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REFLECTORS AND COREFLECTORS
ON DIAGRAMS

ARNOLD A. JOHNSON, Toledo (USA)

I. INTRODUCTION

In the fall of 1957 the writer began a Ph.D). dissertation under the direction
of K. B. Leach investigating what Kan [1] was to call direct and inverse
limits and what Freyd |2] was to call left and right roots (or reflections and
coreflections). The work was essentially complete by the time Kan's article
(1] on adjoint functors. appeared in the Transactions during the following
vear. Due to circumstances beyond the control of the writer there was a delay
in the publication of his results and in the meantime some of the results such
as the factorization of left roots into differences of products were published
independently by other writers [2]. However, since the results in which the
dissertation culminates have not to the writer’s knowledge yet appeared it
scemed to him worthwhile to write them up for publication, adapting for this
purpose the elegant language invented by Kan.

The main tool of this paper is the concept suggested by E. B. Leach of a rela
tive reflection: an object X in a category 4 is a relative reflection of an object
N in A with respect to a functor (= </~ A4 provided there is a morphism X' - X
in 72 satisfving the universal mapping property with respeet to /e for all
objects A in .o/. We define a category & of diagrams over a category .o/,
in which the diagrams are not necessarily of the same form, and imbed ./
as a subcategory of 7 by means of a functor J: o7 - 7. If a diagram 1) has
a subdivgram functor D': 4" -~ 7 (see below) and if L: & - o/ is a veflector
[2] then LD is a relative reflection of 1. Since a reflection of relative reflection
of D is a reflection of D (and dually for coreflections) a procedure is obtained
for the iteration of reflections and coreflections which leads naturally to the
investication of the associativity, “commutativity®, and distributivity of
reflectors and coreflectors. Categories 7 (M) of diagrams of the form /):
v -/ are defined in which for cach morphism « in .7, Do is constrained
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to lie in a class M (o) of morphisms in .o/. Reflectors and coreflectors on these
categories are studied. Examples are sums, products, quotients, subobjects,
ete. Given functors @ : (M) » .o/ and W : T (M) .o/ and a diagram D
in Ypg(M < M') we define subdiagram functors Dy: S 7y and Ds:
S -> (M) and define the compositions @Y : % (M M) .~/ and
VD Drg(Mx M) o by setting (¥ DD = V(D D) and (@ W)

= O Dy). If W(D Dy) is isomorphic to @(¥ D)) then @ and ¥ are said to
commute even though @ and ¥ have different domains. [ nvariance of retlectors
and coreflectors under one another is defined and it is shown that one retlector
& P1(M) - .o/ commutes with another ¥ : Z,;(M') .o/ provided cach ix
invariant under the other. There is a dual result on coreflectors. If @ : & (J[)

- .o/ is a coreflector and ¥ : Z;(M') — .o/ is a reflector such that cach is
invariant under the other then @ does not generally commute with ¥ but
there exists a natural transformation ¥ @ — @ V. The latter specializes to the
celebrated minimax theorem and may be further specialized to the one-sided
distributive law (x . y) + (x.2) << @ . (y -+ z) of lattice theory |3].

I1I. RELATIVE REFLECTIONS

Definition. Let (/: .o/ -~ B be a functor and let X — X be a morphism in 4.
Suppose that for any morphism X — (A4 in which A is an object in .o/ there
cxists a unique morphism X " Q4 such that

X——X

Y

GA

commutes. Then X -> X is a relative reflection and X is a relative reflection of X
(both with respect to (). When there exists an object X' and « unique morphism
X' > A wm o such that f = Ga then the relative reflection is absolute: in thix
case X' is called a reflection of X and X - GX' is called a reflection (both with
respect to ().

Relative reflections with respect to a functor G: .o — A form a subeategory of 4.
A reflection of a relative reflection of an object X is @ reflection of X. Furthermor
if X > X is arelative reflection and X > GX' is a reflection then there is a unique
morphism X —> (/X' such that (1) the diagram

commutes and (2) the morphism X~ (GXN" is a rveflection.
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Recall that a diagram D over a category .o is a functor D: .# — .o/ in which
S is a small category [1]. If D: . — o/ and D': .#’ — o/ are diagrams, then
a mapping . D — D’ consists of a functor 71: .7 — .4’ onto .#’, together with
a natural transformation 7o D — D'ri. We will write 7 = (71, 72). (If 71 i
obvious we will write only 72 instead of (71, 72).) A morphism equal to 7.
for some i in S is called a component of the mapping.

