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THREE MALCEV TYPE THEOREMS
AND THEIR APPLICATION

PETER MEDERLY

The aim of this paper is to prove three Malcev type theorems for three
special properties of the congruence lattice, namely for weak n-distributivity,
I-modularity and dual I-modularity. By means of the second and the third
of these theorems we prove that any congruence I-modular equational class
as well as any congruence dual I-modular equational class is a congruence
modular equational class.

1. Preliminaries

In this paper we shall understand the fundamental notions of universal
algebra in the sense of Gréatzer’s book [3]. We shall not distinguish between
an algebra and its base set and between a polynomial symbol and the poly-
nomial induced by it. The symbols v, A (U, N) will denote lattice (set-theo-
retic) operations.

Let 4 be an algebra and H be a subset of A. By O(H) we shall denote
the smallest congruence relation of 4 containing HxH. If H;, i = 0,1,
..., m, are subsets of the sct 4, then instead of \/ O(H;) we shall write O(Hy;

=0
Hy; ...; Hy). In the case of H; = {ajo, ..., @im;} we shall abbreviate this
symbol to .

O(ago, e @Omy; e 3 An0s - ey Bnmy) -

By an equational class of algebras we shall always understand a nontrivial
equational class. We shall use the symbol F(X) for a free algebra over K with
the generating family X. \We shall often use the following theorem.

Theorem 1.1. [9, p. 64]. Let K be an equational class of algebras and X =
— {eo, €1, ..., en_1} be a set. Let ¢ be a permutation of the set {0, 1,2, ..., n—1}.
Let z, y € Fg(X) and p, q be polynomial symbols such that

pleo, €1, ..., en-1) = qleo, €1, ..., €n-1) =Y.
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Then the following conditions are equivalent.

(1) (@, y) €O0p, - €hps -5 Chips - s Chp)
(ii) For every algebra A € K and for every ao, a1, ..., an-1€ A satisfying
Aoy = Alp = ... =a,m,,
A4+ = .. = Apyp
Ahs_-14)g = - .. = Ango
the equation p(ao, a1, ..., an-1) = q(ao, a1, ..., n-1) is true.

2. Three Malcev type theorems

Definition 2.1. Let n be a positive integer. A lattice L is said to be weakly
distributive of the order n if for every x, yo, ..., Yn € L the following identity

n n n
(2.1) eaVyi=V @V y)
-0 jo i=0
i
holds.

Remark. If the lattice is weakly distributive of the order » and modular
it is said to be mn-distributive. (See [5]).

It is easy to see that the weak distributivity of the order 1 and the usual
distributivity coincide. We start with

Theorem 2.1. Let n be a positive integer. For an equational class K of algebras
the following two conditions are equivalent.

(i) For every algebra A € K the lattice of all congruences of A is weakly distri-
butive of the order n.

(ii) There exist (n -+ 2)-ary polynomial symbols wo, ..., wr such that for
every algebra A e K and every ao, ...,an1€ A we have

(W1) wo(ao, a1, ..., an41) = ap wi(ao, a1, ..., An+1) = A1
(W2) wi(ap, a1, ...,az,a0) =ao for 0<i<k
wi(ao, a1, ..., a1) = wiy1(@o, a1, ..., a1) for ¢ = O0mod (n + 1)
wi(ao, ..., Qp, a1, .. .,al) = wi+1(a0, ce., Qp, a1, ...,al)
\—.-—/——' h—-—v—‘
J+1 J+1
(Ws) for ¢ —=jmod (n 4 1)
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Wi(ag, ao, ..., A, a1) = Wi+1(@o, o, . .., Ao, A1)
for ¢ =mnmod (n+ 1)
and for 0<t< k.

Remark. \We can write (Ws) in a shorter form.
wi(bo, ..., bn+1) = wit1(bo, .. ., bn+1)

for any 1, satisfying ¢ =jmod (n + 1), 0 < j < n, 0< i<k such that
bO bl=...=by=ao and bj+1=...=bn+1=a1.

