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REMARKS ON VARIETIES OF TOPOLOGICAL GROUPS 

SIDNEY A. MORRIS 

§ 1. Introduction 

Recently several papers on varieties of topological groups and varieties of 
locally convex spaces have appeared. (We include a somewhat complete 
bibliography.) This paper continues the investigation carried on in [10], [11] 
and [12] and cleans up some points raised there. 

§ 2 begins with the definition of a variety of topological groups and a discus­
sion of why we have been so unorthodox as to consider non-Hausdorff groups. 
The point is that our varieties oi topological groups are more closely related 
to \arieties of groups [25] if we do so. Next we glance at the question of how 
our varieties of topological groups are related to H i g m a n ' s (rather different 
varieties of topological groups [9]. In this section we also prove a theorem 
relating the topological and algebraic structures of free topological groups. 

In § 3, the question of how the properties of a subgroup being "topologically 
fully invariant" and 5Jalgebraically fully invariant" are related is investigated. 
That the latter implies the former is trivial. However we show that for a large 
class of examples the converse is false. 

Some open questions are also presented in the paper. 

§ 2. Some Basic Facts 

A non-empty class i r of (not necessarily Hausdorff) topological groups is 
said to be a variety of topological groups if it is closed under the operations of 
taking subgroups, quotient groups, arbitrary cartesian products and isomorphic 
images. 

If i^ is a variety of topological groups, then the class of groups, i^* which 
with some topology appear in V is a variety of groups [25]. (That i r is indeed 
a variety of groups can be seen from 15.51 of [25].) If we restricted our attention 
to Hausdorff groups the example below (and Theorem 2.2) shows that this 
would not be the case. 



E x a m p l e 2.L Let if be the class of all topological groups with the property: 
every neighbourhood of the identity contains a subgroup with only a finite 
number of cosets. (In the language of [12], if is the class of all S(i$o)-groups.) 
I t is readily verified that if is a variety of topological groups. However the 
class 27 of all groups which, with some Hausdorff topology, appear in if is not 
a variety of groups. We can see this by noting that 27 contains all finite groups 
but does not contain the additive group of reals. 

If Q is a class of topological groups then the smallest variety of topological 
groups containing Q is said to be the variety generated by Q and is denoted by 
"(f(Q) (or if(G) if Q = {G}). 

Open question. Let Q be a class of topological groups and 27 be the class 
of all groups which, with some Hausdorff topology, appear in i^(Q). Under 
what conditions on Q is 27 a variety of groups ? 

As a partial answer to this we present: 
Theorem 2.2. LetQ be a class of connected compact groups and Jet 27 be the clat** 

of all groups which, with some Hausdorff topology, appear in ir(Q). Then 1 
is a variety of groups if and only if each member ofQ is abelian. 

Proof . If each member of Q is abelian then, by Theorem 2.5(iv) of [3]. 
if(Q) = i^(T), where T is the circle group with its usual compact topology. 
I t is well-known that every abelian group is algebraically isomorphic to a sub­
group of a product of copies of T. Thus E is the variety of all abelian groups. 

Now consider the case where some member of Q is not abelian. Suppose that 
27 is a variety of groups. By Theorem 2 of [1], Z contains a free group of rank 
2Xo and hence 27 is the variety of all groups. Corollary 3 of [2] then implies 
that every group is isomorphic to a subgroup of a compact group. This is 
equivalent to the proposition : Every discrete group is maximally almost 
periodic [8]. This proposition is shown in [8] to be false. Hence 27 is not a variety 
of groups. 

