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M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 20 1970 Č Í S L O 3 

H 0 L 0 N 0 M Y GROUPS 
OF A FULLY PARALLELIZABLE MANIFOLD 

J I R I VANZURA, Praha 

§1. CURVES IN A METRIC SPACE. 

Let (P, Q) be a metric space. We shall use the concept of an oriented recti -
fiable curve in the geometric sense as defined in [2] Chap. 1, § 5. Let us denote 
by C the set of all such curves in (P, Q). For c e G let A(c), B(c), X(c) denote the 
starting point, the end point and the length of c, respectively. C can be pro­
vided with a natural algebraic structure: c± + c2 is defined if and only if 
B(c±) = A(c2). For any £ e P we define 

Cs = {ceC', A(c) = B(c) = S} 

The restriction of the algebraic structure of C to C$ gives a structure of a semi­
group with the neutral element on C$. 

Now we shall provide C with the structure of a metric space. For c e C 
let x(a), a e <0, A(c)> be the standard representation of c (cr is the arc length). 
Let us set cp(t) = X(c) . t. The representation x(t) = x(<p(t)), t e <0, 1) will 
be called the normal representation of c. For c±, c2e C let xi(t), x2(t) be their 
normal representations. We set 

B(ci, c2) = max Q(xi(t), x2yt)). 
te<0,l> 

Let M be a fully parallelizable manifold and let r be a connection on M. 
The set of all closed curves starting from a fixed point x e M is provided with 
such a metric that the mapping assigning to a curve the corresponding element 
of the holonomy group at x is continuous. 

Proposition 1. B is a metric on C. 
The proof is obvious. 
R e m a r k . I t can be easily seen that X(c) is not in general a continuous 

function on (C, B). Neither C% provided with the induced metric is in general 
& topological semigroup. 
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§2. CURVES IN A FULLY PARALLELIZABLE MANIFOLD. 

Let I be a fully parallelizable paracompact manifold of class C°°9 dim 
M = n, let g be a positive definite metric tensor on M, let Q be a metric on 
M induced by this tensor, and let _T be a linear connection on M (not neces­
sarily Riemannian). Let CD±, . . . , o)n be C°° -differentiate 1-forms on M 
(throughout this paper differentiable = O00 -differentiable), linearly indepen­
dent a t every point of M. The existence of such coi, .. ., ojn follows from the 
parallelizability of M. 

Definition 1. Let c e C . c is said to be piecewise differentiable if there is a piece-
wise differentiable curve x(r), x e (a, 6> which is a representation of c. 

I t is well known that if c e C is piecewise differentiable then its standard 
representation is a piecewise differentiable curve. Hence it follows that its 
normal representation is also a piecewise differentiable curve. Let us denote 

D = {c e C; c is piecewise differentiable}, 

Ds = Dn 0*. 

Therefore D <-= C and D% <-= C§ is a subsemigroup of the semigroup C%. By 
the restriction of R to D and D% induced metrics we shall also denote by R. 
Now we introduce one more metric on D. For d±, d2e D let xi(t), x2(t) be 
their normal representations. Let us denote by x\(t) and x2(t) a tangent vector 
to the curves #i(t) and x2(t) a t the point t respectively (at a singular point 
let us take the lefthand tangent vector). Further let a > 0 be a real number, 
and let mdl and mdz be the number of singular points of the curves #i(t) and 
x2(t) respectively. Let us set 

S(di, d2) = R(di, d2) + max sup | a)i(xi(t)) 
i *e<0,l> 

— cot(x2[t)) | + a | mdl — md2 \. 

Proposition 2. S is a metric on D. 
The proof follows easily using Proposition 1. For any d\, d2eD there is 
B(dh d2) ^ D(dl9 d2). 

Definition 2 .Let (U, cp) be a chart on M. (U, <p) is said to be symmetric with 
the center at a point p e M if there i» rj > 0 such that U = {q e M\ Q(P, q) < ?]}. 

Now we shall define a ,,function" Zj(p) on M in the following way. Let 
Sp be the set of all positive real numbers such that for every rj e Sp there 
exists a symmetric chart (U, q>) with the center at p and the radius rj. Let us 
set £(p) = sup Sp. 