Proof. First we shall prove (i) - (ii). Consider a free algebra Fx(X), where
X = {e, e1, ...,ent1}. We denote ¢ = O(eg, ept1) and y; = O(e;, e;11) for
¢t 0,1, ... n Then we have

n n n
(eo,ens1) e AV wi =V (g r V w)
=0 i-0 =0
i#£j

so that

n n
(e0s enr1) €V (@ A V i)
=0 i=0
i
Therefore there exist elements do,d, ..., dr € Fg(X) with do = e, dy =
= en+1 such that

n
(2.2) (dm s dm+1) € @ A V Yi

i
for 0 < m < k, where j€{0,1, ...,n} and m = j mod (n - 1). Since Fg(X)
is generated by X, there are some (n + 2)-ary polynomial symbols wy, wi,
..., wx such that d; = wi(eo, €1, ...,en41) for 0 < ¢ < k. We prove that
these polynomial symbols satisfy the condition (ii). Putting ¢ = 0 or ¢ = £,
we get

(2.3) woleo, - -.» €n+1) = €0 wi(€o, ..., €n+1) = €nt1-

Thus we have proved (Wi). (Wz) follows from Theorem 1.1 and (dm, dm+1) €
€ p = O(eo, en+1), (0 < m < k).

We have still to show (W3). Let 0 < m < k, m = j mod (» + 1), where
je{0,1, ...,n}. Then, in accordance with (2.2),

n n

(dm, dm+l) € V Yi = VO 0(61’, ei+1) = @(607 €1, « v 53 €554y - - oy en+1)-

=0 .
2#}' ’é#j ’

So we have



(wm(eo, ..., en+1), Wmri(€o, ..., ent1)) €
€O0O(e, €1, ..., €41, ..., €ni1)

and we get (Ws3) by simple applying Theorem 1.1.
Conversely assume that the condition (ii) is valid. It is enough to show

n n n

(24) AV yicVignVw)
=0 i o z—O
i#]

for any congruences ¢, yo, y1, ..., ¢n of 4 € K.

Lemma. Let n be the integer from Theorem 2.1 and A € K. Let «;,1 = 0, 1,
..., n be reflexive relations on A having the substitution property with respect
to all operations of A. If we denote

n
I_IO!L':OC().OQ.....OC"
=0

and if ¢ is a congruence of A then we have

(2.5) @ﬂfiaic((pﬂocl.ocz.....ocn).((pﬂocnl.....ocil).
pNeg' az. o) (PNt oY)
eyt g a)
pNao. o gt )
N (N WA -0 B (e W7 Wi I
pnar. i) (et it

where on the right-hand side there are 2k +- 2 factors and k£ is the integer
from (ii).

n

Proof of the lemma. Let (x,y) €@ N [] o.Then there are some ele-
i 0

ments ¢o,C1, ...,Cns1 €4 such that ¢co=a, chpt1 =19y, (co,¢n 1) E@ and
(¢i,ci+1) €y for ¢ = 0,1, ...,n. Put d; = wy(co, c1, ..., Cnt1) for 0 = ¢ < L.
By (W1) we have do = ¢o and di = ca41. (Co, €ns1) € p and (W) imply

d; = wi(co, - .., Cut1) ewi(Co, C1, ..., Cn, C0) = Co =
W;i11(Co, €1y -+ - -5 Cny €0) W3 41(Co, CLy -« oy Cuy Cry1) = diy1.
Therefore (d;, diz1) € for 0 < ¢ < k. Further it is true that

(2.6) di = wi(co, - .., Ca+1) gwi(Co, C1, - .., Cn, Co) = Co =
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= w;(Co, Co, - - -5 Co) PWi(Co, - .., Cos Crgl, -+, Cntl)
[ —
i1
for any 0 <j<n-+1 and any 0< ¢ < k.
Take now some ¢, 0 < ¢ << k. Forje {0, 1, ..., n} such that ¢ = j mod (n +

