be the set of all integrable functions, L be the srt 

of all simple integrable functions, J(f) = J"/. Then all the assumptions 2.1 — 2.3 
are satisfied. Since the monotone set generated by L is S, then (according 
to Theorem 2.1) to any e > 0 and any integrable function / there is a simple 
integrable function g such tha t 

J l / - Sfl = J (max (/, 0 - min (/, g)) = J(f U g)-J(fng) <s. 

E x a m p l e 2.2. Let S be a o*-ring generated by a ring L of subsets of a space 
K, J be a finite measure on S. Then according to Theorem 2.11 the family M 
contains the monotone family generated by the ring L and this is (see [4]) S. 
Hence to any £ > 0 and any E e S there is F e L, such that 

J(E A F) = J(E u F) - J(E n F) < e. 
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R e m a r k . Note that in this case we did not obtain a theorem for sub­
additive measures. Subadditive measures need not satisfy the condition 2.2. 

3. Completion 

First let H be a conditionally cr-complete lattice, S <=• H a sublattice of 
H and J : S -> E be a function satisfying the conditions 2.1 — 2.3. We want 
t o obtain a "complete extension" of J . For this purpose we use the following 
concept: 

Definition 3.1. S = {cell] 3 a, b GS, a <> c <> b, J (a) = J(b)}. 
If a\ ^ c <; a2, bi ^ c ^ b2 and J(ai) = J(a2), J(bi) = J(b2), then (since 

a2 ^ bi and b2 ^ a\) J(a\) = J(a2) ^ J(bi) = J(b2) ^ J(a\), hence J(a\) = 
= J(b\) = J(a2) = J(b2). Hence we can introduce the following function: 

Definition 3.2. Ijet c G S, a,b G S, a ^ c ^ b, J(a) = J(b). Then we define 

J(c) = J(a) = J(b). • 

Theorem 3.1. S is a lattice. J is an extension of J satisfying the following 
conditions: 

3.1. If a, be S, a ^ b, then J(a) ^ J(b). 
3.2. J (a) + J(b) = J(a U b) -f J(a n b) for every a,beS. 
3.3. If an eS, an <: an+i, or an ^ an+l (n = 1,2, . . .), resp. and {J(at))}™ l 

is bounded, then there is a eS such that an / a or an \ a, resp. and J(an) -> 
-*J(a). 

Moreover J is complete in the following sense: if a ^ b ^ c, a, c e §, b e H 
J(a) = J(c), then also b e S. 

P r o o f . If a e S, then evidently a ^ a ^ a and J(a) = J(a), i.e. a e S 
and J (a) = J (a). Let a,b eS. Then there are a\, a2,b\,b2 e S such that 
a\ <> a tk a2, b\ fk b i^ b2, J(a\) = J(a2) and J(bi) = J(b2). Then a\ U bi e S, 
a2 U b2 G S, a\ U bi ^ a U b ^ a2 U b2 and 

J(a i U bi) = J(ai) + J(bi) — J(a\ n bi) = 

= J(a2) + J(b2) — J(a\ n bi) ^ J(a2) + J(b2) — J(a2 n b2) = 

= J(a2 U b2) ^ J(ai U b\), 

hence J(^i U bi) = J(a2 U b2) i.e. a U b e S. Similarly it can be proved a n 
n b e S. Moreover, 

J(a) + J(b) = J(a\) + J(b\) = J(a\ U bi) -f J(a\ n bi) = 

= J(a u b) + J (a n b), 
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i.e. 3.2 holds. If a <; b, then ai 5̂  a <; b S b2, hence J(a) = J(ai) 5̂  J(b2) = 
= J(b) and also 3.1 is satisfied. 

Let an e S, an 5; an+\ and {J(aJ}^= 1 is bounded. Then there are bn, cn £ S 
n n 

such that bn ^ an ^ cn and J(cn) = J(bn). Put dn = (J bt, en = (J c*. 

