Bedřich Pondělíček
A Note on Classes of Regularity in Semigroups

Matematický časopis, Vol. 21 (1971), No. 4, 312--317

Persistent URL: http://dml.cz/dmlcz/127068

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
A NOTE ON CLASSES OF REGULARITY IN SEMIGROUPS

BEDRICH PONDĚLÍČEK, Poděbrady

Let S be a semigroup. Denote by $\mathcal{R}_S(m, n)$ classes of regularity in S (see R. Croisot [1]), i.e.

$$\mathcal{R}_S(m, n) = \{a \mid a \in a^mSa^n\},$$

where m, n are non-negative integers and a^0 means the void symbol.

In [2] I. Fabrici studies sufficient conditions for $\mathcal{R}_S(m, n)$, where $m + n \geq 2$, to be subsemigroups of S. In this note we shall study necessary and sufficient conditions for $\mathcal{R}_S(m, n)$ to be subsemigroups, semilattices of groups, right groups and groups, respectively.

It is known [3] that

1. if $0 \leq m_1 \leq m_2$ and $0 \leq n_1 \leq n_2$, then $\mathcal{R}_S(2, 2) \subset \mathcal{R}_S(m_2, n_2) \subset \mathcal{R}_S(m_1, n_1)$;

2. $\mathcal{R}_S(1, 2) = \mathcal{R}_S(1, 1) \cap \mathcal{R}_S(0, 2)$;

3. $\mathcal{R}_S(2, 1) = \mathcal{R}_S(1, 1) \cap \mathcal{R}_S(2, 0)$.

Denote by E the set of all idempotents of a semigroup S. Then (see Theorem 3 in [2]).

4. if $1 \leq m$ and $1 \leq n$, then $\mathcal{R}_S(m, n) \neq \emptyset$ if and only if $E \neq \emptyset$.

Theorem 1. The class of regularity $\mathcal{R}_S(1, 1)$ is a subsemigroup of a semigroup S if and only if

(5) $E \neq \emptyset$ and $E^2 \subset \mathcal{R}_S(1, 1)$.

Proof. Let $\mathcal{R}_S(1, 1)$ be a subsemigroup of S. It follows from (4) that $E \neq \emptyset$. Since $E \subset \mathcal{R}_S(1, 1)$, hence $E^2 \subset \mathcal{R}_S(1, 1)$.

Let (5) hold. Then (4) implies that $\mathcal{R}_S(1, 1) \neq \emptyset$. Let $a, b \in \mathcal{R}_S(1, 1)$. Then $a = axa$, $b = byb$ for some $x, y \in S$ and $xa, by \in E$. According to (5) we have $(xa)(by) = (xa)(by)z(xa)(by)$ for some $z \in S$. Therefore, $ab = (axa)(byb) =$
\[a(xa)(by)b = a(xa)(by)z(xa)(by)b = (axa)b(yzx)a(byb) = (ab)u(ab), \] where \(u = yzx. \) Hence \(ab \in \mathcal{R}_S(1, 1). \)

Remark. From [3] (p. 108) it is known that if \(\mathcal{R}_S(1, 1) \) is a subsemigroup of \(S, \) then \(\mathcal{R}_S(1, 1) \) is a regular semigroup.

Corollary 1 (cf. [2], Theorem 4(c)). If \(E \) is a subsemigroup of \(S, \) then \(\mathcal{R}_S(1, 1) \) is a subsemigroup of \(S. \)

Corollary 2 (cf. [2], Theorem 4(d)). \(\mathcal{R}_S(1, 1) \) is an inverse subsemigroup of a semigroup \(S \) if and only if

\[(6) \quad E \neq \emptyset \text{ and any two idempotents of } S \text{ commute.} \]

Proof. It is known [4] that a semigroup \(S \) is inverse if and only if \(S \) is regular and any two idempotents of \(S \) commute. Evidently (6) implies (5). The rest of the proof follows from Theorem 1 and from the Remark.

Let \(a \) be an element of a semigroup \(S. \) The right (left) principal ideal generated by \(a \) is denoted by \(R(a) = a \cup aS \) (\(L(a) = a \cup Sa \)).

