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REPRESENTATION OF LATTICES BY EQUIVALENCE 
RELATIONS 

MARIA POLINOVA 

Introduction 

P. M. W h i t m a n [5] proved that every lattice L can be embedded into the 
lattice of all equivalence relations on a set M. If L is countable (in particular 
finite), then P. M. Whitman's construction yields M countable. S. K . T h o ­
rn as on [4] gave a more simple construction for the case of L finite. I n this 
paper we shall show that to any sublattice j£? of the lattice of all equivalence 
relations on a set M with, card £? ^ m, where m is an infinite cardinal number, 
there is a subset Q <= M with card Q ^ m such that the lattice of reduced 
equivalence relations to the set Q is isomorphic to J£f. An analogous result will 
be proved for algebraic lattices. By an algebraic lattice (see e.g. [1]) it is meant 
a complete lattice in which every element is a join of compact elements. De­
note by S(M) and ^(9Ji) the lattice of all equivalence relations on the set M, 
or the lattice of all congruence relations on the algebra tyJl, respectively. Let jSf 
be a sublattice of the lattice S(M)\ then, according to B. J o n s s o n [3], j£? is 

(1) of type 1 if 0 v 0 = 0 . (P, 
(2) of type 2if 0 v & = 0 .0 .0, 
(3) of type 3 i f © / 0 = 0 . 0 . 0 . 0 

for every 0, 0 e ££ (0 . 0 denotes the product of 0 and 0). Let 0 be a binary 
relation on a set M. We denote byr 0Q the restriction of 0 to the subset Q c= M, 
i. e. (x, y) e 0Q if and only if a\ y e Q and (x, y) e 0. If 0 is an equivalence 
relation, then 0Q is an equivalence relation, too. If j£f is a sublattice of £ (M) 
and Q c M, then tfq {0Q \ 0 e £?}. 

Results 

Theorem 1. Let J§f be a sublattice of £(M) with card jSf ^ m, where m is an 
infinite cardinal number. Then there exists a subset Q <= M ivith card Q :§ m 



such that SeQ is a sublattice of S(Q) isomorphic to £. Moreover if & is of type 
p> (pe {I, 2, 3}), then £eQ is of type p, too. 

Corollary 1. Let m be an infinite cardinal number and let L be a lattice with 
card L ^ lm. Then L is isomorphic to a sublattice of S(Q) with card Q ^ m. 
In particular any countable (or finite) lattice is isomorphic to a sublattice of 
£(N) with card N ^ Xo. 

Theorem 2. If the lattice J£ of Theorem I is a complete sublattiQe [1] of S(M), 
then the lattice <£Q of Theorem I is a complete sublattice of<?(Q), too. 

Corollary 2. Any algebraic lattice L with card L ^ m, where m is an infinite 
cardinal number, is isomorphic to a complete sublattice of $(Q) with card Q ^ m. 

Corollary 3. Let ?t = (A, F) be an algebra having only finitary operations and 
let C be a sublattice of the lattice *&(%) with card C ^ m, where m is an infinite 
cardinal number. Then there exists a subalgebra W = (A', F) of the algebra 51 
with card A1 ^ (m -f- cardF) Xo such that the lattice C is isomorphic to a sublat­
tice C of the lattice ^(W). In particular if cardK ^ Xo, then card .A ' ^ m. If 
C is of type p (p e {1,2,3}) then C" is of the typep, too. IfCis a complete sublattice 
of^(%), then C" is a complete sublattice of^(%'), too. 

Proofs of Results 

Lemma. Let J£ be a sublattice of the lattice S(M) and let Q cz M. Then for the 
elements of ^Q the following conditions hold (0, 0, 0y e =§?). 

(1) If 0 <: 0, then0Q ^ 0Q. 

(2) (A0y)Q = A(0 r )Q-
yer y<=r 

(3) (V er)Q z y (6V)Q. 
yer ysr 

P r o o f of L e m m a . 

(1) If (x, y) e 0Q then x,yeQ<=-M and (x, y) e 0. 

This implies x, y eQ and (x, y) e 0, hence (x, y) e 0Q. 

(2) (x, y) e (/\ 0y)Q if and only if x, y eQ and (x, y) e A ©y This is true if 
yeI1 yel' 

and only if x,yeQ and (x, y) e 0y for each y eF. This is equivalent to (x, y) e 

€-A(0v)«-
yer 

(3) follows from (1). 
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P r o o f of T h e o r e m 1. According to the Lemma it is sufficient to show 
that there exists Q <= M such that the following three conditions are fulfilled: 

(4) card Q ^ m. 

(5) The correspondence 0 t-> ©Q is one-one. 

(6) (0 v 0)Q ^ 0Q v 0Q for any 0, 0 e J§?. 