Then rfw, en G #, dw 51 an <i cw, dw <i d n + i , en <I eri+i (w = 1, 2, . . .) and 
J(dn) = J(en) = J(an), {J(dJ}*= ] , {J(ew)}*=1 are bounded hence there are 

00 00 

d = \/ dn, e = Y en and J(d) = lim J(dn), J(e) = lim J(ew). Since an 5̂  
H - 1 ?? = 1 

5̂  ew 5; e ( n = 1,2, . . . ) and H is conditionally cr-complete, there exists 
oc 

a = \/ an e H. Moreover, 
n 1 

oo oo QO 

d = \/dn%\/an = a^\/en = e 
n = l n=l v = l 

and 

J(d) = lim J(dw) = lim J(en) = J(e). 

Therefore a e S and 

J (a) = J(c) = lim J(en) = lim J ( a n ) . 

The dual assertion can be proved similarly. 
Let finally a ^ b ^ c , a, ceS,beH, J (a) = J(c). Then there are a\, a%, 

C\, C2 e S such that ai 5-i a <̂  a2, Ci 5̂  c 5̂  c2 and J(ai) = J(a2), J(ci) = J(c2). 
I t follows ai 51 b S C2 and 

J(ai) = J(a) = J(c) = J(c2), 

hence b e S. 
Now we shall assume similarly as in section 1 that two binary operations, 

+ and —, are given on H satisfying the following conditions: 
3.4. If ai <; a2 and bi 51 62, then ai + bi 51 a2 + 62 and (62 + a2) — (ai + 

+ 6i) ^ (b2 - bi) + (a2 - ai). 
3.5. If ai <I a2 and bi ^ 62, then bi — a2 5; b2 — ai and (62 — ai) — (bi — 

— a2) <: (62 — 6i) + (a2 — ai). 
Further let J satisfy the following additional property: 
3.6. If b <I a, a, b e S, then a — beS and J(a) = J(b) + J (a — 6). 
3.7. If a, 6 e S, then a + b eS and J (a + b) <> J (a) + J(6). 

Theorem 3.2. Let S be closed under the operations + , — and H, or J resp., 
satisfy the conditions 3.4—3.7. Then S is closed under the operations + and —. 
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Moreover J (a + b) 51 J (a) + 3(b) for every a, b e S and if b 51 a, then 3(a) = 
= 3(b) + 3(a - b). 

Proof . Let a, b e S, ai, a2, bx, b2 e S, a± <; a 51 a2, bi 5i b 5i b2, J(a\) = 

= J(a2), J(bi) = J(b2). Then 

«i + bi ^ a + 6 ^ «2 + b2, ai — b2 <i a — b 5i a2 —- bi 

and 

0 g J(a2 + 62) - J(«i + 61) = J((a2 + 62) - (ai + bi)) ^ 

^ J((a2 - ai) + (62 - 61)) ^ J(«2 - ai) + J(b2 - bi) = 

= J(a2) — J(ai) + J(b2) - J(h) = 0. 

Similarly 

0 <i J(a2 — 61) — J(ai — 62) = J((a2 — h) — (a± — b2)) 5i 

<i J((«2 — «i) + (62 — 61)) ^ J(a2 — ai) + J(b2 — 6]) = 0. 

Further 

3(a + b) = J(ai + h) ^ J(ai) + J(h) = J(a) + J(6). 

Finally, if b 51 a, then 

J(a) = J(a2) = J(6i) + J(a2 - 61) = J(b) + J ( a - b). 

E x a m p l e 3.1. Let H be the set of all finite measurable functions, S <= H 
be a linear lattice of integrable functions satisfying together with the in­
tegral J(f) = j f the conditions 2.1 — 2.3; moreover, J is linear. Then evi­
dently S is a linear lattice and J is linear too. Hence we get from a "good 
integration theory" another, which is moreover complete. 

E x a m p l e 3.2. Let H be the family of all subsets of a space X, S c: H 
be a tf-algebra, J be a finite measure on S. Then S is a G-algebra, J is a measure 
on S and J is complete. 