Lemma 1. There is either £(P) = °° for al1 P E M or ^ ) is a uniformly conti­
nuous function on M. 
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The proof follows easily from the inequality | £(p) — l(q) | ^ Q(P, q). 

Lemma 2. Let ce G with the normal representation x(t). There exists a partition 
0 = t0 < h . • • < h = 1 of the interval <0, 1>, symetric charts (Ut, (pt), i = 
= 1, . . . , k with the centers x(ti-i) and the same radius r\, and a number b > 0 
such that the following assertion holds: if Ci e C is such that R(c, a) < <5 and 
xi(t) is its normal representation, then {xi(t); t e <^-i, h}} c Ui. 

Proo f : The assertion is clear in the case £(p) = oo. Thus let us consider 
the case when tj(p) is a real function. We can restrict ourselves to the case 
X(c) > 0, for in the case X(c) = 0 the assertion is also clear. There is 

0 < £ o = min f (*,(*)). 
*e<0,l> 

1 fo i 
Let k be a positive integer such that — ^ and let us set U = — 

k 4A(c) k 

i = 0, . . .,k, Ui = {p e M, Q(P, x(h-i)) < , i = 1, . . ., k. Obviously 
4 

there exist functions cpi defined on U% such that (Ui, (fi) is a symmetric chart. 
£<> 

Let us set 6 = — . We shall show that just chosen U, Ui, 6 have the required 
4 

properties. 
Let Ci G G, R(c, Ci) < d. For the sake of simplicity let us denote by cW and 

c(-° the curves x(t), t e <£«-i, h} and xi(t), t e <£«-i, h}, respectively. With 
respect to the fact that o is a Riemannian metric on M we have for any t e 
<^_i, ti) an inequality 

Q(xi(t), x(ti-x)) ^ Q(xi(t), x(t)) -f Q(x(t), x(h-i)) < 

^ h 2cW = 1 < 1 < . 
4 4 A; 4 4 4 

This completes the proof. 

Proposition 3. X is a continuous function on D. 
Proof : Let us keep the notation from the above lemma. Let d, di e D 

and let S(d, di) < d. There is 

| X{d) - A((.i) | < I | A(t*») - X{df) | 
2 = 1 

and both d^, d^ lie in Ui. Let <p = {x1, . . ., a;71}, let gap be the components 
of the metric tensor with respect to y and let x*(t) and x\(t) denote coordi-
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nates of points x(t) and xi(t), respectively. Further let us set gap(t) = 9ap{%(t))f 

glptt) = 9afi{xi{t)). Now we set 

Kt = max max 8f | g (p)) | 

i í = min i 
te<tt-uU> ' 

d#a dx^ 

dř dř 
We háve 

U(^))-A(4Í})I = 9<xft-
dxa dxP 

dř dř 

da^ áz" da^ da^ 

dř dí 9a? dí dř 

| ři-i 

' dz« dx^ 1 / dx\ dx{ 
dř 

< 
/ dx« dxč d^í dx{\ 

^ 
í<-i 

ř t - 1 

dxa dx& da;a d#č d#a dx& 
9ocp — - 9^ ~~77" ~ 7 7 + ^ " 

dř dř 

1 dx\ dx{ 
d ř ^ 

U 

dř dř 

locp - gis i 

dř dř 

u-i 

dx* dx& 

dř dř 
dř 

+ 9<*p 
dx« dxt dx\ dx{ 

dř dř dř dř 
dř. 

Components of the metric tensor gap are uniformly continuous functions 
3fo) 

Hence it follows that choosing <5 sufficiently on Ip e M ; Q(P X{U-\)) ^ 

small, the term 

u-i 

lap ' 9<*p 
dx* dx& 

dt dř 
dř can be made arbitrarily small. 

Now deal we shall with the second term of the above expression. First we 
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shall consider the expression 
dx<* dx\ 

Let us denote by x(t) and 
dt dt 

xi(t) the tangent vectors to the curves x(t), t e <^-i, U} and x^t), te <^_i, £*> 
at the points x(t)a,nd xi(t), respectively. There is 

dxa dx\ 

àt àt 
dгк«(x(0) — ăx<*(xiЏ)). 