We shall construct a sequence of sets Qn by induction. For every 0, 0 e SP 
with 0 < 0 choose elements a, b e M with (a, b) e 0 but (a, b) <£ 0; denote Qo 
the set of all these elements a, b. Obviously, card Qo tk m- Now we construct 
the sets 0,-, i e {I, 2 , . . .}, as follows. Let us suppose tha t we have already con­
structed Qi (i e {0, 1, . . . , } ) . For every pair 0,0 e S? and for every pair (a, b) e 
e Qi x Qt with (a, b) e (0 v 0)Q. but (a, b) $ 0Q. v 0Qi choose a finite sequen­
ce to,ti, . . ., tne M such that a = to0t\0t2 . . . tn-\0tn = b and all elements of 
these sequences add to the set Qt. Thus we obtain the set Qi i . I t is easy to 
prove that card$j+i ^ m. Obviously, Qi <= Qt+\ for each i e {0, 1, . . . } . Let 

co 

Q [jQi- Obviously, c a r d $ ^ m, which proves (4). Now we prove (5). If 
i 0 

0+0, then either 0 A 0 < 0 or 0 A 0 < 0. If 0 A 0 < 0, then there 
exist elements a, b e Qo <= Q <= J / with (a, b) e 0 but (a, b) $ 0 A 0, i. e. 
(a, b) $ 0. This means 0Q 4= 0 Q . The proof for 0 A 0 < 0 is analogous. I t 
remains to prove (6). If a,b eQ and (a, b) e (0 v 0 ) Q , then there exists an 
i e N such that (a, b) e (0 v 0)Q . . If (a, b) e 0$. v 0Qi, then obviously (a, b) e 
e 0 Q v 0Q. If (a, b) <£ OQf v 0Q. , then there exists a finite sequence to,h, . . ., tn e 
e # m such that a = to0h®t2 . . . tn-\0tn = b; this means (a, b) e 0Q1+1 v ^>Q/+1 

and also (a, b) e 0Q v 0Q. I t can easily be seen that if S£ is of type ^ (p = 1, 2, 3) 
the construction of Q can be realised in such a way that S?Q is of the type p, 
too. 

P r o o f of C o r o l l a r y 1. By Whitman's theorem [o] L is isomorphic to 
a sublattice S£ of the lattice S(M) on a set M. By Theorem 1, there exists 
a set Q c M with card Q ^ m such that j£? is isomorphic to S?Q . Hence L 
is isomorphic to Sf Q . 

P r o o f of T h e o r e m 2. Using the isomorphism 0 -> 0 Q of Theorem 1, we 
get (0i v 0 2 . . . v 0n)Q = (0 I )Q v (02)Q v . . . v ( 0 ^ ) Q for an arbitrary na­
tural number n. This implies immediately the following inequality 

(7) (V ®v)Q ̂  V (0y)Q f o r 0 7 ^ ^ -
"/<=r yer 

P r o o f of C o r o l l a r y 2. By [2], L is isomorphic to the lattice J ? = #(Sft) 
on a Unitary algebra 901 = (M, F). By Theorem 2, there exists Q c= M with 
cardQ ^ m such that SP is isomorphic to J£?Q. Hence Z/ is isomorphic to S£Q. 



P r o o f of C o r o l l a r y 3. Let us construct a sequence of sets An by induction. 
Let AQ have the same meaning as QQ in the proof of Theorem 1. Now we 
construct sets Ai, i e {I, 2, . . .} as follows. Let us suppose that we have already 
constructed Ai, i e {0, 1, . . .} . In the case of i being even we construct Ai+i 
from Ai in the same way as in the proof of Theorem 1 we constructed Qt i 
from Qi. Hi is odd, we set Ai+i = [Ai], where ([Ai], F) is tlxe algebra generated 
by Ai. I t is easy to prove that card A^\ ^ (m + cardF)Xo (see e. g. [1]) in 

00 

any case. Obviously, Ai <= A\+\. Let A' = ( J Ai. Obviously, card A' ^ 
i 0 

rg (m + card F)No and every equivalence relation OA' is a congruence relation 
of 5T. I t suffices to show that the following statements are true: 

(8) %' = (A', F) is a subalgebra of the algebra 91. 

(9) The correspondence 0 h> OA* is one-one. 

(10) (0 v 0)A> = 0A> '&A>-

If aQ, a±, . . ., an-i G A', then for every i G {0, 1, . . ., n — 1} ci; e AJU) for 
some j(i) eN. Let k = max {j(i), i — 0,1, . . ., n — 1}. then of e Ak for 
every i e {0, I. . . ., ?i — 1}. Hence for every fv e F, fy(ctQ ,a\, . . ., an i) G 
e .4^+2 <-- 4 ' , which proves (8). The proof of (9) is analogous to that of (5). It 
remains to prove (10). If a,beA' and (a,b)e(0 y &)A'> then there exists 
i e N such that (a, b) e (0 v 0)A ;. If (a, b) G 0 ^ v 0 ^ , then obviously («, b) G 
e 0A' v 0A'. If (#, b) ^ 0At v 0^- . then there exists a finite sequence lo, li,..., 
lra e y4,:+2 such that a = l0 0h@h • . • ^ - i 0 ^ = b- This means (a, b) e 0A ; + 2 

v 0.4£+o
 a i l d ((«, b) G 0A' v 0^ ' , too. The last assertion of Corollary 3 can be 

obtained using Theorem 2. 
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