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Matematický časopis 23 (1973), No. 1 

CHROMATIC INDEX OF HAMILTONIAN GRAPHS 

JURAJ BOSAK, Bratislava and JOZEF FIAMCIK, Presov 

Abstract. Let ffbea loopless graph of a finite degree d such that (i) G does 
'd" 

not contain any double triangle; (ii) G contains at least edge-disjoint 

hamiltonian lines; (iii) the number of vertices of G is not 5. I t is proved that 

then the chromatic index of G is at most 3 
d + 1 d 

Notation and terminology. WTe consider only loopless graphs (graphs with­
out loops). However, multiple edges and infinite graphs are allowed. 

Let G be a graph and let C be a set. By a regular partial edge-colouring of G 
by colours of C, or briefly, by a partial C-colouring of G, we mean a mapping cp 
from a subset of the edge set of G into C such that for any two adjacent edges 
e and e' we have cp(e) ̂  cp(e') provided that cp(e) and cp(e') are defined. If an 
edge e is assigned cp(e) e C, we say that cp(e) 'is the colour of e, and that the 
edge e is coloured by cp(e). If all the edges of G are coloured by elements of C, 
we say that cp is a C-colouring of G. The minimal cardinal number q(G) such 
that there exist a set C of cardinality q(G) and a C-colouring of G, is called 
the chromatic index of G. 

Suppose that there are given a graph G, a vertex v of G, a set C, a partial 
C-colouring cp of G and two colours a, r e C. By a ar-alternation of 99 in t; wre 
understand the partial C-colouring y of G defined as follows. Let P(a, r, v) 
be the maximal connected subgraph of G containing v such t h a t every edge 
of P(a, r, v) is coloured by a or by T. Evidently, P(a, r, v) is generated by 
a circuit or by a (possibly one-way or two-way infinite) path. Now we change 
the colours of the edges in P(a, r, v). Those coloured by a are now coloured 
by T and conversely. The colours of the other edges of G remain unchanged. 
Thus a new partial (7-colouring \p of G is obtained. If no edge incident with v 
is coloured by a or r, i. e. if P(a, r, v) is generated by a path of length 0, we 
put ip = cp. 

By the degree of G we mean the supremum d(G) of degrees of vertices of G. 
If d(G) is infinite, then q(G) = d(G) (see [2], Theorem 1). Therefore we may 
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restrict ourselves into graphs of finite degrees. I n such a case the degree 
d(G) of a graph G is the maximal degree of its vertices. 

By a factor of G we understand a subgraph of G containing all the vertices 
of G. A hamiltonian line of G is defined as a connected factor of G whose ver­
tices are all of degree 2, i. e. a connected (regular) quadratic factor of G. 

If Ki, K2, . . . are factors of G, the symbols F± — F2 and Ki u K2 U • . . 
are used in their usual sense. 

By a double triangle we mean a graph of degree 4 with 3 vertices and 6 edges 
(any two vertices joined by 2 edges —- see Pig. 1). This graph has been denoted 
in [1] and [2] by the symbol G\, in [3] by O*. 

Fig. 1. The double triangle. 

If x is a real number, then [x] denotes the greatest integer <x and [#]* 
is the smallest integer > # . 

Auxiliary results. The starting point of our present considerations is the 
following 

Lemma 1. Let Gbe a graph of a finite degree d without double triangles (Fig. 1). 
Then we have: 

( i ) q(G) < 3 
~d + 1" 

2 
— 

~d + Г 

4 

P r o o f . For finite graphs this assertion has been proved in [3]; see also [1], 
Chapter 12, Corollary to Theorem 8; for infinite graphs it has been established 
in [2], Corollary 2 to Theorem 5. 

We shall show that if G has a certain number of hamiltonian lines and it 
is not a 5-vertex graph, then the estimation (1) may be improved (see Theorem 
below). At first we need two following lemmas. 

Lemma 2. Let I be a positive integer and let G be a graph of a degree <2Z. 
Then G is decomposable into I factors of degrees < 2 . 

P r o o f . See [4] (for finite graphs — Chapter 11, Theorem 6; for infinite 
graphs — Chapter 13). 

Lemma 3. Let k be a positive integer and let G be a graph with a hamiltonian 
line H such that 
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(2) d(G)<k; 

(3) q(G- H) <k -1; 

(4) G has an even number or at least k vertices. 

Then we have: 

(5) q(G) <k+l. 

Proo f . If G has an infinite or an even number of vertices, then we evidently 
have q(H) = 2, so that q(G) < q(G — H) + G(H) < (k — 1) + 2 = k + 1. 
Therefore we may suppose that G is a finite graph with an odd number (>k ) 
of vertices. 

Let C be a set of cardinality k — 1 and let cp be a C-colouring of G — H. 
(Thus cp is a partial C-colouiing of G.) If a; is a veitex of G, denote by f(x) 
the set of all colours of C absent in x, i. e. such tha t no edge incident with x 
is coloured by any of them. Prcm (2) it follows tha t d(G — H) < k — 2 so 
t h a t / ( ^ ) =£ 0 for any x. 

As we have only k — 1 colours and at least k vertices, there exist vertices u 
and v (u =?=. v) such that 

(6) f(u)nf(v) ^ 0 . 

Put m = min QH(U, V), where QH is the usual graph metric with respect to H 
and the minimum is taken through all pairs of different vertices u and v of G 
such that (6) holds. 