Definition. If o: I > F’ is a natwral transformation between functors F, F':
2 - A and if G: € > X s a functor then o G: FG —> F'G is the natural trans-
Jormation defined by (o G)ec = a(Ge) for each object ¢ in €.

Definition. If t': D’ —> D" is another mapping then v'v: D — D" is defined by
(T'th = 7,11 and (t't)s = (1o11)72. Consequently we obtain the category 7 of
diagrams over o .

There is an obvious imbedding functor .J: .o/ — & and under this imbedding
we may regard .o/ as a subcategory of . It follows that a reflector [2] F:
v ~.o/ is a (direct) limit functor. By a reflection of a diagram D over o7 we
mean a reflection of D with respect to J. We will usually suppress mention of J
and identify objects A4 and morphisms « in .7 with their corresponding diagrams
JA and Ja.

A mapping 7: D> A4 in which 4 is an object of .27 consists of a family of
morphisms ti: Di -~ A indexed by objects in .# such that for each morphism
a: i-»i" in .7 the diagram

Dy —Da _pi’

n Te

commutes.

A category ./ has an opposite category .o7°P in which the objects and mor-
phisms of .o/ are the objects and morphisms of 7o but hom_, (4, B) ==
= hom® (B, A) [4]. Moreover the product «° f of morphisms «, f in .c7op
is defined by a° f = fa whenever fa is a product in .o7.

It D 7->.o and D': /" — o/ are diagrams then a comapping v: D - D
ix a functor 7;: " — .5 together with a natural transformation o : Dry— D',
In effect a comapping has the same definition as a mapping except that domain
and range are interchanged and components of 7 from .oZ are replaced by
morphisms from ./or. The converse category @* of diagrams is the category

’

whose objects are diagrams and whose morphisms are comappings. Coreflections
are defined using comappings.



A comapping 7o -+ D in which <l is an object in o/ and Do 7 -/ s
a diagram consists of a family of morphisms 70 X - D/ indexed by objects
in.7 such that for cach morphism x: ¢ > 2" in .7 the diagram

Dt-——-> D&’

A

Definition. Let P: .7 — 4" be a functor. A funclor induced category PV (77
is defined as follows: the objects are diagrams Eg: 7 - 7 one for cach objoet
K in 4 and there corresponds to each morphism (= N - K {n %« mapping
(Fg, 0p): B -> By . The functor induced category satisfies the propertics:

(1) A morphism o« tn .7 is an image under Ki if and only if Pz o

(2) Each morplism in .9 is the product of fuctors oo such that x is cither an
image under one of the B or a comporent of « mapping (F; c3) such that

= [

(3) Ex ts an imbedding, ©. ¢. vs one-to-one into.

(4) (Fg, o) is an identity if and only if s an wdentity.

(5) (K 04,) (K, T5) = (Faapys Opapy)-

If such a category P1(#7) exists then the mapping P Vop - P 1 (7).

defined by P1K = By for cach object N in ¢ and P (F;. o3) for

cach morphism g in 2, is by (4) and (5) a functor. The functor 22 induces

a factorization of 7 into subcategories and morphisms hetween the subeate-

vories. Thus P V.7 - P () may be called a factorization of

commutes.

Definition. Let ;.7 .o/ be « dicgran and iet D= 1 V(5 ) -7 e a fruetor
such that D(Eg) - DEx and D(Fg, 54) — (Fg. Dag). Thus 1) is a restriction
of D 1o the subcategories of 9 in PV (A7) and 1o the wappings betiecow the -
categories. Let D' DP V. # ~D then DK Dr YK DEg 9 -
i dicgram for cach object K in . D" is called o« subdiagran functor of 19l
the functor P is a projection functor of D

Theoreni Y. Suppose 12 4 - of is aseficctor and 2 1, L is e watual
transformation induced by L, 1] (called a froat adjinction by Mac Lane 4]
Let D: 7 - .of be a dicgram and let. 1'% - 7 be a subdiagram frunctor of 1)
Lf P F —- s projection functor of D and oo 4V - LD i< The Lransforieation
such thal Thy == (1Y Ek) for cach object ke 27 then (Por) D - LD (s podatim
veflection. (By f/u object L(DER) of o7 he range-object of «(D'l)7s hicre i
the diagram JL(DER) wheve J: o7 - ds the chosew mbedding of 7 iw 775

