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Matematicky &asopis 23 (1973), No. 1

PERMUTABILITY, DISTRIBUTIVITY OF EQUIVALENCE
RELATIONS AND DIRECT PRODUCTS (%)

HILDA DRASKOVICOVA, Bratislava

Notations. In the whole paper the symbol IT(M) will denote the lattice
of all equivalence relations on the set M =4 (). We shall use the symbols #, v,
A, V for lattice-theoretical operations. We shall define some equivalence
relations by quoting their blocks, e.g. C': {1, 2}, {3} will denote the equivalence
relation whose blocks are {1, 2}, {3}. The greatest and the least equivalence
relation on a set M will be denoted by I and O, respectively. In the whole
paper the symbol AB or A . B for given equivalence relations A, B will denote
their product in its usual meaning (cf. [1]). The symbol L(&) will denote the
sublattice of the lattice II(M) generated by the set . of equivalence relations
ona set M. The symbol C(A) will denote the lattice of all congruence relations
on an algebra 9. The descending chain condition will be abbreviated by
DCC.

Introduction. There exists a one-one correspondence between direct de-
compositions of an algebra into two factors and couples (4, B) of permutable
congruence relations such that 4 is a complement of B. It is not sufficient
toassume the pairwise permutability of corresponding congruence relations
toextend this result for an arbitrary number of factors. In papers [6], [8]
the concept of complete permutability and absolute permutability of a system
of congruence relations is introduced to this purpose. In [11] the absolute
permutability is used to an external characterization of a special kind of
subdirect representations of algebras. In the present paper another kind
of permutability (“weak’ and ‘strong”) is introduced. Both those concepts
of permutability are also sufficient to the characterization of direct products
of algebras (see §5) and to external characterizations of certain subdirect
representations of algebras (see [3]).

In the present paper interrelations among the mentioned concepts of
permutability are investigated. It is further shown that some of these per-

(1) Most results (without proofs) of the present paper were published in Acta Fac. rer.
natur. Univ. Comenianae Math., special number, 1971, 3—11. '
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mutabilities imply certain distributive identities for the equivalence relations
which form the given permutable set & or the distributivity of the lattice
L(%¥) generated by &. An absolutely permutable set of equivalence relations
generates a distributive lattice whose elements are pairwise permutable and
a Boolean algebra 27 if this set is finite. In this direction also some G. H.
Wenzel’s results [11] are corrected and improved. In the case of weakly
or strongly permutable set & of equivalence relations the situation is more
complicated. If card ¥ = 3 then L(¥) is distributive but this is not the
case when card ¥ > 3. Sufficient conditions for a strongly permutable set
of equivalence relations to generate a distributive lattice are given.

The concept of “finite strong permutability”’ of equivalence relations i~
introduced analogously as the Chinese remainder theorem in algebras (see
e.g. [4]). Some known theorems connected with the Chinese remainder theo-
rem ([4], [13]) are generalized and completed (see Remark 3.1, Theorem 3.3,
Theorem 3.6, Corollary 3.8, Corollary 3.9, Remark 3.2). It is possible to
cnlarge the Chinese remainder theorem in algebras to the case of an arbitrary
(possibly infinite) number of congruence relations. The corresponding notion
of this ‘‘unrestricted Chinese remainder theorem” for equivalence relation-
is that of “strong permutability”. The class of algebras in which any set &
of congruence relations is strongly permutable (i.e. the unrestricted Chinese
remainder theorem is satisfied) is described (Corollary 3.8).

The results of [11] concerning a special kind of subdirect products of algebras
are corrected. Some results of the present paper are useful to characterize
some types of subdirect representations of algebras (more general than that
in [11]; see [3]) using the weak permutability.

1. Various Notions of Permutability of Equivalence Relations

Two equivalence relations 4;, vAz on a set M are said to be permutable if
Ar14d, = A54;.

Definition 1.1. 4 set & = {d,:y €'} of equivalence relations on a set M
18 called weakly permutable if for any family (x? :y € I') of elements of M such
that xx(Aq v Ag)xh for any o, p € I' there exists x € M such that xA,xv for any
yel.

Definition 1.2. A set & of equivalence relations on M is called finitely strongly
permutable(®) if any finite subset of & is weakly permutable.

(2) The assertion that, for an algebra U, the set C(A)is finitely strongly permutable
means in terminology of [4] that U satisfies the Chinese remainder theorem.

70



Definition 1.3. 4 set & of equivalence relations on M is called strongly per-
mutable if any subset of & is weakly permutable.

Definition 1.4. [6] (cf. [4]). 4 set & of equivalence relations on M is called
completely permutable if whenever we are given {Ay:Aed}, AreS, and set
Cio= AN{d,:v £ veAd} and we are given (z*:A1e ), z* € M with x*}(C; v
v Cy)x for all A, y € A, then we get that there exists an x € M such that xAx*
Sfor all AeA.

Definition 1.5 [8], [11]. A set & = {4, : y € I'} of equivalence relations on M
18 called absolutely permutable(3) if for any family (¥ :y €I') of elements of M
such that xx(\/ {Ay:y e'})xb for any o, Bel there exists x € M such that
xAyxv for any yel.

The following Lemma can be easily proved.

Lemma 1.1. Given a set & of equivalence relations on M, each of the follow-
tng properties implies the next one: absolutely permutable, strongly permutable,
completely permutable. Strong permutability implies weak permutability. None
of the converse implications holds.

Remark 1.1. The following examples show that the converse 1mpllcat10ns
do not hold: a) If the set & is weakly permutable it need not be pairwise
permutable and not even strongly permutable as the next example shows.
Let Bi, B2, Bi1 A By be equivalence relations on a set M such that B;, B;
are not permutable. b) A completely permutable set of equivalence relations
need not be weakly (nor strongly) permutable as the example in Remark 2.3
shows. ¢) Let M = {1,2,3,4,5,6,7,8}, A::{1,7}, {2,4}, {3,8}, {5,6};
do:{1,4}, {2,7}, {3,6}, {5,8}; 4s:{1,3}, {2,5}, {4,6}, {7,8}. The set
& = {A1, Az, A3} is strongly permutable (this is proved in Example 3.1)
but it is not absolutely permutable, for if we take 2! =1, 22 =3, 23 =5
th-n xi(4, v Az v A3)x’ holds for any 7, j € {1, 2, 3} but there does not exist
x€ M such that xzid;x for each 7€ {1, 2,3}.