+ 1) we have

_ -1 -1
di ——@U@(Co, ...,Cn+1) Ajgeoer & o
B2 % R .ocnwi(co, ve.5C0,Cp+1, ...,Cn+1)
[Smm———
J+1

because
(c1, o) € oty

(s, co)Ealy . ... . agt

(Cj+1, Cn+1) EXj+1. ... - Up
(¢ns Cny1) E tn
and «; are reflexive and have the substitution property. The same reasoning
and (Ws3) imply

wi(c(), cee35C0,Cn41y - -y Cn+1) =

J+1
:wiﬂ(co, e300, Cn+1, ...,Cn+1) o0« oos o OG—1.
— )
J+1
. ocnl e ~‘xj+11 ’wi+1(60, .. .,Cn+1) ESS di+1.
Hence by (2.6) we obtain
1 -
(di,d,-ﬂ)e((pﬂocj R .ocol.ocjﬂ. .ocn).
-1
g Do oo iy, )

for ¢ —jmod (n 4 1) and this implies (2.5).
Let us return to the proof of (2.4). It is clear that

n ool 8
Vyi=UA{[]a:xe{po, ... val},
-0 s=n -0
where on the right-hand side U means the set-theoretic union. Thus
n ©0 8
® A Vo«pi =U{pn]]oi:e{yo, ..., pal}.
= $=n =0

Hence it is enough to show
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n n
pNJJa=ViprVwp)
-0 Jj o r,'.=0'
1#)
for any «o, ..., as € {90, ..., ys) and for any s > n. We prove this statement

n
by induction on s. Let s = n. Then by (2.5) ¢ N ]| «; is contained in a super-
-0
position of relations of the form ¢ N By . B2. ... . Ba, where ;€ {0, ..., yu}.
For any such relation there exists v; (0 < j < n) such that y; ¢ {f1, ..., Bu}-

But then

n n n
pNPrL.... .ﬁnC(PA_\é%‘CV(‘I’AVO’Pi)'

i -0 i=

i#j i#]

So by transitivity

n n n
el =sVipgrV).
i=0 i=0 §=0

1#)

Now let our result hold for some s > n. We prove its validity for s 4 1.

8+1
Consider ¢ N [ ] ai, where a; € {yo, ..., ya}. Denoting
=0
8+1-n
o=TTa
-0
fi = dst1-n+¢ for 1 <i<n
8+1 n
we can write ¢ N[ [ o = ¢ N[ Bi. The relations §; are evidently reflexive
i-0 -0

and the have substitution property with respect to the operations of the

considered algebra. So we can apply the lemma to the expression ¢ N ]| B:.
i 0

n
By (2.5) and by the definition of g; we get that ¢ N [ ] i is a subset of the
i=0
. s
superposition of relations each of them being of the form ¢ N [y, yi €
i0

n n
€ {yo, ..., ya}. The induction assumption and transitivity of V (¢ » V )
jo i-0
i
imply that our relation holds true for s 4 1. So (2.4) holds and therefore (ii)
implies (i).
Remark 1. As a special case of Theorem 2.1 we get, for n = 1, Jénsson’s
theorem [6] characterizing classes of algebras with distributive congruence
lattices.

88



Remark 2. A. Day [1] characterized modularity by Malcev type theorem.
Thus n-distributivity can be characterized by Malcev type theorem as well.

Definition 2.2. We shall call a lattice L l-modular if for every x,y1,y2€ L
(2.9) @vy)r@vy)=av(@vy)A @y @y ye)
holds. The lattice L is called dually I-modular if L satisfies the dual identity with
(2.7).

Identity (2.7) and the dual identity have been introduced by McKenzie [7].

Theorem 2.2. For an equational class K of algebras the following two condi-
tions are equivalent.

(i) For every algebra A € K the lattice of all congruences of 4 is l-modular.

(ii) There exist G-ary polynomial symbols wo, . . ., wp such that for every algebra
A € K and for every a, b, ¢, d, e, fe A we have

(L1) wo(a,b,c,d,e,f) =a wala,b,c,d,e,f)=f

(L2) wi(a, a,a,b,b,a) =wi(a,b,b,a,a,a) =a for 0<t<n

(L3) wi(a,b,b,c,c,d) = wi1(a, b,b,¢,¢,d) for 0<i<mn,iodd
wi(a, a, b, a, b, b) = wi(a,a,b,a,b,b) for 0<i<<mn,1ieven.