4. Measures on lattices 

Now we shall study the regularity of measures on lattices. A measure on 
a lattice S with the least element 0 is a function ju : S -> R U {00} satisfy­
ing the following three conditions: 

4.L If xn / x, xn e S (n = 1, 2, . . .), x e S, then lim /u(xn) = //(x). 
4.2. /^(x) + ju(y) = /i(x U y) + //(# n 2/) for every x, y e S. 
4.3. //(0) = 0 and ju(x) ^ 0 for every x e S. 
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If S is a ©--complete, modular, complemented lattice, then ju is a measure if 
and only if (see [6] theorem 4) ju satisfies 4.3 and 

oo oo 

4.4. u(\/ an) = 2 M(an) for every disjoint sequence {att}™=1 of elements 

of S. A sequence {aw}^=1 is called disjoint if for any disjoint sets a, {$ of indices 
we have \/ Xf n \/ xj = 0. We shall need also some further properties of 

tea jefi 

measures on lattices. 

Lemma 4.1. Let ju be a measure on a modular, complemented lattice S, ay 

b e S, a ^ b. Then 

ju(b) = ju(a) + ju(b n a') 

for every complement a' of a. 

Proof . If a ^ b and a' is a complement of a, then 

a U (b n a') = b n (a U a') = b n 1 = b, 

hence (according to 4.2 and 4.3) 

ju(b) = ju(a U (b n a')) = ju(a) -f ju(b n a'). 

Lemma 4.2. If S is a complemented lattice and /i is a probability measure 
(i.e. ju(l) = 1 ) , then /u(a') = 1 — ju(a). 

A lattice S is called cr-continuous if an e S, a e S, b e S, an / a implies 
an n b / a rib; and dually. 

Lemma 4.3. Let ju be a measure on a modular, complemented a-continuous 
lattice S. Let an e S, ju(an) < oo (n = 1, 2, . . .) , a e S, an \ a. Then 

ju(a) = lim ju(an). 

Proof . Let a' be any complement of a. Recall the following lemma from [3] 
(lemma 1): If c ^ b ^ a, c' is a complement of c, c' ^ a', then there is a com­
plement b' of b such tha t c' ^ b' ^ a'. Therefore there exist such comple­
ments at( of afl (n = 1, 2, . . .) that an / a'. Further a± n an / a± n a' since S 
is ©-continuous. According to Lemma 4.1 we obtain 

fi(ai) — ju(a) = ju(a\ n a') = lim ju(a± n a J = 

= lim (ju(ai) — ju(an)) = ju(ax) —• lim ju(an), 

hence 

ju(a) = lim ju(an). 

Definition 4.1. Let U, C be non — empty subsets of a lattice S, ju be a measure 
on S. An element a e S is called (C, U)-regular (or shortly regular), if 
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ft(a) = inf {ii(u); u e U, u ^ a} = 

= sup {/*(c); c G O, c <, a} . 

Theorem 4.1. Le£ S be a lattice, C, U ^ S and x, y e C (or x, y e U resp.) 
implies x U y e C (or x U y eU resp.). Then the joint a U b of tvjo regular 
elements a, b e S is also a regular element. 

Proof . First let fi(a) < ao, fi(b) < oo. Then to any e > 0 there are c, 
d G C and u, v e U such that 

c <, a <, u, d <,b <, v, fi(u) — fi(c) <e, ju(v) — fi(d) <s. 

Then cUd^aUb^uUv, cu deC, uU v eU and 

fi(a U b) — fi(c U d) = /t(a) + //(b) — //(a n b) — //(c) — //(d) + 

+ //(c n cZ) = //(a) — //(c) + //(b) — //(d) + / i ( c r i ( i ) — //(a n b) < 2e 

since a C\ b ^ end. Similarly 

/t(w Uv) = //(w) + JLI(V) — fi(u n v) <, 

<; /<(^) + ju(v) — fi(a n b) ^ 

^ ju(a) + //(b) — //(a n b) + 2e = fi(a U b) + 2E. 

If now, e.g. ju(a) = oo, then 

//(a u b) = oo = {sup ii(c); c e C, c <. a) <, 

<, sup {/u(c); c e C, c <, a U b) 

and 

ju(a u b) = oo = inf {/u(u); u e U, u ^ a U b} 

since ^l ^ a U b ^ a implies oo ^ //(a) ^ ii(u). 

