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A FUNCTORIAL CONSTRUCTION OF FIBRE BUNDLES 
WITH A STRUCTURAL GROUP 

RUDOLF FIBY, Bratislava 

The usual definition of a fibre bundle with a structural group can be for­
mulated in terms of categories. The advantage of such a definition is t h a t 
the functorial properties of fibre spaces with a structural group follow im­
mediately. 

Terminology: categories, direct products and functors will be used in the 
same sense as in [3]. 

Notations: 
£fp . . . the category of topological spaces and continuous maps; 
&un . .. the category of topological bundles and bundle mor-

phisms (see [2], Chap. I I , § 3); 
<S^PG . . . the category of G - spaces and G - morphisms (see [2], 

Chap. IV, §1.3); 
8?G . . . the category of free perfect actions of a topological 

group G on topological spaces (see [1], Chap. I l l , § 4); 
J>G . . • the forgetful functor from £?PG to Sfp which assigns 

to every object of SfpG its action topological space 
and preserves morphisms; 

Orb .. . the functor from SpG to Sfp which assigns to each 
object A of £?PG the corresponding orbital decomposi­
tion A\G endowed with the induced topology and to 
each morphism / : A -> A' the induced continuous map 
f\G\A\G->A'\G\ 

(A A B, 
nA : A A B -+ A, 
TIB : A A B -> B) . . . the direct product of objects A, B of S^pG; 

. . . the functor from the category ZfpGXSfpG (the Car­
tesian product oiSfpG with itself) to the category Z^PG. 
defined by: (A, B) -> A A B for each object (A, B) 
of 6^PGX^PG and (f,g)->f^g for each morphism 
(/, g) of S^PGX^PG, where / A g is uniquely defined by 
the commutative diagram (0). 
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The definition of the functor A is correct since the direct product extsis 
for all objects of £fpG. 

Let 3FQ be the functor from the category SfpG x6^pG to the category £6hen 
defined by 

(A,B)&r
G = ((A AB)(Prb, (nA)@rb, (A)Orb) 

for each object (A, B) of£fpGxSpG and 

(f,g)^G=:((fAg)<Prb, (f)0rb) 

for each morphism (/, g) oi£fpGx£fpG. 
The definition of the functor !FG is justified by the commutativity of the 

diagram (0). 
Since SPG is a subcategory oi£fpG, !FG can be restricted to SPGxS^pG and 

this restriction will be denoted by s/sbG. Then the basis of (A, B) srfsbG is 
a Hausdorff space for each object (A, B) of ^GxS^pG (see [1], Chap. I l l , 
§ 4.2); moreover (A, B) s/sbG is a fibre bundle over (A)GrbG with a fiber (B)JG 

and G as a structural group (see [2], Chap. IV, § 5). Therefore a fibre bundle 
with a structural group G can be defined by use of the functor stfsbG. 

R e m a r k . I t is possible to take the category of principal G - spaces with 
the same morphisms as in £fpG (see [2], Chap. I l l , § 2) instead of SPG. In 
such a case the basis of (A, B) s/sbG is not necessarily a Hausdorff space. 

REFERENCES 

[1] BOURBAKI, N.: Topologie generale, 3rd ed. Paris Hermann , 1965. 
[2] HUSEMOLLER, D.: Fibre bundles. New York, McGraw-Hill Book Co., 1966. 
[3] LANG, S.: Algebra. Reading, Mass., Addison-Wesley P . Co., 1965. 

Received April 23, 1971 
Katedra geometrie 

Prírodovedeckej fakult i) 
Univerzity Komenského 

Bratislava 

44 


		webmaster@dml.cz
	2012-07-31T18:43:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




