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ZEROS OF THE POLYNOMIAL SOLUTIONS OF THE
DIFFERENTIAL EQUATION
2" + (fo + P + P}y’ + (y — npa)y = 0.

JOZEF ROVDER

At the conference on differential equations at Dundee in March 1972 (the
proceedings of which are shortly to be published by Springer) Arscott showed
that polynomial solutions of the above equation have valuable bi-orthogonal
properties. The purpose of this note is to investigate the zeros of these poly-
nomials. The main result of this paper is Theorem 3, which is an analogy with
Stieltjes’ theorem on the zeros of Lamé polynomials [2].

Consider the differential equation

(1) zy” + (fo + frv + Pea®)y’ + (y — nfhax)y = 0,
where 7 is a positive integer and fo > 0, f1, f2 << 0, v are real.

Theorem 1. For the numbers (o, 1, P2, n restricted as above, there exist n + 1
real numbers yo < y1 << ... < yn so that the differential equation

(2) xy” + (Po + Pz + p2a®)y’ + (i — npaa)y = 0,
has a polynomial solution of the degree n, for 1 = 0,1, ..., n.

n
Proof. Let y(x) = > awxi be a polynomial solution of (1). Then y'(x) =
i0
n n
> daat 1, y'(x) = > (i — Dawi~2 On substituting y(x), y'(x), y"(x) into
i1 iz
equation (1), we obtain the following system of equations for the cocfficients
ai,t 0,1,..., 0.

yaoy -+ poax =0,
fanao + (y + fr)ar + 2(fo + 1ae -0,
—fa(n — Nar + (y + 2f1)az + 3(fo + 2)as -0,



(3)
—fa(n — k + 2)ag—2 + [y + (b — D)plax + k(fo + k — )ax = 0,

—p22an—2 + [y + (o — D)f1lan—1 + n(fo +n — 1)a, = 0,
—f2tn-1 + (y + nf)a, = 0.

In order that the system (3) may have a nontrivial solution it is necessary
that

4 180
—fan Y+ b 2(fo + 1)
—pa(n — 1) vy + 26 3(Po + 2)

(4) Dnn(y) = —fen —k+2) y+(k—1p k(fo+k—1) =0.
............. _ﬁ22 . y +(n— 1)/;1 . n([} S =
—p2: vy +nh

Denote by Dy.n+1 the k-th order determinant obtained from the first rows and
the first columns of D,1(y). We can easily show that

(5) Dis1,n+1 = (y + kp1)Diyus1 + Pa(n — k + 1)k(Po + k — 1)Dy 1041

for k=23, ..., n.

The following properties of Dg,,+1 were proved by Arscott [1]. (i) the zeros
of Dy41 and Dy 41 interlace, (ii) at consecutive ze:ros of Dy 41 the values of 1)y,
n+1 are alternately positive and negative, (iii) all the zeros of D, are real
and distinct.

If a, or ay is equal to zero, it follows from (3) (fo = 0, 2 &+ 0) that a; = 0
for all 4, i. e. y(z) = 0. From this remark and (iii) it follows that for every
positive integer # there exist # 4 1 numbers y{”, i = 0, 1, ..., n so that for
each ™ the system (3) has a nontrivial solution (¢, a’, &, ..., o),
where af? # 0, af) + 0. This means that the differential equation (2) has
n 4+ 1 polynomial solutions of the degree n associated with the different numbers
p <y < ... <™. The polynomial solution of equation (2) associated
with 9™ will be denoted by y(x). (y(x) doees not mean the i-th order
derivative of y,(x).)

Remark. Every solution %{’(xz) depends on the coefficient ay. Put ap = 1.
Then the solutions y{’(x) satisfy the condition %’(0) = 1. From now on, we
shall assume that every polynomial solution »?(x) has that property.
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Lemma 1. Let y(x) be a polynomial solution of equatwn( ) with the property
that y(0) = 1, i. e. yP@) =1 + aPx + aP2? 4 ... + aan. Then the sign of
al? is (—1)L

Proof. The solution 4P(x) is associated with the root ) of the equation

D, 1a(y) = 0. From (ii) it follows that the sign of Dp,n+1(p{") is (—1)n+i. Let us
carry over the first columm of (3) to the right-hand side and leave out the last
row, we thus obtain a nohomogeneous system of equatios (for ¢y #+ 0) with the
unknows a{?, a¥, ..., a (associated with ). By Cramer’s rule we obtain

W= (—1)Da”)
n (2 3

n-1

nlq(ﬁo—{—i)

thus the sign «? is equal to (—1)7 . sign Dy(y") = (—1)n. (—1)r+i = (—1)i,
The lemma is thus proved.

Theorem 2. Let u(x) = yP(x), +(x) = y(x) be two polynomial solulions of
(1). Let m = n and " 2 y{. Then if the number a is the first zero of u(x) in

(0, ), v(x) vanishes at some point of (0, a).
Proof. The differential equation (1) can be transformed in (—co, 0) U

U (0, o0) by the substitution
(6) w(e) = y(e) |/ [z]doesa+it,

to the form
) (@ [—nﬁoJr +f] o,

where

2 1 1
fl@) = — /i«”ﬂz _ e & — — (B} + 22 + 2PoP2) — —— PofL +
+ 2 4 2x

1
+- (20— ).
4.2

From the relation (6) it follows that the zeros of a solution of equation (1)
are the same as the zeros of the corresponding solution of equation (7) except
possibly for the point x = 0.

Let u(x), ¢(x) be a polynomial solution of (1). Then the function

2(1) = u(x) -I/-l'ﬂoeﬁxﬂ'Jf‘:ﬁzxe
satisfies the equation
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(8) 2"(x) + [—1?432 +

(x)] z2(x) =0

w(z) = v(r) ]/xﬂoeﬂ1x+5ﬁzx2

and the function

satisfies the equation

0.