Remark 1.2. For any natural number » (n > 2) there exists a set & of
n equivalence relations which is not weakly permutable but any its proper
subset is weakly (even absolutely) permutable. Example: Let M be a set
of all sequences @ = (a1, ..., as), where a; € Z (the set of all integers), and
a4 a2 + ... + ap is even. We set ad;b if a; = b;. Then the set {44, ...,
Ay} is not weakly permutable but any its proper subset is weakly permutable.

Let us give some examples of strongly permutable sets.

Example 1.1. The set of all congruence relations on an algebra % having

(3) In [8] the term ,,assoziiert‘‘ is used.
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the lattice C(A) distributive and any two congruence relations permutable
is finitely strongly permutable (see Remark 3.1). In particular it is true for
relative complemented lattices, I-groups, Brouwerian algebras [7], the ring Z
of integers. On the other hand an infinite set of congruence relations on Z
need not be weakly permutable as the following example shows: Let O,
be a congruence relation on Z modulo p, where p is a prime. The set {@,:p €
€ P} (P is the set of all primes) is not weakly permutable because for the
elements 2? = 0 for p > 2 and 22 = 1 there does not exist an element x
such that a? O, x for any p € P. Corollary 3.8 describes a class of algebras
in which any set of congruence relations is strongly permutable. Further
examples of strongly permutable sets can be easily constructed using the
results of §5.

2. Distributivity and Weak Permutability

The next Lemma is obvious.

Lemma 2.1. Two equivalence relations are weakly (absolutely, completely)
permutable if and only if they are permutable.

Lemma 2.2. Let & = {4, :y €I} be a weakly permutable set of equivalence
relations on M. Then for any eI

(2.1) A,v (N{dy:y #, yel'}) = N{(Ayv Ay) iy £, pel}.

(2.2) A, is permutable with N{Ay:y # 1, yel}.

Proof. Let af[A{(4,v 4,):y #,yel'}ly, then x(4,v 4,)y for any
v # 1. Let us take at =z, 2 =y for any y # ¢, y €I'. Obviously a*(Adqv
v Ag)xB for any «, f €. From the weak permutability of & it follows that
there exists ¢t € M such that tAx, t4,y for any y # . Thus x4t and {(A {4, :
:y 71, y €I'})y. Consequently, x[A,(A\{Ay: y # ¢, y€l'})]y. Hence A{(4.
cAy) oy Fu, yel} S ANy y #o, yel') = Aiv (NMAy: y #4, ye
e I'}). From this (2.1) and the identity 4,.(A{4d,: y #£¢, yel'})) = 4, v
v (N {dy: y #1, y €I'}) hold. By [4, Chap. 0, Ex. 15], (2.2) holds.

Lemma 2.3. Let {A,, Az, A3z} be a set of equivalence relations on M satisfying
the mext conditions:

(2.1a) Ay v (da n Ag) = (A1 v Ag) A (A v 43).
(2.2a) A1 is permutable with As n Aj.
(2.3a) Ay \ (42 v Az) = (41 A Az) v (41 A As).

72



Then the median identity holds:
(2.4) (Al \ Ag) A (A]_ \ A3) A (Ag \ Ag) = (111 A Az) \ (Al A A3) \ (Az A A3)

Proof. By successive using of the assumptions (2.1a), (2.2a), the modular
identity for permutable equivalence relations [1, Chap. IV., Th. 13, p. 95]
and (2.3a) we get:

(A1 \ 112) A (A1 \ A3) A (Ag \Y A3) = [Al \ (Az A Ag)] A (Az \ A3) =
[Al A (Ag \ Ag)] \ (Az A A3) = (Al A Az) vV (A] A A3 \ (Az A A3)

Lemma 2.4. Let & = {4,, A2, A3} be a weakly permutable set of equivalence
relations on M. Then (2.4) and the next conditions hold:

(2.3) Ai A (Aj \ 44]‘;) = (A,[ A Aj) \ (Ai A 44]6) fOT ’l:,j, ke {1, 2, 3}
(2.5) A; v A; is permutable with A; A Ag.
Hence L(S) is distributive.

Proof. In view of the symmetry of Definition 1.1 it suffices to prove the
assertion (2.3) and (2.5) only for one triple ¢ = 1, j = 2, k = 3. (If some of
indices ¢, j, k are equal then the assertion is trivial.) Let x[41 A (d2 v 43)]y,
then x4y and x(dz v A3)y. Let us take al = x = «2, 23 = y. It is evident
that x¥(A4; v Aj)? for ¢, j € {1, 2, 3}. From the weak permutability it follows
that there exists t € M such that xA1t, xAt, yAst. It follows yA4it. Thus x(A41 A
v Ao)t, t(Ar A As)y, and consequently x(A; A As)(A1 A As)y. It follows Ay A
(A2 v A3) < (A1 A A2)(Ar v A3) £ (A1 A A2) v (41 A A3). Hence (2.3) and (2.5)

hold. By Lemma 2.2 and 2.3, the median identity (2.4) holds. By [9] it follows
that L(&) is distributive.

Lemma 2.5. Let & = {Ai1, Az, A3} be a set of equivalence relations on M
satisfying conditions (2.1), (2.3) and (2.2a). Then L(S) is distributive.

Proof. The median identity (2.4) holds by Lemma 2.3, hence the assertion
of the Lemma follows by [9].

Remark 2.1. If & = {4,, A2, A3, A4} is a weakly permutable set of
equivalence relations on A then L(S) need not be distributive as the Example
3.1 shows.

Remark 2.2. If L(%), generated by the set & = {41, A2, 43} of equiva-
lence relations, is distributive, then % need not be weakly permutable, not
even if the elements of the set & are pairwise permutable and 4;v 45 =1
for i #j, i, je {1, 2,3} as the Example 4.1 shows. (In the Example 4.1,
L(&) is even a Boolean lattice.)

