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ON THE AVERAGE ORDER
OF AN ARITHMETICAL FUNCTION

TIBOR SALAT and STEFAN ZNAM, Bratislava

In paper [1] the following conjecture is stated: Let the system of the
arithmetical progressions

ces Qg — Ny, 05,0+, .. 0 =1,2 ...,k

have the property that every integer belongs to exactly one of these progres-
sions. If

r
n; = | [ pi* (the standard form of n;),
t-i

then

kz142 4 —1).
i1

This conjecture has been proved in [5].
In solving this problem we have been led to the following arithmetical
function. For
N =TTz put fN)=2"pe—1).
t= =
It is easy to see that f has the property: f(Vi. N2) = f(IV1) + f(IV2) for
arbitrary intcgres N, Nz. Further, we have the trivial estimations:

loga N = f(N) £ N — 1.

The present paper is devoted to the study of the average order of this function.

We prove the following theorem:
2

Theorem. im —1- [f(1) + J(2) + ... + SN =0 = .

Proof. It is easy to check the following relation:

N N
S(f, N) = (1) 4 f2) + .. + f(N) = Y(p —1) ([—] + [—] + )

Py p p?
P=N
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Obviously S(f, N) = SO(N) + SO(N), where

eo-Se-nZ])

FEA 5y
SAO(N) = z (p — 1} [%] .
PEN

For SO(N) we have the estimation:

1 1 =
S‘“(N)<§[p-—l)( +—+ )=N ;é;Nn(VN),

r=VN p=kw

where z{N) is the prime number function.
Hence we get {by prime number theorem):

{1) : SO(N) = o(N?flog N).
Further, S@(N) = P(N) — Q{N), where

P() = ;p [—H Q) = Z[%] -

BEN

1 1
Obviously Q(N) £ N E; and since z; = O(log log N) (see [2], p. 28),

pPEN PEN
we obtain

(2) @(N) = o{N?flog N).
By (1) and {2) we have

S(t, N PN
2 ):°(1N )+ &)

N og N N
50 that in order to prove our theorem it is sufficient to show
P(NylogN =
(a) lim inf PN)log ¥ > —,
Now N2 2
. P(N)logN =*
(b) limgup ———— £ —.
Nwco N2 12

Let & be an arbitrary number of the interval (0, 1). Let
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Ppr<<pe<...<pp<...

be the increasing sequence of all primes. Since py ~ k log k (k — 0)* (see [3]
p- 153), there exists an integer No = Ny(¢) > 1 so that for any natural t >
> n(No) .

(3) (1 —eloghk < pr < (1 + e)klogk

holds. Choose an integer j such that

j

1 J a2 €
) s
BOGH1: 6 2
k-1
il ) + 2 2
_+_L<f_+i.
®OG1 6 2
F=1

holds. This is clearly possible. In the following we suppose that N >
> No(e)(j + 1). P(N) can be written in the form

(6) P(N) = Py(N) + ... ++ P{N) + P} (N),
where
N
-Plc(N): p ? (k=1523 :J)
N N
1P =
and
Pr(N) ol
k = p P
N
1<1’§}.+—1
Obviously
N
N v %1 e 1
PHN) < z N:Nn(jm):n — ) I+ —
j+1 j+1 N N j+1
N — log -
I<r=73 J+1 J+1

and hence (by prime number theorem) we get

. h(k)
* h(k) ~ g(k) denotes that lim —— = 1.
k>0 g(k)
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P*(N)log N P¥(N) log N 1

(6) 0 £ lim inf -———— < limsup ————>— < — —.
N> N2 N >0 ZV2 J + 1
N N N
If p < —, then |—| =k, hence
EL+1 k P
PyN)=k. p=k Pr
Yy <Y N (¥
1P EG "(k+1)<’= ( )

This together with (3) implies the inequalities:
(7) (1 — ek > rlogr < Py(N) < (1 + &)k > r log 7.

N N N N
"(k+1)<’—"(k) "(m)‘ 'é"(?)
The function y(f) = tlog# is a non-negative and increasing function in the

interval (e, ©), which satisfies y(x + 1) = O(y(x)) (x > ). By theorem 4
from [4] (p. 8) we have
(%)

N N
(8) z rlogr = J tlogtdt—l—O(n(?)logn(?)),

(klil) <rEn (11:) " (1%)

o S R e
)]

By an easy calculation we get from (7), (8) and (9):

(10) (I — &)k . F(N, k) < Pe(N) < (1 4 &)k . F(N, k),

where

e (2] o)
) o)
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Considering the prime number theorem it is easy to check that for every fixed
v > 0 the relations

1 ) N i N 1 N2 N
() o e ) Y gy )
an
N N2
(12) R |—}=o0 (N — o0) hold.
v log N

Further, we can see in the same way that for any fixed & > 0

13 o _1_\7_1 M) = ol N hold
(13) 7 P ogyt(]c —O(logN (N - o) holds.

On account of (11), (12) and (13) we obtain for the function F(N, k) the
following relation (% is fixed)

. F(N,k)log N 1 (1 1
(14) lim—m—=—|— — -
Now N2 2 \k2 (k4 1)

According to (4), (5), (6), (13) and (14) we have

i
P(N)log N Py(N)log N
lim inf——(—)—g— = Tlim inng— >
Now N? L, N N2
=1

12 4
P(N)log N P(N)log N 1
lim sup < lim sup =
Now 2 N2 j+1
j j
1
2 B+ 1)2 41 2 k2
k=1 k=1

J

2 1 1 1 2
- ]< +8[ ———t ]=
(G+172 1+ej+1 2 L G+ 9+l

k=1
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j
1 1 i + 2 2
2 k2 (5 + 1)2 12 4
kel

Since the last inequalities are valid for arbitrary ¢ € (0, 1), we have proved
the inequalities (a) and (b). Hence we have

S(f,N) logN =2
Iim —— . ———— = ,
N> N N 12

which completes the proof of our theorem.
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