If if is a variety, X is a topological space and F is a member of i" ,then F 
is said to be a free topological group of if on X, denoted by F(X, i'), if it has 
the properties: 

(a) X is a subspace of F, 
b() X generates F algebraically, 
(c) for any continuous mapping y of X into any member II of if, there 

exists a continuous homomorphism F of F into H such that F \ X = y. 
The following results on free topological groups are proved in [10]: 

(i) F(X, i^) is unique (up to isomorphism) if it exists, 
(ii) F(X, if) exists if and only if there is a member of i r which has X as 

a subspace, 
(iii) F(X, if) is the free group on the set X of the underlying variety of 

groups i^ [25], 



A topological group F is said to be topologically relatively free with free 
gnerating space X if X is a subspace of F which generates F algebraically and 
every continuous mapping of X into F can be extended to a continuous 
endomorphism of F. 

We recall that a group F is i elatively free with free generating sd X if, given 
the indiscrete topology, it is topologically relatively free with free generating 
space X. 

Open questions. If G is topologically relatively free is the underlying group 
G necessarily relativle free ? 

If G is topologically relatively free with free generating space X and G is 
relatively free with free generating set X, is G necessarily F(X, ir(G))l (Of 
course the converse statement is true.) 

Graham H i g m a n [9], using an analogue of "topologically relatively free" 
inspired by G r a e v [7], defined his concept of a "variety of topological groups". 
His work prompts the question: 

If Kis F(X, ir(F)) for some space X, and G is a topological group with the 
property that every continuous mapping of X into G can be extended to 
a continuous homomorphism of F into G, does G necessarily belong to i^(F) I 
If not, is it true under the additional assumption that G e ir(F) ? 

Both of these questions are answered in the negative by Example 2.3. 
E x a m p l e 2.3. Let F be any relatively free group with the discrete topology. 

Then for some subspace X of F, F is F(X, ir(F)). Let F have cardinal m and G 
be a discrete group of cardinal n > m such that G e Y'(F). By Theorems 1.2 
and 2.1 of [12], G $ i^(F). However G clearly has the properties described above. 

We now clarify and correct the final remark in § 2 of [10]. 

Theorem 2A. Let X be a space and if* a cariety such that F(X, f~) exists. If 
X in an open subset of F(X, i^) then, providing F(X, Y') is not the Klein four-
-group, F(X, ir) has the discrete topology. 

Proof. First, consider the case where X has at least three distinct elements 
xi, x2, and x$. We will show that x^1 X n x2 X c: {e, x]1 x2} and x^1 X n ^ 1 

X ^ {e, a?-.1 xs], where e is the identity of F(X, ir). 
Let a e x^1 X n x*1 X, a + e. Then a = x-^1 y = x2z, where y and z are in X. 

Clearly y =j= z, y =4= x\, and z # x2. If z ^ {xi, x2, y}, then since F(X, ir) is 
algebraically relatively free, x± y = x.1. Either y = x2 or y £ {x\, x2}. 

The latter implies x± = x2 whilst the former implies x± = x\. Each of these 
is obviously false. Thus z = xi. Similarly y = x2. So a = xx

x x2 = x2 x\. 
Hence a^1 X n .r.,1 X c {e, x-^1 x2} and analogously x^1 X n x^1 X c [e, xx

x xs}. 
Therefore .rj1 X n x:1 X n x1 X = {e}. This implies that {e} is an open 

set and consequently F(X, ir) has the discrete topology. 
Clearly if X has only one element the result is trivial. We are then left with 



the case X = {x±, x2}. As shown already, unless x1 x2 = x.,1 xi. x1 X C\ 
n x2

x X = {e} which again implies that F(X, ir) is discrete. 
If x1 x2 = .To1 x\ then, since F(X, ir) is algebraically relatively free, 

X\ = %i and xi x2 = x2x±. Thus F(X, i^) is an abelian group of exponent two 
and therefore is algebraically isomorphic to the Klein four-group. The proof is 
complete. 

R e m a r k 2.5. The Klein four-group is indeed an exception to the above 
theorem and not just to the proof. For if F = {e, x\, x2, x\ x2 x\ — x\ — e 
and x\ x2 = x2 x±} with an open basis at e for its topology consisting of the set 
{e, x± x2} then X is open in F, where X = {xi, x2}. Also F is F(X, i (F)), but 
F does not have the discrete topology. 