Lemma 1. Let \(a, b \in S. \)

1. If \(ab \in \mathcal{R}_S(2, 0), \) then \(ab \in R(aba). \)
2. If \(ab \in R(aba) \) and \(ba \in R(bab), \) then \(ab \in \mathcal{R}_S(2, 0). \)

Proof. 1. If \(ab \in \mathcal{R}_S(2, 0), \) then \(ab = (ab)^2x \) for some \(x \in S. \) This implies that \(ab = aba(bx) \in R(aba). \)

2. If \(ab \in R(aba), \) then \(ab = abax \) for some \(x \in S \) or \(ab = ab \) and in both cases we obtain that \(ab = abu \) for some \(u \in S. \) If \(ba \in R(bab), \) then analogously we can prove that \(ba = babv \) for some \(v \in S. \) Hence we have \(ab = (ab)^2z, \) where \(z = vu. \)

Theorem 2. Let \(S \) be a semigroup and \(\mathcal{R}_S(2, 0) \neq \emptyset. \) Then \(\mathcal{R}_S(2, 0) \) is a subsemigroup of \(S \) if and only if

\[(7) \quad ab \in R(aba) \text{ for any } a, b \in \mathcal{R}_S(2, 0). \]

Proof. Let \(\mathcal{R}_S(2, 0) \) be a subsemigroup of \(S. \) If \(a, b \in \mathcal{R}_S(2, 0), \) then \(ab \in \mathcal{R}_S(2, 0). \) It follows from Lemma 1 that (7) holds.

Let (7) hold. If \(a, b \in \mathcal{R}_S(2, 0), \) then from Lemma 1 it follows that \(ab \in \mathcal{R}_S(2, 0). \) This means that \(\mathcal{R}_S(2, 0) \) is a subsemigroup of \(S. \)

Corollary 1 (cf. [2], Theorem 5(b)). If the product of local right identities of the elements \(a, b \in \mathcal{R}_S(2, 0) \) is a right identity of the element \(ab, \) then \(\mathcal{R}_S(2, 0) \) is a subsemigroup of a semigroup \(S. \)

Proof. If \(a, b \in \mathcal{R}_S(2, 0), \) then \(a = a^2x \) and \(b = b^2y \) for some \(x, y \in S. \)
The element \(ax (by) \) is a local right identity of \(a \) (of \(b \)). According to the assumption we have \(ab = ab(ax)(by) \in R(aba) \). Hence Theorem 2 implies that \(R_S(2, 0) \) is a subsemigroup of \(S \).

Corollary 2 (cf. [2], Theorem 5 (e)). If every local right identity of any element of \(R_S(2, 0) \) belongs to the centre of a semigroup \(S \), then \(R_S(2, 0) \) is a subsemigroup of \(S \).

Proof. If \(a, b \in R_S(2, 0) \), then \(a = a^2x \) for some \(x \in S \). Therefore \(ab = (a^2x)b = a(ax)b = ab(ax) \in R(aba) \). It follows from Theorem 2 that \(R_S(2, 0) \) is a subsemigroup of \(S \).

Theorem 3. The class of regularity \(R_S(2, 1) \) is a subsemigroup of a semigroup \(S \) if and only if (5) and

\[(8) \quad ab \in R(aba) \text{ for any } a, b \in R_S(2, 1)\]

hold.

Proof. Let \(R_S(2, 1) \) be a subsemigroup of \(S \). It follows from (4) that \(E = \emptyset \). Since \(E \subseteq R_S(2, 1) \), hence, by (1), we have \(E^2 \subseteq R_S(2, 1) \subseteq R_S(1, 1) \). This means that (5) holds. If \(a, b \in R_S(2, 1) \), then \(ab \in R_S(2, 1) \). According to (1) we have \(ab \in R_S(2, 0) \). It follows from Lemma 1 that \(ab \in R(aba) \) and thus (8) holds.

Let (5) and (8) hold. Then (4) implies that \(R_S(2, 1) \neq \emptyset \). Let \(a, b \in R_S(2, 1) \). Then by (1) we have \(a, b \in R_S(1, 1) \). Theorem 1 and (5) imply that \(R_S(1, 1) \) is a subsemigroup of \(S \) and thus \(ab \in R_S(1, 1) \). According to (8) we have \(ab \in R(aba) \) and \(ba \in R(bab) \). Lemma 1 implies that \(ab \in R_S(2, 0) \). It follows from (3) that \(ab \in R_S(2, 1) = R_S(1, 1) \cap R_S(2, 0) \). The class of regularity \(R_S(2, 1) \) is a subsemigroup of \(S \).

Corollary. \(R_S(2, 1) \) is a subsemigroup of a semigroup \(S \) if and only if \(R_S(1, 1) \) is a subsemigroup of \(S \) and \(R_S^2(2, 1) \subseteq R_S(2, 0) \).

Lemma 2. The class of regularity \(R_S(2, 2) \) is a union of all subgroups of a semigroup \(S \).

Proof. From [3] (pp. 139, 424) it is known that an element \(a \in S \) belongs to some subgroup of \(S \) if and only if \(a \) is totally regular, i.e. \(a = axa \) for some \(x \in S \) and \(xa = ax \). We shall prove that \(R_S(2, 2) \) is the set of all totally regular elements of \(S \).