Theorem 4.2. Let S be a complemented lattice. Let C, U <-= S fulfil the follow­
ing property: If c e C, u e U, c' is a complement of c, ^t' is a complement of u, 
then cnu'eC,uHc'eU. Let fibea probability meas^lre on S. Then the follow­
ing implication holds: If a, b are regular elements and b' is a complement of b, 
then a n b' is also a regular element. 

Proof . To any e > 0 there exist c, d e C, u, v e U such that 

c <, a <L u, d <: b <. v, ju(u) —- //(c) < e, fi(v) — fi(d) < e. 

Choose such complements v' of v and d' of d that v' <* b' <* d'. Then 

//(a n b') — fi(c n v') = fi(a) + ju(b') — /e(a U b') — //(c) — f.i(v') + 
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+ fi(c U v') = //(a) — ju(c) + 1 — //(b) — (1 — JU(V)) + ju(c U t/) — 

— ju(a U 6') < 2e 

since c U v' ^ a U b' and hence /<(c U r') ^ //(a U b'). Similarly 

JU(U n d') — //(a n b') = JU(U) + ju(d') — ju(u U a7') — /*(a) — fi(b') + /u(a U 

U 6') = ju(u) — ju(a) + 1 — ^(d) — (1 — //(b)) -f u(a U b') — ^(w u d') < 2E 

since a U b' ^ w U a" and hence ^(a U b') ^ //(it U a"). 

Lemma 4.4. Let S be an arbitrary lattice, at e 8, ut e 8, ui ^ a\, ju(ai) < oo 
(i = 1, . . ., n), a\ ^ a2 ^ . . . ^ an. Then 

)> a 

fi(\J ut) — [i(an) £ 2 (/'(^') — /*(*-))• 
? = i / = i 

Proof . We prove the inequality bj r induction. 
n+i a 

M\J ui) — Man+l) = M\J Ui) + ju(un+i) — 
*'=1 /=1 

n 

— ju((\J ut) n un+x) — ju(an+i). 
i=l 

But an^i ^ un+i, U ai = U w< implies a„ = aw+i n ( ( J at) ^ ww+1 n ( ( J ut), 
i = l ? = 1 > = l j = i 

hence 

n+l rt 

fi(\J ut) — /u(atl+i) ^ /(((J w*) + ju(un+i) — /«(an+i) — fi(an) S 
*=i ?=i 

// n+\ 

^ 2 (/*(̂ <) — /^(a*)) + /«(w»+i) — iw(«»+i) = 2 (p{ut) — /*(«.))• 
/=-i i = i 

Definition 4.2. Le£ U < = $ , / / be a measure on 8. We say that an outer 
a eS is outer regular if /u(a) = inf {fi(u); a ^ u, u e U}. 

Theorem 4.3. Let 8 be a a-complete lattice, U c 8 and ut e S (i = 1,2, . . . )=> 

oo // 

=> \J ui e S and \J ut e S (n = 1,2, . . .). Fel ft be a measure on S and let 
i-\ /=1 

{a»}7,-i be a seguence of inner regular elements, an / a. Then a is also an outer 
regular element. 

Proof . If ju(an) = oo for some n, then ju(a) ^ ju(an) = oo and u ;> a ^ an 

implies ju(u) = oo. Now let ju(an) < oo (n = 1, 2, . . .), s > 0. Then there 
are un ^ an, un e U and 
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8 
/t(un) — /i(an) < — (n = \, 2, . . . ) . 

QO n 

Put u = \/ un, wn = \/ vt (n = ] , 2, . . . ) . Then u e U, wn e U (n = \, 2, . . .) 
n = l i = l 

and according to Lemma 4.3 

ju(wn) — fl(an) ^ ^ (Mui) — ll(ai)) <£-
i-1 

Since wn / u, an / a, we have 

ju(u) = \im ju(wn) < \im/i(an) + e = /i(a) + E. 