(9) Wm+mef%+mﬂwx

Now suppose that Theorem 2 is false, i. e. that v(x) > 0 in (0,a) (u(0) =
= v(0) = 1). Then z2(z) > 0 and w(x) > 0 in (0, @). Multiplication of (8) by
w(x) and (9) by z(x), subtraction of the resulting equations and integration over
(0, @) vields

o

. ' 1

J [Z'(x)w(r) — w'(x)2(x)]de = ‘ [ fa(m — n) + ;(yj—«,rl)J w(x)z(x)dw.

O

At the moment, we do not know that these integrals exist (since the integrands
are not continuous functions at x = 0). But after making substitution (6)
we obtain

a

’ [wBoeBiz+i8 3/ (x)w(x) — o' (x)u(x)] de =
0

1 1
= [_ﬂz(m —n)+ (yi — 7 _} w(@)o(a)xBeesiv+35* de.
0 x
Since po > 0, both integrals exist and the integrand on the right-hand side is
nonnegative by hypothesis. Therefore the integral on the left-hand side is
nonnegative as well, i. e.

(10) (Bl [/ (@)o() — u(@)' (@)])

But since u'(a) < 0, v(a) > 0 for @ > 0, the left-hand side of (10) is negative;
we thus have a contradiction and so the theorem is proved.
Similary, we can prove the following theorem.

Theorem 2°. Let u(x) = y(x), v(x) = y?(®) be two polynomial solutions of
(1). Let m = n and ™ < (. Then if the number a < 0 is the last zero of wu(x)
tn (— o0, 0) (that is to say, the value of a is the greatest of all zeros in (— o0, 0)),
v(x) vanishes at some point of {a, 0).

Theorem 3. Let yP(z), n = 1,2, ..., n be a polynomial solution of equation
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(2) corresponding to y\™. Then every such solulion has n zeros in (— 00,00.);
i zeres lying in (0, co)and n — 1 in (— o0, 0).

Proof. From Theorem 1 it follows that every solution y?(x) is of the degree
n, and so has at most » zeros in (— 00, c0). Consequently it is sufficient to prove
that every such solution has at least » zeros situated as stated in the Theorem.
We recall that every solution y’(x) has the following properties

L y2(0) = L.
2. yP@) =14 aPx 4 ... 4+ (=1)"|a |2

The proof is by induction on the nubmer n.

Let n = 1. The equation Ds(y) = 0 has two roots y{’ < 0 and > 0.
From (3) it follows that the solution 4{”(x) has a zero in (— oo, 0) and %{!(z)
has a zero in (0, o). Consequently Theorem 3 is valid for n = 1.

Assume that Theorem 3 is valid for the number n =%, 2 =0, 1, ..., k,
i. e. the solution y{(x) has ¢ zeros in (0, ) and % — ¢ zeros in (— o0, 0). We
shall deduce that the theorem is valid for » = & - 1.

At the begining we propose the solution y{” (x), where ¢ % 0, 7 + k + 1.
We divide the proof into two parts a) and b). In part a) we shall show that
¥, (@) has & + 1 — ¢ zeros in (— o0, 0), and in part b) we shall show that
function y{),(z) has 4 zeros in (0, o).

a). Consider the solution y{’(2) of (1) associated with the number »®,
From Theorem 2’ it follows that the last zero of {),(z) in (— o0, 0) is greater
than the last zero of y{’(z). By the inductive hypothesis, the solution #%{(z)
has k — ¢ zeros in (— 00, 0). Using the Sturm comparison theorem we obtain
that y{),(x) has at least k — 7 zeros in (— 0, 0).

Since

lim y(x) = lim (—1)ix* + lim (—1)iak+l = 11m 2, (),

I>-00 T>-00 Z—>-0 XT>-
¥ (x) must have another zero in (— o0, 0). Consequently y}f}rl(x) has at least
k+ 1 — ¢ zeros in (— o0, 0).

b). In this part we consider the solution »{/~(x). This solution has ¢ — 1 zeros
in (0, o0), by hypothesis.

If i — 1 = 0,1i. e. ¥ P(x) has no zeros in (0, 00), then y{?,(x) has at least one

zero in (0, @), because y?,(0) = 1 and

lim @, (z) = lim (—1)lzk+l = — o0,
>0 Z->0
Let ¢ > 1. Then from Theorem 2 it follows that the solution y{?,(x) has its
first zero in (0, oo) before the first zero of y{ (). From Sturm’s comparison
theorem it follows that y{?,(x) has ¢ — 2 other zeros in (0, ), and so y),(z)
has at least ¢ — 1 zeros in (0, o).
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Be cause

lim »¢ V(@) = lim (—1)il% % lim (—1)ik+! = lim y{ ,(2),

x> >0 >0 x>r
the solution {);(x) has another zero in (0, 00). Consequently #{?,(x) has at
least ¢ zeros in (0, o0).

From a) and b) it follows that %), (x) has precisely & 4 1 — i zeros in (—0, 0)
and ¢ zeros in (0, o0), where ¢ + 0,7 + &k + 1.

We can see that part a) is valid for ¢ = 0 as well, i. e. the solution y{) (x)
has at least £ + 1 zeros in (— o0, 0), i. e. precisely £ 4 1 zeros in (— o, 0)
and no zeros in (0, c0). Similary, part b)is valid for s = L — 1, 1. e. the solution
y¥(z) has precisely & - 1 zeros in (0,00) and no zeros in (— 50, 0). Theorem
3 is thus proved completely.
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