We shall prove that by some alternations the sets f(x) can be changed in 
such a way that m = 1 will be valid. Therefore suppose tha t m > 1. Let u 
and v be such vertices that QH(U,V) = m and (6) holds. Pick ocef(u) nf(v) 
and a vertex w ^ u, v of the shortest path joining u and v in H. Evidently, 
a $f(w). Choose /3 ef(w)\ let cp' be the ajS-alternation of cp in w and let f'(x) 
be the corresponding sets of colours absent in x a t cp'. Distinguish two cases: 

I. The maximal path P(a, /J, w) containing w whose edges are coloured 
by a or /3 ends in u. Then put u' = w, v' = v. 

I I . P(a, (3, w) does not end in u. Then put u' = u, v' = w. 
I t is easy to show that 

u' =£ v', 

QH(U', V') < m, 

*ef'(u')nf'(v'). 

Obviously, this process can be iterated until (by less than m steps) we 
arrive at vertices U and V such that 
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u ^v, 
QH(U,V) = 1, 

oceF(U) n F ( V ) , 

where F(x) denotes the set of colours absent in a vertex x a t the last O-colour-
ing of G — H. Denote by e the edge of H joining U and V and by E the sub­
graph of H generated by U, V and e. Evidently, the edge e may be coloured 
by the colour a. The remaining edges of H form a path so tha t they can be 
coloured by another two colours. Thus we have: q(G) < q((G — H) u E) + 
+ q(H - E) < (k - 1) + 2 = k + 1. Q. E. D . 

Main results. 

Theorem. Let G be a graph of a finite degree d such that 
(i) G does not contain as a subgraph any double triangle (Fig. 1); 

~d' 
(ii) G contains at least s = edge-disjoint hamiltonian lines; 

(iii) the number of vertices of G is different from 5. 
Then we have: 

(7) q(G) < 3 
d + 1 

Proof . Let G fulfil the suppositions of Theorem. Denote by F the factor 
of G generated by edge-disjoint hamiltonian lines Hi, H2, . . ., Hs of G. 
The graph G — F has degree d — 2s. By Lemma 2 G — F can be decomposed 

\d 1* 
into t = — — s factors of degrees < 2 ; denote them by Fi,F2, . . .,Ft. 

For i = 1, 2, . . . , s construct graphs Gt = Ht u F2i-i U F2i of degrees < 6 . 
Every graph Gt — Hi has a degree < 4 . According to Lemma 1 we have 
q(Gt - Hi) < 5. 

Denote the cardinality of the vertex set of G by n. If n = I, or if n = 3 
and d = 0, then the assertion of Theorem evidently holds. If n = 3 and 
d > 0, then from (i) it follows that 

q(G) < d + 1 < 3 
d + 1 

Therefore by (iii) we may suppose that n is even, or n > 6. Using Lemma 3 
for k = 6, we obtain 
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Put I = G - (Gx u G2 u . . . u G8). Obviously, 

q(G) < q(Gx) + q(G2) + . . . + q(Gs) + q(I) <ls + q(I). 

Evidently, d(I) < 2(t — 2s). Put 

u = 2(t — 2s). 

According to Lemma 1 we get 

<?(I) < 3 
U + 1" 

2 
— 

~u + \ 
4 

Distinguish four cases: 

Case A. d = 6s. Then t = 2s, u = 0, q(I) = 0, 

q(G) < 7s = 3 
d + 1 

Case B. d = 6s + 1 or 6s + 2. Then t = 2s + 1, u = 2, q(I) < 3, 

q(G) < 7s + 3 = 3 
d + 1 

Case C. d = 6s + 3 or 6s + 4. Then £ = 2s + 2, ^ = 4, g(7) < 5, 

q(G) < 7s + 5 = 3 
d + 1 

Case D. d = 6s + 5. Then t = 2s + 3, u = 6, q(I) < 8, 

q(G) < 7s + 8 = 3 
бZ + 1 

Q. E . D . 

R e m a r k . A comparison of (1) and (7) shows t h a t (for graphs fulfilling 
the assumptions of Theorem) the estimate (7) is never worse than (1). Moreover, 
if d e {6, 9, 10}, or if d > 12, then (7) is better than (1). 

From another known estimates of the chromatic index for the considered 
class of graphs there can be applied t h a t by S h a n n o n [6]: 

(8) î ( ö ) < d 

and if d > 4, the estimate by V i z i n g [7]: 
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(9) ï ( ö ) < — 1. 

(For infinite graphs, the proofs of (8) and (9) are given in [2], Theorem 3.) 
However, (7) is better than (8) for d > 8 and better than (9) for d > 12. 

Corollary. Let G be a graph of an even degree d such that (i), (ii) and (iii) hold. 
Then we have: 

(10) î(ö) < 
1d + 4 

6 

and this estimate is best possible. 
Proof . For an even d we have 

d + 1" ' ď ~ld + 4 

2 3 6 

Thus we need onlyr to show t h a t (10) is sharp. We shall construct for any 
even d a graph G satisfying (i), (ii) and (iii) and with chromatic index 

( Ц ) ?(Ö) = 
7(7 + 4 

6 

Namely, let G be a graph obtained from the graph of a circuit of length 7 

d 
by replacing each edge by — multiple edges. Evidently, (i), (ii) and (iii) hold. 

Moreover, using results of [1] (Chapter 12, Theorem 5), [2] (Lemma 3), or [o] 
(Theorem 14.L4), it is easy to check (11) to be true. 

Conjecture. The estimate (10) holds also in case of an odd degree. 
R e m a r k . I t can be easily shown by examples of 7-vertex graphs that 

if Conjecture is true, then it is sharp. 
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