Recall that if A is a subgroup of B with the property that every endo-
morphism of B maps A into itself then A is said to be an algebraically fully 
invariant subgroup of B. 

I£A and B are topological groups and A is a subgroup of B with the property 
that every continuous endomorphism of B maps A into itself then A is said 
to be a topologically fully invariant subgroup of B. 

The next theorem is in the same spirit as Theorem 2.4. 
Theorem 2.6. Let X be a space and i^ a variety such that F(X, i~) exists. 

Ljet A be an algebraically fully invariant proper subgroup of F(X, V) . / / A is 
open (respectively, closed) inF(X, ir), then X is discrete (respectively, Hausdorff). 

Proof. Let x be any element in X. Since A is proper and algebraically fully 
invariant, xA n X = {x}. From this the results immediately follow. 

Our next example shows that Theorem 2.6 cannot be extended to sayr 

F(X, ir) is discrete (respectively, Hausdorff). 
E x a m p l e 2.7. Let Q be the class of all groups which are either abelian or 

have the indiscrete topology. (See Example 3.2 of [12].) I t is easily seen that 
if X is a discrete space then F(X, i^ (Q)) is not even Hausdorff but has the 
commutator subgroup as an open (algebraically7 fully invariant) subgroup. 

R e m a r k 2.8. Clearly in the above theorem F(X, ir) can be replaced bŷ  any 
topological group algebraically7 isomorphic to F(X, ir). 

A topological group F is said to be moderately free on the space X if 
(i) F is relatively free with free generating set X, and 

(ii) the topolog}7 of F is the finest group topology (on F) which induces the 
same topology on X. 

The importance of moderately free groups is established in [10] and [11]. 
The final result in this section is used in [15]. 
Theorem 2.9. Liet Q be a class of connected locally compact group*. Then the 

following are equivalent: 
(i) There is a member of Q which is not compact, 

(ii) Z e i~(Q), where Z is the discrete group of integers. 
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(iii) There exists a Tychonoff space X such that F(X, i^(Q)) is moderately 
free on X. 

Proof. The equivalence of (i) and (ii) follows from Theorem 2.5 (ii) of [3] 
and Corollary 3 of [2]. I t is obvious that (ii) implies (iii). 

Suppose that (iii) is true. Let x e X and G be the subgroup of F(X, i^(Q)) 
enerated algebraically by x. By Theorem 2.5(iv) of [3], G is algebraically 

isomorphic to Z, while by Theorem 1.11 of [11], G has the discrete topology. 
Thus Z e ^(Q); that is, (ii) is true and hence (i) is also true . The contradiction 
shows that (iii) implies (i), and the proof is complete. 

§ 3. Fully invariant subgroups 

In § 5 of [12] we introduced the concept of a fully invariant subgroup. I t is 
obvious that any algebraically fully invariant subgroup is topologically fully 
invariant. We now show the converse is false. 

Theorem 3.1. Let C be the component of the identity in any topological group 
A. Then C is a topologically fully invariant subgroup of A. 

Proof. Let F be any continuous endomorphism of A. Then F(C) is a con­
nected set contining the identity . Therefore F(C) <~ C. 

Theorem 3.2. Let i^ be any non-indiscrete variety and X a space such that 
F(X, y ) exists. If X is not totally disconnected, then the component C of the 
identity is not an algebraically fully invariant subgroup of F(X, ir). 

Proof. Since X is not totally disconnected there is an x e X such that the 
component A of x in X contains y e X,y #= x. Consider xC. Clearly this contains 
A and so y e xC. Thus xy~Y ~ C. 

Suppose C is algebraically fulh invariant. Then xy~x e C implies x e C which 
in turn implies C = F(X, ir) which is a contradiction to Theorem 6.1 of [11]. 
Hence C is not algebraically fully invariant. 

R e m a r k 3.3. Example 3.4 shows that the above theorem is not necessarily 
true if we allows X to be totally disconnected. 