Proof. (i) implies (ii). Consider the free algebra Fg(X) where X = {eo,
e1, ...,est. If we put ¢ = BO(e, e2; es, es), y1 = Oleo, €1; €2, e5) and p =
— 9(80, €3, €, 65) then

(e0, e5) € (P Vv y1) A (p Vv y2) =
=@V ((pVvy)A(pVv A (prvys)).
There exist elements dy, ..., dn € Fg(X) such that

(2.8) do=¢e d,=es
(2.m (di,diz1) € = Oler, e2; ez, eq) for 0 <7 <m, ¢ odd
(2.10) (di,din)€(@Vv ) A (@Vye) A (yrVvye) =

= Oeo, €1, €2, €55 €3, e1) A Ofeo, e3, €4, €5; €1, €2) A
A Ofe, e1,e3; e2,es,e5) for 0 <7 <<m, ¢t even.

Since Fg(.X) is generated by X, there exist 6-ary polynomial symbols wy,
.., wn such that

(2.11) d; = wileg, ..., e5) for 0< 1 < n.
The validity of (ii) then follows from (2.8), (2.9), (2.10) and (2.11) by using

Theorem 1.1 analogously as in the vroof of Theorem 2.1.
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(ii) implies (i). We have to prove that any congruence lattice ("(4) fulfils
the identity (2.7) for each 4 € K. It is enough to show

(2.12) (pvy)n(pvys) <

S oV ((pVvy)A(py ) A (prvys)).

For brevity denote by P the right-hand side of (2.12). Define the sequences
S0, 81, ... and &, ¥, ... of relations on 4 in the following way:

So=Y1 Skg =Sk-1.Q.Sk-1
lo=1ws tp=1"t-1.0.0l-1.

The relations s; and #; are for every i, ) reflexive, symmetric and have the
substitution property with respect to the operations on 4, In addition we

have ¢ v y1 = s,
=0

e} 0
<pv1pz=Lgtf and (pvy) A (pvy) = U (sinty),
- s

It is enough to show (by induction)
(2.13) si Nt <= P for every 1,j.

For ¢ = 0 and arbitrary j we have soNt; =y NG <y (¢ i) < P.
The same holds for j = 0 and arbitrary 7. Now let (2.13) hold for ¢ = iy — 1,
j=7jo and 7 =149, j = jo — 1. We shall show that this relations holds for
1t =1 and j = jo. Let (a,f)e Sig N tjo = 8ip—1 - @ - Sip-1 N tjt)"l L. tjo_l.
Then there are elements b, ¢, d, e € A such that

(2.14) (@,b) €sig-1, (b,c)eq, (cf)eEsiy—1,
(a, d) € tfo—l, (d’ 6) EQ, (6, f) € tjo—l-

Let d; = wi(a,b,c,d,e,f) for 0 < i < n From (2.14) and (Ls:) we have,
for 0 <7< n,

di = wi(a,b, ¢, d, e, f)siy-1 wila, a,f,d,e,f)
di = wi(a,b,c,d, e, f)t;-1 wi(d,b,c,d, e, e) ¢
owi(d, b,b,d,d,d) =d = wi(d,d,d,d,d,d) ¢
qwi(d, d, e, d, e, e) tip-1 wi(a,a,f,d, e, f).
Hence

(2.15) di(sig-1 N 4)) wi(a, a, f, d, e, f).
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Analogously we get
(2'16) Wi(a, a’f’ d’ e’f) (Sl'() N tj()_l) wi(a: a;f; a,fyf)-

Using (2.15), (2.16) and (L3) we have for every odd i, 0 < i < di(Siy—1 N
N t.’fo) wi(a, a, f, d, e, f) (82’0 N tfo—l) wi(a,a,f,a,f,f) = win(e, fa.f,a).
. (850 N tjo_l) wi1(a, a, f, d, e, f) (850_1 N tfo) (850_1 N tjo)di+1~

Then the induction assumption implies that

(2.]7) (dz, di+1) eP

holds for every ¢ odd, 0 < 7 < n.
For i even, 0 < 4 << m, we have by (Ls)

di = wi(a, b, c,d, e, f) pwi(a, b,b,d, d, f) = wi1(a, b, b, d, d,[) ¢
odi1.
So digdit1. But ¢ = P and therefore we have
(2.18) (di, di1) € P.

By (L1) do = a and dy = f. P is transitive. Thus (2.17) and (2.18) imply
{a,f)e P. So (2.13) is proved for C(4), 4eK.