Remark 2.3. The assertion of Lemma 2.2 or Lemma 2.4 does not hold
if we replace ‘‘weakly permutable” by ‘‘completely permutable’ as the next
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example shows: M = {1, 2,3,4}; 4:1:{1,2}, {3,4}; 4a: {1, 3}, {2,4}; As:
:{1, 4}, {2, 3}. The following identities hold: A;. d; = A;v A; =1 for 7 #3j,
1, j€{1,2,3}, Ci=Ajn Ar =0 for 1 #£j #k 1. If x{(C;v Cj)al then
xt = af (for any 1,j) thus the set {41, 42, A3} is completely permutable
but none of the distributive laws (2.1) and (2.3) holds: 4; = d; v (4;» Ag) #
F(Asv A A (div Ag) =1, 43 = Ain (Ayv Ag) £ (i n Ay) v (4i» Ay) =
= 0. It follows that {4, 42, A3} is not weakly permutable.

Lemma 2.6. Let & = {A1, Az, A3} be a set of equivalence relations on M
satisfying the conditions (2.1a), (2.2a) and
(2.6) Az is permutable with As.

Then & is weakly permutable.

Proof. Let a1, 22, 23 be arbitrary elements of M satisfyvirg ai(d; v Aj)ad,
1,5 €{1,2,3}. Then by (2.6) there exists ¢t € M such that tAs?, tAz3. Tt
follows z1(A4; v A2)t, a1(A1v As)t and thus 21[(4;\ As) » (4; v A3))t. Using
(2.1a) we get al[Ay v (A2 A 43)]t. From (2.2a) we get al[41(A2  A3)]t hence
there exists z € M such that x4z, 2(42 A As)t. It follows aid;z for any 7 €
e{1, 2, 3}.

Remark 2.4. The condition (2.6) of Lemma 2.6 is not necessary to the
weak permutability (not even if L() is a Boolean lattice) as the next example
shows: M = {1, 2,3, 4}; A1: {1, 2}, {3}, {4}; d2: {1}, {2,3}. {4}; 43: {1},
{2}, {8, 4}. Conditions (2.1a), (2.2a) are necessary.

Remark 2.5. Conditions (2.1a), (2.2a), (2.3a) do not imply the weak per-
mutability of {4., 42, As} as the following example shows: 4\ B, 4, B
where AB =+ BA.

3. Systems Generated by Permutable Sets of Equivalence Relations

Definition 3.1. By a complete lattice of equivalence relations on « set M w
mean a closed [1] sublattice of the lattice I1(M).

Theorem 3.1. Any complete lattice L of equivalence relations on M is algebraic
[1]. The set A~ of all compact elements [1] in L is a v-subsemilattice of L and L
is isomorphic to the lattice of all ideals inA". Any element of L is a join of elements
of A .

Proof. The Theorem can be proved analogously as in paper [6, Lemma 2.3
and Theorem 2.1] where a complete lattice of congruence relations is considered.
The second part of Theorem see also in [1, Chap. VIII., Th. 8].

Lemma 3.1. Let & = {A,:yel'} be a set of equivalence relations on M in
which for any d;e¥, 1 =1, ...,mn,
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(3.1) Ay (\/{A;Zi: 2,...,n}) = V{(A1r 4s):0=2,. cm
Then

(3.2) A, 8 (V{dy:yed}) =V{(dir Ay):yed} for any A = ' and any
tel’.

Proof. Let a[4,r (V{4y:y€A})ly, then x4,y and z(\/{d4,:yeA})y.
Then there exist y(1), ..., y(m)eAd such that x(V{dyy:i=1, ..., m})y
and by (3.1) we get x[V{(4d:r Ayu): ¢ =1, ..., m}ly and thus [\ {(4, A
A dy) :y e A}]y. The converse inequality holds in any complete lattice, thus

(3.2) holds.

Corollary 3.1. [1, Chap. VIII, §5, Ex. 9] 4 complete distributive laitice of
equivalence relations is Browwerian.

Lemma 3.2. Let & = {Ay :y € I'} be a strongly permutable set of equiva-
lence relations on M. Let &y = {B, : 1 € A} be a set of equivalence relations on
M such that any element B, € &1 is a meet of elements of the set . Then S
is strongly permutable.

Proof. Let ¥ < %;. The elements of the set % can be ordered to a trans-
finite sequence By, Bi, .... By, ..., k < «, where « is an ordinal number.
Let N = (2% : k < a) be a family of elements of M such that a/(B;v By)ak
for any j, k << o. Let Fp = & be the system consisting of all those 4, which
occur in expressions of elements B;. With each A, €. % we associate the least
index k(y) such that the given representation of element By as the meet
of elements of ¥y includes 4,. Then z*®(A4, v Ag)xk@ holds for any A4,,
AsePy, because 2k ( By vV Br@)*¥@  and  Breyy £ Ay, Bre £ 4o
Since the set & is strongly permutable there exists an element x € M such
that a¥"A,x for any A4,€So. We shall show that a*Bpx for any h < a.
Let A, be an arbitrary element of Sy such that the given representation of
By, as the meet of elements of %y includes A,. Since A4, = By, Ay = By,
¥ (Byy) v Br)a®, thus ¥ A,ak. Since xkMA,x, axhAyx holds. This holds
for any 4, occurring in the representation of the element By, thus 2Bz, Hence
&1 is strongly permutable.

Corollary 3.2. Let & = {A, : y € I'} be a strongly permutable set of equivalence
relations on M. Let &1 = {B,: €I} be the same as in Lemma 3.2. Then the
following conditions are fulfilled.

(3.3) B,.v AN{Br:ded}) = A{Biv By):2ed} for any tely and any
ACF1.

(3.4) The elements of 1 are pairwise permutable.
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(3.5) Any two elements \/ {4,:1e Ay, < I'}, V{ds:AeAs = I'}  are permu-
table.

Proof. (3.3) and (3.4) follow from Lemma 3.2 and Lemma 2.2. (3.5) follows
from [2, Th. 2.2].