Proof. In order to est ;al)lis'h that, the transformation o 1) - LD is natwral
let % &~ 4" be a morphism in .. There ave two cases to consider,
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(‘ase 1. There exists a morphism a’: j - j' in .#} such that Kra’ = « for some
object £ in 7. 1t follows that (D'k)e’ = (DE;)a’ = Da and since the natural
transformation x(DEy) : DEg -> L(DEg) may be regarded as a mapping. the
diagram

e — P (pEp) )
[noe,,)]/'
[ ¥(DER]i
L (DE,)

commutes. But L(DEy) = L(D'k) = L(D'Pi) = L(D'Pi’) and Pa = ¢ and

consequently the diagram

Da ’

Dg——————D.
Ti (7

LD'Pa

LD'PL LDP’

commutes.

(‘ase 2. Pa = B and o is a component of (¥4, 0p), i. e. there exists j such that
a3 J - a. Let kand & be objects in " such that Erj = ¢ and Epj" == i". The
diagram

(Fp,Dry) -
pE, —28" . bE,.

K (DE) K {DEI:’)

L(F,Df,)
L(DE,) > L(DE}")

commutes and consequently for cach j in ., the diagram

(Dg,)j

(DEy)j ———L e (DE, 1’
[ktogy); [kcog, ]

L{F, .D6,)
L(DE,) ————— L(DE,)
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commutes. But

L(DE}) = LD'k)y = LD'Pi
L(DE}) LID'EY = LD'PI,
LD P = LD'p L(Fg, Dog).
and therefore the diagram
De Da D¢’
13 Jn’
Lopi —=2 Pt o

commutes.

Since all morphisms « in .4 are produces of morphisms of the types i cases
I and 2 it follows that 7 is natural.

Now let z: 1) -> A be an arbitrary mapping into /. For cach object £ in
" there is a unique morphism ok such that

Dk —KOK) o)
XE*\ Wk
A

commutes.

The transformation m: LD’ > 4 is a mapping because if g: b - L is a mor-
phism in %" then LD’ is the unique morphism such that

.

Dk

D'k _—i_
\@; xEy
K(D'k) A
2
L(DB)

L(D’k) LD%’)

K(D'k")

commutes. Since x(D'k) = tHy it follows from diagram (1) that o
~> A is the unique mapping such that

D—F »1LD

Sk

A

commutes.
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Theorem 1 can be readily applied to proving known theorems such as the
associativity of sums and products and that reflections of diagrams may be
factored into a summation followed by a ““quotient’* and that coreflections may
be factored into a multiplication followed by a “difference®. (This may be
scen from the following.)

Definition. .o/ is the largest discrete subcategory of the category 7. (A discrele
calegory [2] is a category whose only morphisms are identities.)

_ Definition. If D: ./ — o is a diagram and K: I 5 isan njection then 1):
S -/ s the family defined by D = DE. (A family (Di),., is a diagram [):
4 - .o/ in which . is a discrete category). Thus D is the largest family in D.

We tinally show that every diagram D: .# — .o/ has a subdiagram functor
D % ~& of the form A: D> D in which 4 is a family of mappings. Such
a functor may be called an object-map factorization.

let K2 7 —~ .7 be an injection and for each morphism o: i -4 in .7 define
(IF'\. 0\): K> K as a mapping having o as a component and whose other
components are identity morphisms. Let 7" be the category whose only object
is / and whose morphisms are mappings (Fa, oq): £ — E. Define Pi = K and
Po - (F., 04) for cach object i and each morphism « in .#. Define D': %~ - &
by setting D'E = D and D'Pa = (F«, Dos): D> . Then D is of the form I:
D - D in which 4 is a family of mappings D'Px cach of which consists of
Do together with identity morphisms.

L "COMMUTATIVITY OF REFLECTORS AND COREFLECTORN

In the category of R-modules in which R is a commutative ring with identity
the direct sum functor @ has as its domain families of modules and the quotient
functor ¥ has as its domain pairs of modules of which one is a submodule of
the other. It is known that “the quotient of the sums is the sum of the quo-
tients'* so that in a sense @ ‘“commutes’ with ¥ although @ and ¥ have dif-
ferent domains. In this section we characterize such functors in the cases they
may be regarded as reflectors and coreflectors and define the composition
of such functors relative to which they commute.