Now let us write dx* = aya)y, where a* are differentiable functions. Hence 
we have 

dx<* dx\ 

åt dí 
< |oř(.r(ř)) - (${xi(t)) I • I m{x(t)) I + I ař(.ei(ť)) I • I _,(.r(ř)) -

— a>i{xi(t)) . 

According to the compactness of the set {p e M; Q(P, x(ti-{)) ш WЄ 

see again that choosing d sufficiently small we can make the expression arbit­
rarily small. We have 

l<Âß 
dx01 dxf* dx\ dx{ 

dt dt ăt dt 
< KІ 

dx01 dx? dx\ dx{ 

dř dŕ dí d< 
dť 

= _ . 
daЯ dxP dx« dx{ dxa dx{ d r î dx{ I 

1 + - - — dř 

«(-i 

< Ki 

< Kt 

dx01 

dř 

dxa 

dř dŕ dř dř 

dxЄ dx{ 

dř dř 

dř dí 
dt + Ki 

dx\ 

dř 
<i-i 

dt dt ( 

dx* dx\ 

dt 

+ -І 

dxP dxţ 

dt dt 

ti r 
dt + KІ 

ti-Л 

dxß 

dt 
• 

u 
dxØ dx{ dx* dx\ 

i 
dt dř dt \t 

dt dí 

dx<* dxţ 

dŕ 

dí . 

dí 

dř 

dí 

And now the assertion follows easily. 

R e m a r k : I t can be easily seen that D^, even with the metric S, is not 
a topological semigroup. 
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§ 3. MAPPING OF THE SPACE (D*, S) INTO THE HOLONOMY GROUP OF 
A LINEAR CONNECTION F ON M. 

First of all we shall prove 

Lemma 3. Let a^, i, j = 1, . . .,n be continuous functions on an interval 
\#o, #i>- Let yi be a solution of the system 

n 

— h > atfyj = 0, i = 1, . . ., n 
ax / , 

j=i 

in the interval (xo, Xi) with the initial conditions yi(xo) =- yf. Then there 
exist N > 0, do > 0 such that if 0 < 6 < do and if bij, i, j = 1, . . . , n are 
continuous functions on (XQ, X{) such that max, max | a^(x) — bij(x) \ < 5 

i,j xe<x0,xl> 

-and if Zi is a solution of the system 

n 
dzi sr^ 

h > b(jzj = 0, i = 1, . . . , n 

j=i 

such that max | yf — zf \ < 6 then 
i 

max max | yi(x) — zt(x) \ < Nd. 
i xe <x0, xx> 

P r o o f : Let us define the following sequences of functions on (xo, xi): 

yf - yi(*o), 40) = KM 

yr»=yf-]faijyy&x 
x0j=l 

x n 
z}»+1) = zí<»-_j2o.i^*>d.r 

n0j=l 

There is yi = lim yf\ resp. z% = lim zf uniformly on <#o,#i> (see for instance 
k->oo k-xo 

1 
[3] Chap, VII, § 2). Let K > 0, L > 0 be such that max max | ai} | < — K, 

i,j xe<x0,xx> 2 

1 1 
max max \yf\< — L for all lc, <50 = — min (K, L) and let 0 < d < d0, 

% xe<x0,xx> 2i 2 

max max | ai}(x) — bi}(x) \ < d, max | yf} — zf \ < 6. For i = 1, . . . , n we 
itj xe<xQ,Xi> i 

have 
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y\ f - 2Í°) I < 

y? - ~.u = yf > - 40) + J 2 (&« - в*i) г40) d * + J 2 M - Г - Ž/Г) à*. 
x0? = l 

From this we have the estimation 

x0j=l 

Ï ,(1) _ г(l) I ^ 
K + L 

1 + ( K) (x — x0) 
K 

By induction we can easily prove that for every k there is 

k—1 

y\ .<*> _ 2<*> I < 
(n_)« (x - *o)« K + L 

K 

\^ (»_)« (x 

/ s\ 

_)* 

Now it is sufficient to set 

/ K + L\ 
N = 11 + 1 exp [nK(x1 — XQ)] . 