Theorem 3.2. Let & = {4, :y€l'} be a set of equivalence relations on M
and &1 = {B,: 1€ 1} the set of all finite meets of elements of F. Then & is
finitely strongly permutable if and only if the following conditions are fulfilled :

(3.6) Any element A, €S is permutable with any B, €Y.

(3.7) Aiv(AN{di:i=2,....m}) = AN{(Arv 4ds):i =2, ...,m} holds for
any finite number of elements 4;€L,1 =1, ..., m.

Proof. If & is finitely strongly permutable then (3.6) and (3.7) hold by
Corollary 3.2. Conversely, let (3.6) and (3.7) hold. We shall show by induction
that {4d;, ..., 4,} =& is strongly permutable. For n = 2 it holds by (3.6)
and Lemma 2.1. Let (2t:¢ =1, ..., %) be a family of elements of M such
that ai(4;v Aj)a? for any 4,j€ {1, ...,n}. By the induction assumption
{41, ..., A1} is strongly permutable and thus there exists an element
z € M such that a¥ A4,z for any k€ {1, ..., n — 1}. Obviously also z(A4x v A,)x»
for k=1,...,n — 1. Then z[A{(Ax v Ay): k=1, ..., n — 1}]2n. By (3.7),
xt[Apv (N{Ax: k=1, ...,n — 1}]z. By (3.6), there exists an element
teM such that z74,t and ¢(A{dx:k =1, ..., — 1})z. Then t4;z for
any k=1, ...,n — 1. It follows ¢dza* for k€ {1, ..., n}. Thus {41, ..., As}
is strongly permutable and & is finitely strongly permutable.

Corollary 3.3. Let L be a lattice of equivalence relations on M. The elements
of the lattice L form a finitely strongly permutable set if and only if L is distri-
butive and the elements of L are pairwise permutable.

Remark 3.1. In particular the assertion of Corollary 3.3 holds if L is the
lattice of all congruence relations of an algebra. As a Corollary we get the
assertion [4, Chap. V., Ex. 68] (see the footnote?2)).

Theorem 3.3. Let & = {4, :y €I} be a set of equivalence relations on M and
let the meet - subsemilattice 1 generated by & satisfy DCC. Then & is strongly
permutable if and only if & is finitely strongly permutable, 1. e. if the conditions
(3.6) and (3.7) are fulfilled.

Proof. Let & be finitely strongly permutable. Let £y = {4, :yel1}, "1 <
< I' and (7 : y € IN) be such a family of elements of M that x7(4, v 4s)x? for
any y, d € It. DCC implies that A{dy:y e} = dapy r Aay r - -+ N Ao
for some «(i) € I't. By the assumptions, there exists « € 3 such that xAdqgr*®
for any 4 =1, ...,n. Now let Ag # Aoy for i =1, ..., n, AgeFp. Since
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the set {dg, Aaw), .. ., Aoy} is weakly permutable, there exists an ele-

ment ¢t € M such that x84 and x2®A,qt, + = 1, ..., n. This implies x4t
for each ¢ =1, ...,n, hence z(A{dap:¢ =1, ...,n})t and xAgt because
Ag = Aoy A+ .. A Axy- This implies x84 gz, hence &y is weakly permutable.

Thus & is strongly permutable. The converse assertion is obvious.
Question 1. Find necessary and sufficient conditions for a set of equivalence
relations to be strongly permutable.

Theorem 3.4. Let & = {4, :y eI} be a finitely strongly permutable set of
equivalence relations on M. Let F be the set of all finite joins of elements of &
and F1 the sct of all finite meets of elements of F . Let the following conditions
hold :

38) Av(A{Bi:i=1,...,0})=A{dvVvB):i=1,...,n} for any A,
Bieﬁ‘".

(3.9) Any A, €& 1s permutable with any element of F.

Then L(&) is distributive, even the unrestricted(t) distributive identity (3.2)
tsvalid in L(S) and the elements of L(F) form a finitely strongly permutable set.

Proof. From the conditions (3.8) and (3.9) it follows (by Theorem 3.2)
that the set # is finitely strongly p-rmutable, because if we replace & of
Thecrem 3.2 by % then conditions (3.8) and (3.7) are the same. By [2, Theorem
2.2]1if B.A; = 4; . Bfori =1, ..., n then B is permutable with \/{4; :7 =

1, ...,n} hence condition (3.9) implies the validity of (3.6) for #. We
shall use Lemma 3.2 to prove that & is finitely strongly permutable i. e.
each finite subset of & is strongly permutable: Let % be a finite subset of
elements of #1. Denote 7~ the set of elements of # which are in the expressions
of the elements of % (finite meets of elements of &). Obviously ¥~ is finite
and for & is finitely strongly permutable (Definition 1.2, Definition 1.3)
then ¥ is strongly permutable and by Lemma 3.2, % is strongly permutable
too. Hence &) is finitely strongly permutable and thus (by Corollary 3.2)
the distributive identity (3.8) holds for any finite number of elements of ;.
We shall now show that the elements of the set #; form a sublattice of the
lattice 11(M) i. e.

[/\{\/{A”jz 1, ,S(Z)}lZ 1, ...,m}]v

VIAN{V{Ber: k=1, ... te)}:e=1,...,n}]eZF
where Au, Bek e?.

(4) The elements AA(V{Bi:ted < I} and V{(AdAaB):teAd < I} need not
belong to L(&).
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But A{V{dy:5=1,...,8¢)}:i=1,...,m}, V{Bak:k=1,...,t¢)}
and V{diy;:5 =1, ..., s(i)} are elements of &1, thus we can use the identity
(3.8) twice and we get: [A{V{dy:j=1,...,8(0)}:i=1,...,m}]
INV{Ber : k=1, ..., te)}:e =1, ...,n}] = N{([A{V{dij:J=1,...,8() }:i—
=1, ....m}v[V{Ba:k=1, ..., te)}):e=1, ..., n} = A{{A{V{4di:
=1 ... 80)}vV{Ba:k=1,...,e)}}:e=1...,m]:e=1,...,n}€
€Z1. Thus # is a sublattice of the lattice II(M), which follows #; = L(%).
Since (3.8) holds in %, the lattice 1 = L(¥) is distributive. By Lemma 3.1,
the unrestricted distributive identity (3.2) holds.