The proof of the following theorem is very similar to the proof of Theorem
2.2, Therefore we shall do it in a shorter form.

Theorem 2.3. For an equational class K of algebras the following two condi-
tions are equivalent.

(i) For every algebra A € K the lattice of all congruences of A is dually I-mo-
dular, i.e., for any congruences ¢, w1, y2 of A
(2.19) A @A)V (@nype) v (yoays)) =

= (p A1) v (¢ A 2)

18 true.
(ii) There exist T-ary polynomial symbols wy, ..., wn such that for every

algebra A € K and for every a, b, ¢, d, e, f, g€ A we have

(DL1) wo(a, b, c,d, e, f,9) =a wala,b,c,d,e, f,g) =g

(DLs2) wi(a,b,b,d,e,e,a) =a for 0<i<n

(DL3) wi(a, a, a, a,a,b,b) = wiii(a, a,a,a,a,b,b) for 0<1i<n,i even

wi(a, a,b,b,b,b,b) = w;a(a, a,b,b,b,b,b) for 0<1i<<m,i odd

Proof. (i) implies (ii). Consider Fg(X), where X = {eo, ..., &}. Put ¢ =
O(eo, €6; e1,e2; e1,e5), y1 = Oeo, e1,e2,€3,€1; e€5,e) and Py —= O(ep, e1;

€2, €3, e, ¢€5,¢e). Then we can write

(eo, es) e A ((p A1)V (@ Aw2)V (y1Ays)) =
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= (g A1)V (@A y2).

The condition (ii) can be derived from this relation in the same way as in
the case of Theorem 2.2.

(ii) implies (i). Suppose @, y1, y2 are congruences of 4 € K. We show that
(2.19) is satisfied by these congruences. It is enough to show that the left-hand
side of this relation is a subset of its right-hand side. Define sequences g, 51, . . .
and £, %, ... of relations on 4 as follows:

So =yP1 NP2 8 = Sk_l.((pﬂ’tpl).sk_l

\

to =y Ny lg=1lg-1. ((p ﬂ‘lpg) b1

Then the expression on the left-hand side of (2.19) is equal to |J (¢ N s . ).
4,j-0
If we denote the right-hand side of (2.19) by P, we show that for every
integer 4, j we have ¢ N's; . t; = P. We do it again by induction. It is easy
to see that p N sp.t; = P and ¢ N s; . tp < P for any 4, j. Suppose ¢ N s5)-1 .
by < P and o N s tp1 <= P. Let (a,9) €p N sy . t;,. Then there exist
elements b,c,d, e, fe A satisfying the following relations

(2.20) (a,b) €sig1, (b,c)ep Ny1, (c,d)ESiy—1
(d’ e)Etfo—l’ (8,f)€¢ﬂ?/’2, (f’ g)Etfo—l
(@,9)€p.

If we put d; = wi(a,b,c,d, e, f,g) for 0 < ¢ < n, then from (2.20) we can,
similarly as in Theorem 2.2, derive

di(p O 8ig-1 - 1) wila, a, 9, 9, 9, 9, 9) =
= wi11(2, 4, 9,9,9,9,9) (p N1, . si5-1) dia
for 0 < ¢ <n, ¢ odd. By the induction assumption we have
P N Siy-1 -1y, < P
and therefore
(PN Sy . L) L =90, . 8,1 < P.

Therefore (d;, d;+1) € P.
For ¢ even, 0 < ¢ << m, we obtain analogously

di(p N tjp-1 . siy) wi(a, @, @, a, a, g, g) =

wi11(a, @, a, a, a, g, g) (p O Siy - tjg-1) di 1
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and this implies (di, di+1) € P. Since do = a and d, = g, we can write (a, g) €
eP.
Remark. Theorems 2.1, 2.2 and 2.3 have been first proved in [8].

3. I-modularity and dual I- modularity in equational classes

A. Day [2] has proved the following result.

Theorem 3.1. If the congruence lattice of every algebra A of an equational
class K is p-modular, then the congruence lattice of every algebra 4 € K is mo-
dular.

The proof of this theorem is based on the Malcev type theorem characteriz-
ing a congruence lattice as p-modular, which has been proved by I. GGedeo-
nova in [4] and in the following theorem.