Let \(a \) be a totally regular element of \(S \). Then \(a = axa \) for some \(x \in S \) and \(ax = xa \). This implies that \(a = (axa)x(axa) = a^2x^3a^2 \in R_S(2, 2) \).

Let now \(a \in R_S(2, 2) \). Then \(a = a^2ya^2 \) for some \(y \in S \). Put \(x = aya \). Then we have \(a = axa \) and \(xa = aya^2 = a^2ya^2ya^2 = a^2ya = ax \).
Lemma 3. $R_S(2, 2) = R_S(2, 0) \cap R_S(0, 2)$.

(See Lemma 1 in [2].)

Proof. It follows from (1) that $R_S(2, 2) \subseteq R_S(2, 0) \cap R_S(0, 2)$. Let $x \in R_S(2, 0) \cap R_S(0, 2)$. Then $x \in xS \subseteq R(x^2)$ and $x^2 \in xS \subseteq R(x)$. It follows that $R(x) = R(x^2)$. Analogously we can prove that $L(x) = L(x^2)$. From [5] it is known that x belongs to some subgroup of S. Lemma 2 implies that $x \in R_S(2, 2)$. Therefore $R_S(2, 2) = R_S(2, 0) \cap R_S(0, 2)$.

Theorem 4. The class of regularity $R_S(2, 2)$ is a subsemigroup of a semigroup S if and only if $E \neq \emptyset$ and

(9) $ab \in R(aba) \cap L(bab)$ for any $a, b \in R_S(2, 2)$

holds.

Proof. Let $R_S(2, 2)$ be a subsemigroup of S. It follows from (5) that $E \neq \emptyset$. If $a, b \in R_S(2, 2)$, then $ab \in R_S(2, 2)$. By Lemma 3 we have $ab \in R_S(2, 0) \cap R_S(0, 2)$. Lemma 1 and its dual imply that $ab \in R(aba) \cap L(bab)$. Hence (9) holds.

Let $E \neq \emptyset$ and let (9) hold. Then (5) implies that $R_S(2, 2) \neq \emptyset$. Let $a, b \in R_S(2, 2)$, then by (9) we have $ab \in R(aba) \cap L(bab)$ and $ba \in R(bab) \cap L(aba)$. Lemma 1 and its dual imply that $ab \in R_S(2, 0) \cap R_S(0, 2)$. It follows from Lemma 3 that $ab \in R_S(2, 2)$. The class of regularity $R_S(2, 2)$ is a subsemigroup of S.

Corollary 1. If $R_S(2, 2)$ is a subsemigroup of a semigroup S, then $R_S(1, 1)$ is a subsemigroup of S.

Proof. If $R_S(2, 2)$ is a subsemigroup of S, then $E \neq \emptyset$. Since $E \subseteq R_S(2, 2)$, hence, by (1), we have $E^2 \subseteq R_S(2, 2) \subseteq R_S(1, 1)$. It follows from Theorem 1 that $R_S(1, 1)$ is a subsemigroup of S.

Corollary 2. $R_S(2, 2)$ is an inverse subsemigroup of a semigroup S if and only if (6) and (9) hold.

The proof follows from Theorem 4 and from Lemma 2.

Corollary 3. $R_S(2, 2)$ is an inverse subsemigroup of a semigroup S if and only if $R_S(2, 2)$ is a subsemigroup of S and $R_S(1, 1)$ is an inverse subsemigroup of S.

Lemma 4. A semigroup S is a semilattice of groups if and only if S is regular and $E \subseteq Z$, where Z is the centre of a semigroup S.

Proof. Let S be a regular semigroup and $E \subseteq Z$. If $a \in S$, then $a = a^2$ for some $x \in S$. Evidently $ax \in E$ and thus we have $a = (ax)a = a^2x$. From this it follows that $S = R_S(2, 0)$. Analogously we can prove that $S = R_S(0, 2)$. It follows from Lemma 3 that $S = R_S(2, 2)$. Lemma 2 implies that S is
a union of groups. Hence, by Corollary 2 of Theorem 2 in [6] we obtain that S is a semilattice of groups.

Let S be a semilattice of groups. If $a \in S$, then according to Lemma 6 in [7] we have $R(a) = L(a)$. Since S is a regular semigroup, then $aS = a \cup aS = R(a) = L(a) = Sa \cup a = Sa$. This means that S is a normal semigroup. It follows from Lemma 1 in [8] that $E \subset Z$.

Theorem 5 (cf. [2], Theorem 6). Let S be a semigroup and let $1 \leq m, 1 \leq n$. Then the class of regularity $\mathcal{R}_S(m, n)$ is a semilattice of groups if and only if

(10) \[E \neq \emptyset \text{ and } ae = ea \text{ for any } a \in \mathcal{R}_S(m, n) \text{ and any } e \in E. \]

Proof. If $\mathcal{R}_S(m, n)$ is a semilattice of groups, then from Lemma 4 and (4) it follows that (10) holds.