Theorem 4.4. Let S be a modular, complemented, o-continuous lattice. Let 
C, U <= S, U be closed under finite and countable supremums, C be closed under 
finite and countable infimums. IM /J, be a finite measure on S. Then the set M 
of all regular elements is monotone, i.e. an / a (or a n \ a resp.), an e M (n = 
= 1 , 2 , . . . ) , a e S implies a e M. 

Proof . We study only the case of an / a. In the second case the situation 
is similar. We know that a is outer regular; we have to prove 

ju(a) = sup {ju(c); c ^ a, c e C). 

But 

/c(a) = l im//(a„) . 

If /i(a) < oo, then to any e > 0 there is such n, that 

/i(a) </i(an) + e. 

Since an is regular there is c e C such that c <, an g a and 

/i((in) <fi(c) + e, 

hence 

/i(a) </i(c) + 2e. 

If //(a) = oc, then to any no there is an such that /i(an) > no and therefore 
there is c e C, c ^ an ^ a such that //(c) > H0- I t follows that sup [/i(c); 
c <, a, c e C} = oo. 

Now Ave can form a closed theory of the Halmos type (see [4]). What did 
we assume about C and £7? 

4.5. C and U are sublattices of S. 
4.6. If c e C, u G U and c' or M' resp. is a complement of c, or u resp., then 

c n u' G C and u n c' e U. 
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4.7. If cn E C, or un e U (n = 1, 2, . . .) resp., then /\ cn e C, or V un e U, 

resp. 
Now we add also the following condition 

00 

4.8. To any c e C there are un e U (n = 1,2, . . .) such that c = f\un. 
71 = 1 

Definition 4.3. Let S be a lattice, JLI be a measure on S, C, U c: S. /u is called 
a regular measure if every element of S is regular. 

Definition 4.4. Let S be a complemented a-complete lattice, C c: S. We shall 
say that D <= S is generated by C if D is the least lattice over C with the follow­
ing two properties: 

1. If a, b G D, V is a complement of b, then a C\b' G D. 
2. If an e D (n = 1,2, . . .), an / a or an \ a, then a e D. 
R e m a r k . I t is possible to define a (lattice)-ring as a lattice D satisfying 

the condition 1 (see [5j). In our case D is the smallest monotone ring over C. 
I t is proved in [5] (Lemma 1) that the smallest monotone ring over C coincides 
with the smallest cj-ring over C i.e. the smallest o--complete ring over C. 
The assertion has been generalized for relatively complemented lattices in [3] 
(Theorem 3). 

Theorem 4.5. Let S be modular, complemented, a-continuous, a-complete 
lattice. Let C, U <= S be sets satisfying the conditions 4.5—4.8. Let S be genera-
ted by C. Then every finite measure on S is regular. 

Proof . Put M -= {a eS; a is regular}. According to 4.8 C <-= M. Now it 
is sufficient to prove that M is a lattice satisfying the conditions 1 and 2. 
If a, b e M, then a U b G M according to Theorem 4.L Analogously it can 
be proved that a n b G M. The conditions 1 and 2 follows from Theorems 
4.2—4.4. 

5. Measures on logics 

A partially ordered set L with the least element 0 and the greatest element 1 
is called a logic if there is a one-to-one mapping J_ : L -> L such that the follow­
ing properties are fulfilled: 

5.L (aL)L = a for all a e L. 
5.2. If a, b e L, a <b, then bL < aL. 
5.3. a n aL = 0 for all a e L. 
5.4. aU aL = 1 for all a e L. 
5.5. If a, b G L, a <; b, then there is c e L such that a -f- c = b (i.e. c ^ aL 

and a U c = b). 
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5.6. If at e L (i = 1, 2, . . .) and at __ ak
L for i ^ k, then \/ at exists. 

CO 00 / - l 

In the last case we shall write ^ at = V a*- •"•-? a = ^ J ' then & = aL\ * n e 

elements a, b are called orthogonal and we write a _J_ b. If a __ b, then b = 
= a U (b n a L). Finally we shall write a <-> b if there are a_, bi, c e L such 
that ai _L bi, a\ _\_ c, b_ _|_ c and a = a_ -f- c, b = bi -f- c. If a «-» b, then a = 
= (a n b) -f- (a n b1). (In paper [7] the elements a, b for which a <—• b are 
called compatible; in the book [8] such elements are called simultaneously 
verifiable.) 