E x a m p l e 3.4. Let i r be the class of all topological groups having the pro­
perty that the intersection of all neighbourhoods of the identity in G contains 
the commutator subgroup of G. Let X be a discrete space and C be the compo­
nent of the identity in F(X, i'). Obviously C is the commutator subgroup of 
F(X, ir), which is algebraically fully invariant. 

R e m a r k 3.5. One might have suspected that for any variety i r , X totally 
disconnected implies F(X, ir) totally7 disconnected. Example 3.4 shows this 
is not true. Theorem 3.7 is relevant to this. 

Theorem 3.6. Let'Vbeany abelian variety which contains a finitely generated 
Hausdorff free group of i r . Let X be any space such that F(X, ir) exists. If C is 
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any non-trivial connected subgroup of F(X, if), then G is not algebraically fully 
invariant. 

Proof . Let x± . . . x% be any element in C, where x% 4= Xj for i 4= j , a n d 
x*1 4= e, the identity, for any i and j . 

Suppose G is algebraically fully invariant. Then x*? e C. Let F({a}, i ) be 
a Hausdorff free group of if. Define a mapping y of X into F({a}. if) byx y(X) 
=- a. Then since y is continuous, there exists a continuous homomorphism F 
of F(X, i") into F({a), t~) such that r\X = y. Since F({a}, iT) is totally 
disconnected, F(C) = e±, the identity of F({a}, ir). However F(x*l) = an 4= 
4= ei, which is a contradiction. Hence G is not algebraically fully invariant. 

Theorem 3.7. Let X be a O-dimensional Hausdorff space and if a variety such 
that F(X, if) exists. Further, let if be such that for each discrete n-element space 
Y(n),F(Y(n), if) exists and is Hausdorff. Then F(X, i") is totally disconnected. 

Proof . Let C be the component of the identity e in F(X, if). Suppose 
.r̂ 1 . . . xe

t? is an element of C other than e. Let {ai, . . ., am} be the distinct .r<. 
Since X is O-dimensional and Hausdorff, X = Oi U O2 U . . . U 0 W , where 
at e Ot, i — 1, . . ., m and Oj n 0j = 0 for i 4= J, and each Oj is an open subset 
of X . 

Let Y(m) = {bi, . . ., bm} be a discrete ?n-element space. Then F(Y(m), i ) 
is Hausdorff. Define a continuous mapping y of X into F(Y(m), if) by y(0,) 
= bt, i= 1, . . . , m . Then there exists a continuous homomorphism F of 
F(X, /") into F(Y(m), if) such that F| X = y. Since F(Y(m), if) is totally 
disconnected,F(G) = ei, the identity of F(Y(m), i"). However, F^1 . . . xj) 4= 
=-= e±. This is a contradiction and hence F(X, if) is totally disconnected. 

A variety i^ is said to be a ^-variety if for each Tychonoff space X, F(X. i ) 
exists and is Hausdorff. (See [11], [12] and [20]). 

Corollary 3.8. Let X be a O-dimensional Tychonoff space and if a ^-variety. 
Then F(X, i^) is totally disconnected. 

Theorem 3.9. Let if be any variety and X any space such that F(X, if) exists. 
Let A be any open and closed subset of X. If K is a connected set in F(X, Y ) 
and K ZD A, then K n X = A. 

Proof . Clearly the result is true if A = X. Therefore assume A is a proper 
subset of X and let B the complement in X oi A. 

Since X is not indiscrete, F(X, if) is not indiscrete and so if is not an 
indiscrete variety. Therefore if contains a non-trivial countable Hausdorff 
group H. Let h be any element of H other than the identity, e. Define a con­
tinuous mapping 7 of X into H by y(A) = h and y(B) = e. Then there exists 
a continuous homomorphism F of F(X, ir) into H such that F \ X = y. Clearly 
F(K) = h, since II is totally disconnected, whilst F(B) = e. Therefore K n 
nX = A. 
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