Example 3.1. We shall show that if we take a strongly permutable set
& = {41, 4», A3, A4} of equivalence relations, the latticc L(&) need not be
distributive. We shall show that the identity (3.8) from Theorem 3.4 need not
be fulfilled. Let M = {1, 2,3,4,5,6,7,8}; 41:{1,7}, {2,4}, {3,8}, {5.6};
Az {1,4}, {2,7}, {3,6}, {5,8}; 4s: {1, 3}, {2,5}, {4,6}, {7,8}; Aa: {1, 5},
{2, 3}, {4, 8}, {6, 7}. It is evident that 4; » 45 =0fors #j,¢,j€ {1, 2, 3, 4}
and hence A; A Aj A Ay = 0 for ¢ £j (or j #k or ¢ £ k). We shall verify
the strong permutability of ¥ by Theorem 3.2: Condition (3.6) is satisfied,
because any two elements A4;, A; are permutable, and the meets of at least
two elements of & are 0. For condition (3.7) it suffices to verify the next two
identities only in the case that ¢, j, k, e are pairwise different.

(a) Al \ (Aj A Ak) = (A; Vv A.«') A (A; \ Ak)
(b) Asv (A5 n Ap n Ag) = (Ag v Ag) A (Ag v Ar) A (g v A).

But Ai \ (Aj/\ AL) = Az v 0= (Ai \ Aj) A (Ai \ Ak), Az \ (Aj A Ak A Ae)
= A; and (4;v Aj) A (Ayv Ag) A (A v Ag) = Ay A (s v Ag) = A; hold if
i,J, k, e are pairwise different. Hence & is strongly permutable, but L(&)
is not distributive because the identity (3.8) is not fulfilled: Ay v As = Ay v
\Y [(Az v A3) A (Ag \ A4)] -—,é (A1 \ Az \ A3) A (Al \ Az \ A4) =1.

Question 2. Whether L(&), generated by a strongly permutable set &
(card & > 3), is modular? When the answer would be positive, then the
same question for & completely permutable.

Corollary 3.4. Let & be a finitely strongly permutable v-semilattice of equivalence
relations on M. Then L(&) is distributive, even the infinite distributive identity
(3.2) holds in L(S) and L(¥) is finitely strongly permutable.

Proof. This follows from Theorem 3.2 and Theorem 3.4.

Theorem 3.5. Let L be a complete lattice of equivalence relations on M and
& < L a v-subsemilattice such that any element X € L is a join of elements of &
and let & be finitely strongly permutable. Then L is also finitely strongly permu-
table and Browwerian.
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Proof. Let {41, ..., 4,} © L and let a1, ..., 27 € M such that x{(4; v
v Aj)x! for any ¢, j € {1, ..., n}. It can be easily seen that the elements of L
are pairwisc permutable [2, Th. 2.2]. Thus for any couple (7,7) there exists
an element y¥ such that 214,y and y#A2J. By the assumption 4; = V {5¥:
:ke K} and 4;= V{BY:ke K.}, where B!, BfeS. Then there exist
finite subsets F; < K1, F2 < Ky such that zi(\/ {Bf t ke Fr1})yY and yi(V {B;c :
: ke Fs}) af. Setting O} = V{B¥ : ke F1}, Ci = V{Bf: ke F3} we get ai(C}v
v Chal. Let us denote C; = V{C]:j=1,...,n}fori=1,...,n Obviously
C; €& and 2i(C; v Cy) 2/ for any i, j. Since & is finitely strongly permutable
there exists an element x € M such that ziCix for any i€ {1, ..., n}. Since
C; £ 4; we get zt4;x for any ¢, thus the lattice L is finitely strongly per-
mutable. By Theorem 3.2, L is distributive and by Corollary 3.1, L is Brouwe-
rian.

Corollary 3.5. Let L be a complete lattice of equivalence relations on M and
A < L the set of all compact elements of L [1]. If A is finitely strongly permu-
table then L also is finitely strongly permulable and Browwerian.

Proof. The assertion follows from Theorem 3.5 and Theorem 3.1.

Theorem 3.6. Let & be a A-semilattice of equivalence relations on M and let
any three elements of & form a strongly permutable set. Then & is finitely strongly
permutable. In particular this holds if & is a sublattice of the lattice TI(M).

Proof. By Lemma 2.2, Ayv (g 4y) = (Ag Vv Ag) A (Ay v 4y) for any
Ay, A, Ay €. Let {41, ...,4,} =& be an arbitrary finite subset of &.
We shall show that conditions (3.6) and (3.7) are fulfilled. The condition (3.7)
will be proved by induction. It holds for m = 3. Let it hold for m = n — 1.
Since Ao A ... A Ay 1€S then Ai1v (dan ... AApan Ap) =[A1v (A2 A
Aveo AApa)In(A1v Ay) = (Arv A2) A (Arv As) A oo A (A1v Api) A (a1 v
v A,). From the strong permutability of any tripte of . it follows that the
elements of & are pairwise permutable and so the condition (3.6) is fulfil-
led. By Theorem 3.2, .% is finitely strongly permutable.

Corollary 3.6. Let any three congruence relations on an algebra A be strongly
. permutable, then C(N) is finitely strongly permutable.

Remark 3.2. This Corollary for the case of rings is given in [13, Chap. V,
§ 7]. As to the Chinese remainder theorem in equational classes of algebras
see [12].

Using Corollary 3.6 and Theorem 3.3 we get:

Corollary 3.7. Let U be such an algebra that the lattice C(N) satisfies DCC. If any
three congruence relations on U are strongly permutable then CA) is strongly

permutable.
Using Corollary 3.3 and Corollary 3.7 we get:
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Corollary 3.8. Let U be such an algebra that the lattice C(N) satisfies DCC.
Then the following four conditions are equivalent:

(i

(ii

N) form a strongly permutable set.
AN) form a finitely strongly permutable set (see the footnote?)).

(iii Any three elements of C(N) form a strongly permutable set.