Definition 3. A function f(x) defined on (xo, #i> is said to be piecewise conti­
nuous on (xo, x{) with the index of discontinuity m if there is a partition 

xo = h < h < . . . < tm = x1 

of the interval (xo, x{) such that 

(i) f(x) is continuous on <£*__, tt), i = 1, . . ., m — 1 and on (tm-!, tm}, 
(ii) there exists the finite limit 

lim/(a;) i = 1, . . ., m, 

(iii) the points U, i = 1, . . ., m — 1 are the points of discontinuity of the func­
tion f(x). 

Definition 4. Let atf, i, j = 1, . . .. n be piecewise continuous functions on 
(x0, _T>. Let 

Xo =- Uo < u1 < . . . < ur = #1 

be a partition of the interval (x0, x{) such that 
(i) any interval (uk-i, ujc) does not contain a point of discontinuity of any 

function a^, 
(ii) every point uk, k = 1, . . . , r — 1 ^s a poin of discontinuity of at least 

one of the functions a^. 
Let us define the functions +a$ on (uk-l9 uk}, k = 1, . . ., r by 
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UІJ for X Є (Ujc-i, Uic) 

ij Mim au for x = ujc. 

We say that functions the 2/2 defined on (xo, #i> are a solution of the genera­
lized system 

dyi » 
-—h 2 a * ^ = = 0 

da; j=i 

if (i) 2/j are continuous on (xo, x{), 
(ii) ?/i are on (ujc -1, uk) a solution of the system 

dui n 

dx j=i 

for all k = 1, . . ., r 
The generalization of lemma 3 is 

Lemma 4. .Le£ a^; i, j = 1, .. .,n be piecewise continuous functions on the 
interval (xo, xi). Let yi be the solution of the generalized system 

— + zavyt = °> * = i, -.., w 
da; ?=i 

o% £Ae interval (xo, x{) with the initial conditions yi(xo) = ^ 0 ) . i>e£ P be a non-
negative integer. Then for any e > 0 there exists d > 0 swch, lh,a£ i / bif, i, j = 
== 1, . . ., n are piecewise continuous functions on (xo, x{) such that the index 
of discontinuity of each of them is ^ P and max max | a^(x) — bij(x) \ < d 

i,j xe<Xo,Xx> 

and if z% is a solution of the generalized system 

dzi n 
— + 2 bi* z3 = °> * = 1, - • •, ** 
da; j=i 

such that max | yf^ — Zi(xo) \ < 6, then there is 
i 

max max | yt(x) — Zi(x) \ < s 
i xe<xo,xi> 

The proof follows easily from Lemma 3. 
Now let us denote respectively by T(M) and TV(M) the tangent bundle 

and the tangent space at the point p e M of a fully parallelizable Rieman-
nian manifold M. Let Xi, ..., Xn(n = dim M) be differentiable vector 
fields, linearly independent at every point of M. Now we shall define on 
T(M) a pseudometric a in the following way. Let Yv, Yq e T(M), Yv = 
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= 2 ! W „ , y« = 2 irTOi- W e s e t 

i 1 i = l 

a{Yp, y„) = max II* - r;« | • 

I t can be easily seen that the restriction of a to TV(M) is a metric. 

Proposition 4. Let (U, cp), cp = {re1, . . . ,a ;w} be a c>W£ ow if. £e£ deD, 
x(t) be its normal representation. Let us suppose {x(t); t e <0, 1>} c [7. Finally 
let TV(0) e jf^o^-M) and W(t) e Txy)(M) be the vector obtained by the parallel 
displacement of W(0) along the curve x(t) with respect to JP. Then for any s > 0 
there exists d > 0 such that if d±e D with the normal representation x±(t) such 
that S(d, di) < d and if 7(0) e TX1(0)(M) such that a(W(0), 7(0)) < d, then 

( i){a, i(0;*e<0, 1 > } C : U; 

(ii) if V(t) e Txi(t)(M) denotes the vector obtained by the parallel displacement 
of 7(0) along xi(t), then 

a(W(l), V(l))<e. 