Given a diagram D: . X ¢ - .o/ there correspond subdiagram functors
of the forms Dy: # - % and Ds: ¢ — 2. A theorem on the commutativity
of reflectors and coreflectors will be proved by applying Theorem 1 to these
functors.

liet Ej: 9 .9 % ¢ be the imbedding functor defined by Ejy = (i, j).
Eijx = (x, ¢;) and let Ki: ¢ —~ .9 x ¢ be the imbedding functor defined by
RKij = (i, j), B == (e;, p) for objects ¢ in .#, j in # and morphisms « in .7,
fin #. Since the Kt are all of the same form, a mapping or a comapping Ki -
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-E7 may be regarded as a natural transformation. For cach morphisim
2ov - S et 6 B> EY Dbe the transformation defined by (oY) = (%, ¢))
for cach object j in #. To show that o% is natural let g ) > ) be a morphism
in ¢ . Then Kip = (e;. p)and BV = (¢, ) and the diagram

(L,/)M(i,,/')
(ocej) (cc.ej’)

n) ',
ey teinl L

commutes. The natural transformation o*: Ei — K¢ induces a natural trans-
formation Do2: DE! - DEU. Define a functor Dy: .4 > 7 by setting /)7
— DEvand Dy = Do* for each object 7 and each morphism o in .7

A similar procedure generates a functor Ds: # - 7. For each morphism ;.
J-=j) in Z and for each object ¢ in .7 we set o3¢ = (¢;. f) and then define
1sp = Dog and set Dsj = DEj for each object jin £.

If o: ¢ ->¢" is a morphism in .# and f: j-> )’ is a morphism in ¢ then

(o, /))) = (%, ¢p) O (e, )
== Hyo O opl
o o Eif.

It follows that cach morphism (x, f) in .# x _Z is the product of two factors
one of which is an image under £ and the other is a component of one the
mappings F£; -~ K, and furthermore one of them is an image under £7 and
the other is a component of a mapping K - E. Consequently Dy
and Dy ¢ > & are subdiagram functors.

Corresponding to the subdiagram functors are the projection functors P
J o f 7 and Po: I % f - ¢. 1t follows from Theorem 1 and its dual
that it L: % — o7 is a reflector or a coreflector then L(LD)) is isomorphic to
L(LDz). We now apply this result to the study of the commutativity of re
Hlectors and coreflectors.

V)

Definition. Let 7 be a small cateqory, let .o/ he « category and let o he th
category of diagrams of the form D: .7 - .o/ For cvery morphisme = in .7 et
M (%) be a class of morphisms in o such that if o is an identity then M(x) is th
cluss of identity morphisms in .of. Define (M) as the full subeategory of 7y
such that Da belongs to M(x) for every morphisn x in 7.

Examples. 1. If .7 is a discrete category then (M) = 7, and a retlector
(M) > o7 is a sum functor and a coreflector 2, (M) = </ is a product functor.
2. Let .o be the category of modules over a commutative ring R with identity
and let # be a category consisting of two objects ¢ and " (with corresponding
identities) and two morphisms o 7->¢" and 2": ¢ > 7" Let MW(x) consist ot
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monomorphisms in ./ and let M («") consist of trivial homomorphisms so that
Da's Di--Di" maps Di onto the zero element of Di’. Then a reflector @:
(M) </ is a quotient functor and @) .= Di’|Di for every diagram 1) in
1),

Definition. Let &: (M) > o and V: T 5(M') ~ of bereflectors or coreflectors.
Then ¥ is invariant under @ (or P-invariant) provided for every morphism t
in V(M) the morphism Pt is in class M'(x) of ¥ whenever every component
of T is in M'(a).

Iixamples. 3. Sum and product functors are invariant under any reflector
of coretlector @: & (M) - o/ since as shown in example 1 the classes M'(«)
of sum and product functors contain only identities.

4. A quotient functor as in example 2 is direct sum invariant. For if ©:

D -~ D" is a morphism in Z; and ¢ is a monomorphism for each object ¢ in

7 then > 7i is a monomorphism and if 7¢ is trivial for each object ¢ in .# then
icl

N 1 is trivial.