Theorem 3.2. For an equational class K of algebras the following two conditions
are equivalent.
(i) For every algebra A € K the lattice of all congruences of A is modular.

(ii) There exist 4-ary polynomial symbols mg, ..., ms such that for every
algebra A € K and for every a, b, ¢, de A we have
(M) mo(a,b,c,d) =a mu(a,b,c,d)=d
(Mz) mi(a,b,b,a) =a for 0<i<n
(Ms) my(a, b, b, d) = mi1(a, b, b,d) for 0<i<m, ¢ odd
(Myg) mi(a, a,d,d) = miui(a,a,d,d) for 0<1i<<n, 1 even.

This theorem characterizes modularity and has been proved by A. Day [1].
In this part we derive two similar theorems.

Theorem 3.3. Let K be an equational class of algebras. If the congruence
lattices of all algebras of K are l-modular, then they are modular.

Proof. Let the congruence lattice of every algebra 4 € K be l-modular.
By means of polynomial symbols w;, i = 0, 1, ..., n, the existence of which
follows from Theorem 2.2, we shall construct polynomial symbols which
will satisfy the conditions of Theorem 3.2. Put

w; = wi(xo, X1. X2, X0, X3, T3)
v; = w;(To. X0, Xo, X1, T2, T3)
t; = wi(vo, X1, 21, %o, X3, X3)

fore — 0,1, ..., n.
Let do, d1, ..., dr be the following sequence.

Uo » ul,tl,’Ul,Uz,t‘z, Uz, u3,t3,?]3, U4,t4, U, u5:t5;v59 LR
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This is a sequence of 4-ary polynomial symbols. We show that this sequence
satisfies (M;)—(Mas) from Theorem 3.2. l.et A€ K and a,b,c,de A. (M)
is evidently satisfied. Every d; has the form uy or v; or t;. Therefore d;(a, b,
b,a) = ug(a, b, b, a) = wi(a, b, b, a,a,a) = aordia, b,b,a) = vg(a,b,b,a) =
= wi(a,a,a,b,b,a) = aorda,b,b,a) = tx(a, b, b,a) = wg(a, b, b, a,a, a) =
= a. So (M) holds. Let 7 be odd. Then d; = 4y, di+1 = tx or d; = vg, di+1
= V11, k odd, or d; = tg, di+1 = ur. It is easy to see that in every case
di(a,b,b,d) = d;11(a, b, b, d). Really, in the first case

di(a,b,b,d) = ug(a, b, b,d) = wi(a,b,b,a,d,d) =
= tg(a, b,b,d) = di+1(a, b, b, d).

In the second case

di(a, b,b,d) = vi(a, b, b, d) = wi(a,a,a,b,b,d).
Since k is odd and (L3) holds, we have

wg(a, a,a,b,b,d) = wiii(a, a,a,b, b, d) = vg1(a, b, b, d) =

= di+l(a7 b; b, d) .
In the third case

di(a’ b> b, d) = tk(“; b: b: d) = wk(a; b> by a, d’ d) =
= uk(a, b,b d) = di11(2, b, b, d).
Thus (Ms) is satisfied. Assume ¢ even.
Then d; = wy, diy1 = ug+1, keven, or d; = tg, di+1 = vgor d; = Vg, d;jy1=

= {x. In the same way as in the case of ¢ odd it follows that di(e, a, d, d) —

= dis1(e, a, d, d). So (M4) holds and therefore the congruence lattice of every
algebra of K is modular.

Analogously one can prove:

Theorem 3.4. Let K be an equational class of algebras. If the congruence
lattices of all algebras of K are dually l-modular, then they are modular.

Proof. If the congruence lattice of every algebra is dually I-modular,
then by Theorem 2.3 there are 7-ary polynomial symbols wy, ..., wn satisfy-
ing relations (DL1)—(DLs). Put

Ui = wi(xo, 1, X1, X1, X1, T2, X3)

v; = w;(xo, X1, X2, T2, T2, T2, T3)
for 0 <7 < n.
Then the sequence

Ug, U, V1, V2, U2, U3, V3, V4, Us, U5, V5, Vg, UG, « - «
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satisfies the condition (ii) of Theorem 3.2 and therefore the congruence lattice
of every algebra 4 € K is modular.
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