Proof : (i) is obvious. As to (ii) we shall first prove the following lemma: 
Let di> 0, pe U, YveTv(M). Then there exists <5 > 0 such that if qe U, 
YqeTq(M) are such that g(p, q) < d, a(Yv, Yq) < d, then writing Yv = 

= > !*( — ) , Yq = > rA—| we have Z WJp z wu 
1 = 1 1 = 1 

max \P — rf] < <5i. Let us write therefore 

Yp = f &(Xt)p, Yq = f ff(Xt)9 (Xi)r = f 4WVV) 5 A{(r) i,j = 1, 
£ - 1 i = l j=l \OXJJr 

are differentiable functions onu U. From these relations we obtain 

I* = i -4}.*) & -,« = £ 4(g)^ 
7 = 1 7 = 1 

, П 

and therefore 

f - ч' = 2 (-4>) £ - Лfø) ^) = 
? = i 

= S [(4 (P) - 4(«)) £ + 4(î) (ß - ^)] 
? = i 
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I & - rf I ̂  2 [ I Al&) ~ AW I • I & I + I AM • I? - 1̂ 1 
7 = 1 

P r o m the last inequality our lemma follows easily. 

Now let us write W(t) = > ut(t)\— , V(t) 

Zu WJxlt) 
i = l 

ví{t)\-— and 

let us denote by F]k the components of F with respect to the coordinate 
system {x1, ..., xn}. The functions wl(t) and #*'(£) are on <0, V) solutions 
of the generalized systems 

dм>ť 

dŕ 

dxk 

I%Џ{t))—vt = 0 
dt 

j,k = l 

and 

— + > r;k (»i(*))--V = o, 
d£ x , dZ 

7,& = 1 

respectively (see [1], chap. I l l , § 7). 

Hence let us have e > 0. According to Lemma 4 there exists di > 0 such 
that if 

max max 
г,j í є 

7* 

&=i 

da^ da;í 
•(*))-— - T J t t e í W - r 1 

dř dí 
<<5i 

max |ti>*(0) — tf'(0) | < di, 
i 

then max |w*(l) — vl(\)\ < s. From the equality 

dx* dx\ 

dř dř 

dc^ /d£* d ^ \ 
(I1*W«)) - Il*(*i(*))) — + r%{xx(t)) y— - -±\ 

fc=l 

we have the estimation 
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/ . dxk . dxk 

< 

k=l 

\r)k{x(t)) - Tk(.n(ř))| 

k=l 

dxk 

dř 
+ \Г}kЫt))\ 

dxk dx\ 

Writing similarly as in the proof of proposition 3 

dxk dx 
= dxk(x(t)), — - = d&(xi(t)), dx* 

dt dt 

we get 

dt dt 

a]æi, 

1=1 

dxk dxk SГ^ 
— - — - = > [a*(x(t)) æг(x(t)) - aţ(xľ(t)) a>,(*i(í))] = 
dt dt / f 

1=1 

= > [(af(x(t)) - a1(Xl(t))) a>i(x(t)) + af(xx(t)) (o>,(s(*)) - on(xi(t)))\ 

,-i 

and from this equality we have the estimation 

dx* dx* 

dt dt 
[ | a f И 0 ) - a f ( ^ i ( 0 ) | . | o > ^ ( í ) ) | + 

i=i 

+ \a*(x1(t))\.\a>l(m-MM*))\]. 

Now it can be easily seen that there exists 62 > 0 such that if S(d\, d) < O2, 
then 

max max 
i,j íє<0,l> 

n 

I(гh 

k=l 

dxк . ctó^ 
{x(ť))—-Щx1{t))~ 

dt dť 1 
<òi 

Choosing 62 sufficiently small then according to our lemma at the beginning 
of the proof a(W(0), 7(0)) < d2 implies max | vfi(0) — v*(0) | < <5i. Setting 

i 

6 = 62, then according to Lemma 4 S(di, d) < d, cr(T7(0), 7(0)) < d 
imply 

max I wl(l) — vf(l) < e . 