) C
) C
)
(iv) CA) is distributive and the elements of C(UA) are pairwise permutable.
Remark 3.3. The condition (i) of Corollary 3.8 can be interpreted in the

following way: Any set & of congruence relations on 9 satisfies the Chinese
remainder theorem (without restriction to the finiteness of &).

Corollary 3.9. ([10], see also [12, Th. 6.9]). The following four conditions are
equivalent in a primitive class o/ of algebras:

(3.10) For any We o7, the lattice C(A) is distributive and the elements of C(A)
are pairwise permutable.

(3.11) Any three congruence relations on any W e & form a strongly permu-
table set.

(3.12) Congruence relations on any W e o/ form a finitely strongly permutable

set.
(3.13) There exist ternary polynomials p, q in o7 such that:

P, x, y) =y = py, %, x)
gz, 2, y) = q(x, ¥, x) = q(y, z, x) = .
Proof. The conditions (3.10) and (3.13) are equivalent by [10]. The con-

ditions (3.11) and (3.12) are equivalent by Corollary 3.6. By Corollary 3.3,
the condition (3.12) is equivalent to the condition (3.10).

4. Absolutely Permutable Equivalence Relations

Lemma 4.1 [11]. Let & = {4, :y eI’} be an absolutely permutable set of
equivalence relations on M. Then A, v As = V{4, :y eI} for any Ax, As €&,
Ay #£ As.

Proof. (5) Let 2(\/ {4, : y €I'})y and x € I". Let us take a family (27 : y €T,
x* = x and ¥ = y for y +# %), of elements of M. Then there exists t e M
such that x4,t and tAsy and thus z(A4, v 4s)y for any 6 - x.

(5) We give a shorter proof than that in [11].
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Theorem 4.1. Let ¥ = {A, :y eI} be a set of equivalence relations on M.
Then the following conditions are equivalent :

(4.1) & is absolutely permutable.

(4.2) A, v As = V{4, :yel'} holds for any A,, A€, A, #+ As and &
18 weakly permutable.

Proof. The condition (4.1) implies (4.2) by Lemma 1.1 and Lemma 4.1.
Conversely, let (z? :y € I') be a family of elements of M such that a(V {4, :
:yel'})ax for any ¢, » € I'. Then at(4, v A,)x* holds (by (4.2)) for any A4,,
Ayed, A, # A,. From the weak permutability it follows that there exists
x € M such that xd,x? for any v € I'. Thus & is absolutely permutable.

Lemma 4.2. Let .S = {4, : y € I'} be an absolutely permutable set of equivalence
relations on M. Then & is completely permutable and

(4.3) (N{d,: v #06, tel)v As =\ {A4y:yel} holds for any el

Proof. By Lemma 1.1, & is strongly permutable and also completely
permutable. By Lemma 2.2 and Lemma 4.1, (A{4,:t £, tel'})v 4s =

“N{(A,v As) 0 £0, el =V{dy:yel}.

The next Lemma is obvious.

Lemma 4.3. Let & = {4, :y € I'} be a completely permutable set of equiva-
lence relations on M and let the following conditions hold:

(4.4) (N{di: e #£p, el v (AN{Ax:x Fo,xel}) =V {4, :yel} for any
y, wel’, v # w.
Then & is absolutely permutable.

Lemma 4.4. Let & = {4, : y € I'} be an absolutely permutable set of equiva-
lence relations on M. Then the set & U {V {4, :y eI'}} is also absolutely per-
mutable.

Proof. Let {y}u (z?:y€el') be a family of elements of M such that
2t (V{d,:yel})xd for any ¢, el and ay(\V{d,:yel})y for any cel.
By the assumption there exists x € M such that 4,7 for any y € I'. Obviously,
x(\V/ {4y :yel'})y also holds, hence it follows the assertion of Lemma.

Remark 4.1. Let Oy, ...,0, be congruence relations of an algebra .
In the paper [11, § 1] there is the next assertion: ,,CRT(0y, ..., ©,) is sa-
tisfied(8) in an aigebra U if and only if {01, ..., ®,} are pairwise permutable
and O([0y, ..., 0,]) is distributive, where C([0y, ..., 0,]) denotes the sublat-

[¢] CRT(®1, ..., @) is satisfied in an algebra 2l if and only if for arbitrary elements
at, ..., z" of the algebra U satisfying z! (®@; V O;)af for all 4, j € {1, ..., n} there exists
z € W such that x'@;z for all ¢ € {1, ..., n} (i.e. the set {01, ..., ®,} is weakly permu-
table).
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tice of C(A) generated by Oy, ..., ©,.° This assertion is false in both direc-
tions as it can be seen in Example 3.1 and Example 4.1. In Example 3.1
the set &% is strongly permutable, hence CRT(A4:, Az, A3, A4) holds, but
the lattice L(¥) = C([A41, 42, A3, A4]) is not distributive. In [11] this asser-
tion was used in the proof of the following Lemma W [11, § 2] which is false,
too, as Example 4.1 shows.

Lemma W. Let Oy, ..., 0, be different congruences on an algebra . Then

{O1, ..., Ou} is absolutely permutable if and only if the following three condi-
tions hold:

() {O1, ..., 0.} is pairwise permutable.
(il) C([O1, ..., O)) is distributive.
{ii) O, v 05 =V{0;:¢ =1, ...,n} for all pairs 1 < iy #jo < n.

Example 4.1. We shall show that conditions (i), (i), (iii) of Lcmma W
are not sufficient for the absolute permutability. Let M = {1, 2, 3, 4, 5, 6};
A1:4{1,2,5}, {3,4,6}; A::{2,3,4}, {1,5,6}; As:{1,3,6}, {2,5,4}; AsA
A A2 {1, 5}, {2}, {8, 4}, {6}; Aan As: {2, 4}, {1, 6}, {3}, {5}; 41 » A3: {3, 6},
{2, 5}, {1}, {4}. The lattice C([A4:1, 42, A3]) generated by A1, Az, A3 is the
eight - element Boolean lattice, A;, A2, A3 are pairwise permutable and
Ayv Asv A3 = Ay v A; =1 for any i #3j, 1, je {1, 2,3}, but if we take
al =1, ¥2 = 2, 23 = 3 (evidently z/(d4; v Az v As)ad for any 1, je {1, 2, 3})
there does not exist such an element « that 2i4;x for each ¢ € {1, 2, 3}, hence
{41, A2, A3} is not absolutely permutable, not even weakly permutable
(because weak permutability with (iii) implies absolute permutability by
Theorem 4.1). Hence CRT (A1, A2, As) does not hold.