Let (10) hold. If $a \in \mathcal{R}_S(m, n)$, then from (1) it follows that $a \in \mathcal{R}_S(1, 1)$. This means that $a = axa$ for some $x \in S$. Since $ax \in E$, hence, by (10), we have $a = (ax)a = ax^2 \in \mathcal{R}_S(2, 0)$. Similarly we obtain that $a \in \mathcal{R}_S(0, 2)$. From Lemma 3 we have $a \in \mathcal{R}_S(2, 2)$ and thus $\mathcal{R}_S(m, n) \subset \mathcal{R}_S(2, 2)$. By (1) $\mathcal{R}_S(m, n) = \mathcal{R}_S(2, 2)$.

We shall prove that (9) holds. If $a, b \in \mathcal{R}_S(2, 2)$, then $a = a^2xa$ for some $x \in S$. Since $axa^2 \in E$, hence, by (10), $ab = a(axa^2)b = ab(axa^2) \in R(aba)$. Similarly we obtain that $ab \in L(bab)$. Theorem 4 implies that $\mathcal{R}_S(2, 2)$ is a subsemigroup of S. It follows from Lemma 2 that $\mathcal{R}_S(2, 2)$ is a regular semigroup. According to Lemma 4 and (10) we obtain that $\mathcal{R}_S(m, n) = \mathcal{R}_S(2, 2)$ is a semilattice of groups.

Corollary. Let S be a semigroup and let $1 \leq m, 1 \leq n$. If (10) holds, then $\mathcal{R}_S(m, n) = \mathcal{R}_S(m + k, n + l)$ for any non-negative integers k, l.

A semigroup S is called right simple if S is the only right ideal of S. A semigroup S is said to be left cancellative if in S the left cancellation law holds, that is $ax = ay$ implies $x = y$ for all a, x, y in S. A semigroup S is called a right group if it is right simple and left cancellative.

Lemma 5. A semigroup S is a right group if and only if S is regular and $fe = e$ for any $e, f \in E$.

Proof. Let S be a regular semigroup and $fe = e$ for any $e, f \in E$. Let $a, b \in S$. Then $a = auu, b = bvb$ for some $u, v \in S$. Put $x = ub$. Since $au, bv \in E$, hence $ax = aub = (au)(bv)b = (bv)b = b$. Therefore, S is right simple. Let $ax = ay$ for $a, x, y \in S$. Since S is regular, hence $a = axa, x = xux, y = yvy$ for some $z, u, v \in S$. Thus we have $axux = ayvy$. Postmultiplying by z, we have $zaxux = zayvy$. Since $zu, xu, yv \in E$, then $x = (zu)x = (za)(xu)x = (za)(yv)y = (yv)y = y$. Therefore, S is left cancellative. Thus S is a right group.
Let S be a right group. From Theorem 1.27 in [4] it follows that S is regular and E is a right zero semigroup.

Theorem 6. Let S be a semigroup and let $1 \leq m, 1 \leq n$. Then the class of regularity $R_S(m, n)$ is a right group if and only if

(11) $E \neq \emptyset$ and $fe = e$ for any $e, f \in E$.

Proof. If $R_S(m, n)$ is a right group, then from Lemma 5 and (4) it follows that (11) holds.

Let (11) hold. This and (4) imply that $R_S(1, 1) \neq \emptyset$. It follows from the Remark and from Lemma 5 that $R_S(1, 1)$ is a right group. Since $R_S(1, 1)$ is a union of groups, then, by Lemma 2, we have $R_S(1, 1) \subseteq R_S(2, 2)$. According to (1) we obtain that $R_S(m, n) \subseteq R_S(1, 1) \subseteq R_S(2, 2) \subseteq R_S(m, n)$. Therefore, $R_S(m, n) = R_S(1, 1)$ is a right group.

Corollary. Let S be a semigroup and let $1 \leq m, 1 \leq n$. If (11) holds, then $R_S(1, 1) = R_S(2, 1) = R_S(1, 2) = R_S(2, 2)$.

Theorem 7 (cf. [2], Corollary of Theorem 4). Let S be a semigroup and let $1 \leq m, 1 \leq n$. Then the class of regularity $R_S(m, n)$ is a group if and only if $\text{card } E = 1$.

The proof follows from Theorem 6 and its dual.

Corollary. Let S be a semigroup. If $\text{card } E = 1$, then $R_S(1, 1) = R_S(2, 1) = R_S(1, 2) = R_S(2, 2)$.

REFERENCES

Received February 12, 1970

Katedra matematiky
Elektrotechnické fakulty
Českého vysokého učení technického
Poděbrady