Now it is easy to show that for sufficiently small 6,8 there is 
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a(W(l), V(l))<8 

and this completes the proof of the proposition. 

Proposition 5. Let deD, x(t) be its normal representation. Let W(0) eTX{0) (M) 
and let W(t) e TX{t)(M) bt, the vector obtained by the parallel displacement of 
W(0) along the curve x(t) with respect to r. Then for any e > 0 there exists d > 0 
such that if die D "with the normal representation Xi(t) such that S(d, d\) < d 
and V(0) e Txl(0)(M) such that a(W(0), V(0)) < d, then 

a(W(l), V(l)) < 8, 

where V(t) e T^^M) denotes again the vector obtained by the parallel displace­
ment of V(0) along xi(t). 

Proof : Let us have 8 > 0. Let d > 0 and let 

0 = t0 < h < . . . < ik = 1 

be the partition of the interval (0, 1> with the properties described in Lem­
ma 2. We shall keep the notation of Lemma 2, only instead of c<0 we shall 
write # 0 . According to the inclusion {x(t), t e (tt _ i, t{)} c= TJ% and according 
to the fact that x(t') = x((U — U _ i) V -f- tt _ i), t' E <0, 1> is the normal 
representation of d^\ it follows from proposition 4 that there exists dk > 0 
such that if <2<*> e D is such that S(dW, d™) < dk and if V<*> e TA^k)) (M) 
is such that cr(lV(^ - I ) , Vw) < dk and if we denote by F<*> G I 7 ^ (M) 
the vector obtained by the parallel displacement of V<^> along d<*>, then 
a(W(tk), V<^>) < 8. Successively we can find Si > 0, i = 1, . . ., k such tha t 
if 5<« G D is such that S(d^, d<*>) < <3, and if V<*> G TA(dW) (31) is such that 
a(W(tt _ i ) , V<*>) < a< and if V^ eTB(d(i))(M) is the vector obtained by the 
parallel displacement of V<*> along d^, then G(W(U), V<*>) < 6% + 1 . 

Now let us choose (5 < min (d, di, . . . , &) so small tha t S(d, di) < 6 will 
imply S{dl», df)<di. Thus if W(0) e TX{0)(M), V(0) e TXl(0)(M) are two 
vectors such that o*(TV(0), V(0)) < d, we can easily see that c(TV(l), V(l) < e 
and this proves the proposition. 

Now let f e M and let Ki, . . . , En G T$(M) be an orthonormal frame. Let 
^(f) !_. GL(n, R) be the holonomy group of r with the reference point f. 
We define the mapping H: (Z>|, #) -> 0(£) in the following way: let d G Z)f 
and let E[, . . . , E'n e T$(M) be the vectors obtained by the parallel displace­
ment of the vectors E±, . . ., En along the curve d. Let a^; i, j = 1, . . ., n 

n 

be such that Ei = 2 aa^j a n ( i 1^ -4 = (aij)- We set H(rf) = A. If we 

take 0(i) with the topology induced from GL(n, R), we have 

Proposition 6. The mapping H: (D$, S) -> <P(t-) is continuous. 
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Proof: Let us have e > 0, d e D^. We denote by || . . . || the norm on 
T^(M) arising from the metric tensor g. It is clear that there are h\, &2 > 0 
such that for any X e T^(M) we have laa(X, 0) ^ ||K|| ^ &2o-(X, 0). According 
to this fact and proposition 5 it is obvious that there exists d > 0 such that 
if di e D£ is such that S(d, di) < d, then 

\\Fi-FV\\<e, i=l,...,n, 

where Fi and F\1} are the vectors from T^(M) obtained by the parallel dis­
placement of the vector E% along the curves d and di, respectively. Let us 
write 

Fi =- | «&, F<P = f 4%. 
j=i j=i 

From this we have 

JF«-•*?>= f(aij~a^)Ej 
j-=i 

and after the scalar multiplication 

I (ai3-a$Y = \\Fi-FVf<s\ 

This implies the inquality max | e% — a\f | < e. The proposition is therefore 

proved. 
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