Howewer, the assertion that conditions (i), (ii), (iii) of Lemma W are ne-
cessary, is true. Even the stronger assertion is true:

Theorem 4.2. Let & = {4, :y eI’} be an absolutely permutable set of equi-
valence relations on M. Then L(&) is finitely strongly permutable, hence distri-
butive and its elements are pairwise permutable, and the unrestricted distributive
identity (3.2) holds for the elements of L(&). If card I' = n is finite and &
does not contain the element {\/ {4, :y € I'}} then L(S) is the Boolean lattice 2.

Remark. As to the complete distributivity of the complete sublattice
of TI(M) generated by an absolutely permutable set see Example 5.1.

We shall use the next obvious Lemma to the proof of Theorem 4.2.

Lemma 4.5. Let L be a distributive lattice with the least and the greatest element,
generated by a set &F. If each element a €S has a complement in L, then L is
a Boolean lattice.
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Proof of Theorem 4.2. We use Theorem 3.4 for & =% U {V{4,:
:y€el'}}. By Lemma 4.4, % is absolutely permutable and also strongly per-
mutable (Lemma 1.1). By Theorem 3.2, the assumptions of Theorem 3.4
are satisfied and hence L(Y) is distributive, the unrestricted distributive
identity (3.2) holds for the elements of L(&) and L(%) is finitely strongly

permutable. Let & = {4, ..., A} be finite. Then L(&) has the least ele-
ment A{4;:¢=1,...,n} and the greatest one V{4;:¢=1,...,n}. By
Lemma 4.2, the elements 4; have complements A{d;:j £¢,j=1,...,n}.

By Lemma 4.5, L(#) is a Boolean lattice. Any element of L(&) can be repre-
sented as a finite meet of finite joins of the elements 4;. Obviously 4; are
exactly antiatoms of L(¥) and L(&) 2 2%,

Corollary 4.1. Let & = {A,:y eI} be a set of equivalence relations such
that each finite subset of & is absolutely permutable. Then L() is finitely strongly
permutable, hence distributive and its elements are patrwise permutable.

Proof. It suffices to observe that to each finite subset &7 of L(%) there
is a finite subset &1 of & such that &7 < L(%1).

Remark 4.2. On the other hand, if & is strongly permutable and fulfils
the conditions of Theorem 3.4, then L(#) need not be a Boolean lattice as
the next example shows: M = {1, 2, 3}; 4;: {1}, {2}, {3}; 42: {1, 2}, {3};
Az {1, 2, 3).

Theorem 4.3. Let & = {41, ..., An} be a finite set of equivalence relations
on M. Then the following conditions are equivalent:

(4.4) & = {41, ..., Au} s absolutely permutable.
(4.5) di N{dj:j #4,5=1,...,n}=V{d;:5=1,...,n} holds for any

t—1, ..., n
To the proof of this Theorem we shall use the next Lemma:

Lemma 4.6. Let & = {4, :y €'} be an absolutely permutable set of equi-
valence relations on M. Then

(4.6) Ay . AN{dy:y Fa,yed =T} =V {Ay:yel'} holds for any ael.

Proof of Lemma 4.6. By Lemma 4.1, Ayv Ag =V {d,:yel} for
o 7 B, a, p € I'and by Lemma 1.1, % is strongly permutable. By Definition 1.3
and Lemma 2.2, Ay. N{dy:y #a, yed I} =Aav (AN{dy:y #«, y€
ed cl})y=N{(Adxv Ay):y #*a, yed < I'}. Hence (4.6) holds.

Proof of Theorem 4.3. By Lemma 4.6, (4.4) implies (4.5). Conversely,
from (4.5) it follows A;v 45 =V{4;:j=1,...,n} for j %14 We shall
show that & is strongly permutable i.e. (3.6) and (3.7) from Theorem 3.2
hold. First we shall show (3.6). Let 4;€% and B = A{dy:ke K < {1, ...,
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n}}. Ifie K then B < 4; and B. 4; = A; . B holds. If i ¢ K then A4;. B —
=V{4;:j=1,...,n}, hence by [4, Chap. 0, Ex. 15] A4;.B = B. 4;.
Now we shall show (3.7), i.e. 4;v ANAdr: ke K} = N{(Aiv Ap) : ke K}
where K < {1, coon}. Ifie K. then A;v AN{dr:ke K} = A; = N{(A;

v Ar):ke K}. If i¢ K, then because of A;v Ar =V {d;:j=1.....n},
we get AN{(Adiv Ax) ke K}y =V{d;:j=1,...,n} = A;. A {dr ke N}
= A;v N{Ar: ke K}. Thus (3.7) holds. Hence & is strongly permutable
and by Theorem 4.1, & is absolutely permutable.

Remark 4.3. The converse implication of Lemma 4.6 does not hold (in
the infinite case) as the following example shows: Let M be the set of all
sequences @ = (a; : 2 € N) (N is the set of all natural numbers) where «,
is 0 or 1 and the set {i:a; = 1} is finite. Given a, b € M set aB;b if and only
if a; =0b;. Evidently B;. A{Bj:j #14, je N} =1 but the set {B;:1e.V}
is not absolutely permutable: If for any ¢ € IV, 2¢ is the element of M such
that 2% = 0 for ¢ £ j and a} = 1, then there exists no element a € M such
that «!B;x for any ¢ € N.

The next Theorem shows that it is not possible to characterize an infinite
absolutely permutable set of equivalence relations on M analogously as
the strongly permutable one in Theorem 3.3.

Theorem 4.4. Let & = {A, : y € I'} be an absolutely permutable set of equiva-
lence relations on M and let the meet-subsemilattice &1 generated by & satisfy
DCC. Then & must be finite.