A measure on a logic I is a function /u : L -> E such that 
5.7. ju __ 0 and //(0) = 0. 

00 00 

5.8. If at G L (i = 1, 2, . . .), a$ _L % (i =£ j ) then /*(]T ^ ) = 2 /'(a*)-
i-x i-L 

F"or proving the regularity theorem we shall use the following properties 

of the given sets C, U <= __,. 
5.9. If c 6 C, u e U, then cL e U, uL e C. 
5.10. If Ci, C2 E C, Ci _L C2, then c_ -f- C2 exists and c_ -f- C2 E C. 

00 CO 

5.11. If w* E C ({ = 1, 2, . . .) , then V u% exists and \j u% e U. 
i=l /=1 

5.12. If d E C, v e f / and d __ v, then v n dL e U. 
5.13. If d e C, v E U, then a1 <-> v and d n ^ e C . 

Theorem 5.1. The set M of all regular elements of L (i.e. such elements a e L 
that 

u(a) = inf {ju(u); u __ a, u e U) = 

= sup {JU(C); c __ a, c e C}) 

is a sublogic of the logic L. 
Proof . First we prove that a e M implies a-L e M. Let e be an arbitrary 

positive number. Take c eC such that c __ a and //(a) — e <//(c). Then 

^(1) — /i(a) — e > /u(l) — //(c), 

i.e. 

/*(a-L) — e > ju(c±) __ //(aJ-) 

since a-L __ c-L. Since c-L e C (see 5.9) we have 

//(a-L) = inf {/u(u); u E U, U __ a-L}, 

hence a-L is outer regular. Similarly it can be proved that a-L is inner regular. 
Now let at E M, at __ ak±(i 7-= k). Take ct- __ at, ci E C such that 

222 



Then 

є 
џ(at) — — <JU(CІ). 

2l 

M 2 a») = 2 ^ a i ) = l i m 2 (̂«ť)» 
i=í ř = l n-»co ?"=1 

hence there is n such that 
oo n )i )) 

fi(^at) — e <Jt/i(ai) <2."( c-) + £ = M2 c*) + £ 

v=l t = l i = l ?'=1 

00 

and we proved (see 5.10) that ]> ai is inner regular. Take now u% e U such 
1=1 

that ii t ^ at and 

£ 
/*(«*) + — > f*(Ui). 

2* 

Then (see 5.11) 
OO OO CO CO 

juQ at) = ^Mat) ^ 2 f*(u*) ~ e = /«(V u*) — £ 

*=1 i=l /=! i=l 

and we see that ^ a i is also outer regular. 
i=l 

Finally let a ^ b, a, b e M, c = b n a-I. We want to prove that c e M. 
First take d eC, v e U such that d ^ a, b ^ v and 

//(a) — ^ <f*(d), ju(b) + e > fx(v). 

Put k = v n d-I. Then t> = d -f- &, k =- -y n d-L ^ l n a l = c , i i ; G [ / (see 5.12) 
and 

fi(k) = ju(v) — ju(d) <ju(b) — ju(a) + 2e = ju(c) + 2s 

hence c is outer regular. Further take / e C, u e U such that / ^ b, a g u, 
f E C, u e U and 

//(b) — £ < / / ( / ) , //(a) + e > /J(M). 

Since / , u are compatible (see 5.13), we have / = / n w - I + f n u, hence 

/*(/) = M / n tt-L) + M / n u) ^ p(fnu±) + f*(u) 

and therefore 

//(c) = / « ( l n o l ) = ^(6) - ^(a) < ^ ( / ) _ ^ ) + 2£ ^ 
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£p(fnu±) + 2e. 

Finally c = b n a-L ^ / O uX9 f nu±- e C, hence c is also inner regular, i.e. 
ceM. 
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