T

Definition. Let “pcy (M X M') be the full subcategory of Drxy such that
D(a, ¢) € M(a), D(¢, p) € M'(B) whenever o (or B) ts a morphism in & (or §)
and e (or€') is an identity in ¥ (F respectively). Let D: .9 X # -> of be a diagram
in 71 g(M<XM') and let Dy: .7 — 2 and Do: F — 2 be the subdiagram functors
of D as defined above. Let Dy: I — G y(M') and Ds: > D1(M) be restrictions
of Dy and Dz and suppose @: Di(M)-> .o/ and ¥V: Dy(M') > o are functors.
Define the composition @V: D g(M <X M') > .o/ and the composition YWd:
YoM M)y >/ by setting (@W) D = QW D) and (P®) D = V(D Ds).

Theorem 2. [f @ and ¥ are reflectors then wnder the composition just defined
& and W commute provided each is invariant under the other.

Proof. Since @ is W-invariant it follows that ¥ Dy: .# — <7 is a diagram in
(M) and since ¥ is @-invariant it follows that @Dy: ¢ — o7 is a diagram
in 7 ;(M’). Furthermore Y(®Ds) is isomorphic to @(¥D,) since @ and ¥ arc
reflectors.

xamples. 5. In the category of R-modules direct sums commute with
quoticnts. However, quotients are not self-invariant: otherwise we should be
able to prove that if 4 CB C¢ and if 4 CC C then ((/O)/(B[A) is
isomorphic to ((/B)/(C/4) using the diagram

:tr’ G

ntz L
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in which the j’s are monomorphisms and the s are trivial. In case ¢~ ||
the monomorphisms are prescrved under quotients and it follows that (/7 )
NL/A) is isomorphic to G/B.
By a trivial modification of the proof of Theorem 2 it follows that coreflectors
D: Di(M) — 7 and ¥: T (M) — o7 commute provid-d euch s invariant wndr
the other.

Definition. Morphisins between diagrams may be  generalized s follows:
let " be a small category and let D: .9 -~ o/ and D': ¢ -~ .o/ be diagrams such that
there are projectors P: A — J and P': 4 — 7 onto .7 and onto §: thena 4 -
morphism D — D' is a natural transformation DP — D'P'. A mapping D - 1)’
is an I -morphism and a comapping is a §-morphisi.

Let @: 2 M) > .o/ be a coreflector and let ¥: 7 ;(M’) -~ </ be a retlector
and suppose that cach is invariant under the other. Let D: .7 .0 ¢ -2/ bea
diagranm in %5 (M < M'). As in the proof of Theorem 2 ¥y .7 - ./ ixa
diagram in (M) and @Ds: ¢ ~ .o/ is a diagram in 7, (M').

There is a natural transformation 7: D -~ YD ?, that defines a relative
reflection D > WD, and there is a natural transformation r': @D. - D) that
defines a relative coreflection @D, -~ D. Consequently the natural transtor-
mation 17" @DaPy » WD Py is an ¥ X J# -morphism @dDs ~WDy. Henee tor
every object ¢ in # there is a mapping (r)E7 . @D> ~ WDy and for every
objectjin ¢ there isa comapping (vv')H;: @Dsj > WDy, Let 2's @Dy - (1D
be a reflection and let 7: (@W)D > ¥ Dy be a coreflection. Then obviously there
exist unique morphisms m’s and mj for each object 7 in .7 and j in ¢ that makes
the diagrams

$6,— g5,

N f"

“tho

#0, —TTE4p .
:r‘l //uL/

commutative.
Since the diagram

$D,j T(e.f)o T(4,f) - ¥D,i



commutes it follows that o’: (Y®)D - WD, is a comapping. Similarly -
DDy (PY)D is a mapping.
We now show that there exists a unique morphism » such that the diagram

D
Ww

$0,——@FD—L—= ¥D,
> ]» -

¥d0 "~

commutes. The existence of such a morphism follows from the existence of
a unique morphism » such that va’ = w. This yields ava" = 7o == 71" and
therefore v = o', which establishes commutativity.

If the natural transformation Y@ -~ @Y were an equivalence then reflection
functors would commute naturally with coreflection funcrors provided that
cach is invariant under the other. However, there are counterexamples such
as (disjoint) sums and products in the category of scts. Nonetheless, we obtain
a generalization of the celebrated minimax inequality: namely that there is

a natural transformation > [ |-~ > from which we have as a special casc
jed el iel jed

the one-sided distributive law (v . y) - (. z) -~ . (y + z). For the cases in which

sum and product are lattice operations these reduce to the usual laws. [3]
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