Proof. By the assumptions A{d, :pel} = AN{dyp:y@)el, i =1, ...,
n}. If there exists Aymi1) €S, Aym+) 7 Ayy for any i =1, ..., n. Ay =
# V{4, :yel}, then we can use Lemma 4.6 (or Theorem 4.3) (because
any subset of ¥ is absolutely permutable too) and we get Aym+) = Aymry -
. /\{Ay(i) ty@) el i=1,..,n}=V{dyup:y@)el,i1=1....,n.n+ 1}.
This is a contradiction.

The following Theorem shows that Lemma 3.2 fails to be true if we replace
the condition ,,strongly permutable” by ,,absolutely permutable.

Theorem 4.5. Let & = {4, : y €'} be an absolutely permutable set of equiva-
lence relations on M. Then a set 1 of meets of elements of &£ need not be absolu-
tely permutable. The sublattice L(F) of the lattice T1(M) is absolutely permutable
only in trivial cases: card ¥ = 1 or & is an two - element chain.

Proof. Let & be absolutely permutable and 4, Be ¥, 4 £ Band B £ 4.
Assume that &1 is absolutely permutable. Then 4 » Be¥; < L(¥), 4
AB<A4Abut A=(AnrB)vA+#Av B which contradicts the Lemma 4.1.
The set & cannot include a three-element chain because it contradicts
the Lemma 4.1.
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In the paper [11] a special kind of subdirect products (W — constructable)
is characterized by using the absolute permutability. In [11, Theorem 2]
the following assertion is included:

Assertion A. Let an algebra A be an internal subdirect product of A|O,, where
©,, y €l'. are congruence relations on . Then W is W — constructable if and
only if the system {@,:yel'} is absolutely permutable.

In [11] the next Theorem W is proved (using Assertion A and Lemma W
which is incorrect):

Theorem W [11, Theorem 3]. Let Oy, ..., ©, be congruences on U yielding
an internal subdirect representation of A. Then W is W-constructable if and

only if

(i) O1, ..., Oy are pairwise permutable.
(i1) C([®1, ..., On]) is distributive.
(iii) Op v Oy, =V{0O; :¢ =1, ..., n} for all different pairs O, Oy in
{01, ..., 04}.

Theorem W is incorrect because the absolute permutability of the set
{@1, ..., 04} is not equivalent to conditions (i), (i), (iii) of Theorem W
(see Example 4.1). Theorem W can be modified (using Assertion A and Theo-
rem 4.3) in the following way:

Theorem 4.6. Let {Oy, ..., O,} be a finite set of congruence relations on an
algebra W yielding an internal subdirect representation of . The A is W-con-
structable if and only if the neat condition holds:

O; N{®O;:j 1, j=1,...,0}=V{0;:5=1, ...,n} for any @ =1,

C M.

lemark 4.4. In accordance with Theorem 4.6, the results of §3 [11]
are to be modified.

5. Direct Decompositions
In the papers [8], [11] the next Theorem is proved:

Theorem B. Let U be an algebra. There exists a one-one correspondence between
the non-trivial direct decompositions of the algebra W and the sets & = {@, : y €
€ I'} of non-trivial congruence relations (i.e. different from 0 and I) on W having
the following properties:

(1) AN{Oy: yel'} = 0.
(2) V{0,: yel'} =1I.
(3) SLis absolutely permutable.

Using Theorem B, Lemma 4.1, Theorem 4.1 and Lemma 1.1 we get:
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Theorem 5.1. Let A be an algebra. There exists a one-one correspondence
between the non-trivial direct decompositions of the algebra A and the sets & =
= {0,: yel'} of non-trivial congruence relations on A having the following
properties:

(1) A{Oy: yeI'} = 0.
(2’) @[V @x:IfOT any @[, @x Gy, (.)l #@x.
(3") & is weakly or strongly or absolutely permutable.

Using Theorem 5.1 and Theorem 4.3 we get:

Theorem 5.2. Let A be an algebra. There exists a one-one correspondence between
the finite non-trivial direct decompositions of U and the finite sets {O1, ..., On}
of non-trivial congruence relations on W having the following properties:

(1) AN{Oi:t=1,...,n} =0.
2 O, . AN{0;:j #1i,j=1,...,n}=1 for any i =1. ..., n.

Using Theorems 4.3, 4.2 and 5.1 we get:

Corollary 5.1. The sublattice L(S) of the congruence lattice generated by the
set & of Theorem 5.1 is distributive and any two congruence relations in this
sublattice are permutable. In particular, if & is finite set of Theorem 5.2, then
L(&) is a Boolean lattice of 2 elements [4, Chap. 3., Ex. 4., p. 154].

Example 5.1. The following example shows that an absolutely permutable
set & of equivalence relations need not satisfy the completely distributive
law /\{\/{A“ :jeKi} Tt EJ} = \/{/\{Aif(i) ) EJ} ZfE X {I(z 11 E J}} It
follows that the complete lattice generated by & need not be completely
distributive. In our example & is even the system of equivalence relations
corresponding to a direct decomposition: Let M be the set of all sequences
(@i 7€ N), where a; is 0 or 1 and let for a, be M, a ©,b if a = b,. Let &
be the set of all two - element subsets of the set N. We assert that

N(O:v 0y): {i,j} e P} £V{N{Orw): KeP}: feF}

where F is the Cartesian product of all elements of &. Indeed, let z, y € M,
where x, = 0 and y, = 1 for all n € N. Obviously z(0; v 0;)y if 7+ £ 4, hence
(A{(O; v 0y): {i,j} € #})y. The set N — {f(K): K e P} contains at most
one element. Indeed, let ¢ be an element of this set. Then f({¢,j}) =j for
all j 14, hence N — {f(K): K € Z} = {i}. Suppose next that z(V {A{Osx) :
:Ke?}:feF})y. Then there are elements 20 a1, ..., a% fi,fs, ..., [n
(xie M, fieF) such that 20 =2, 2» =y, and a1 (A{Osk) : K € Z})ai,
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1 =1, ...,n (ne€ N). The sequences z¢-1, 2t differ in at most one index. Hence
the set {he N: x, # y,} is finite (in fact it contains at most n elements),
which is a contradiction.
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