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MATEMATICKY CASOPIS
ROCENIK 20 1970 éisLo 3

HOLONOMY GROUPS
OF A FULLY PARALLELIZABLE MANIFOLD

JIRI VANZURA, Praha

§1. CURVES IN A METRIC SPACE.

Let (P, g) be a metric space. We shall use the concept of an oriented recti-
fiable curve in the geometric sense as defined in [2] Chap. 1, § 5. Let us denote
by C the set of all such curves in (P, g). For ¢ € C let A(c), B(¢), A(c) denote the
starting point, the end point and the length of ¢, respectively. C can be pro-
vided with a natural algebraic structure: ¢; 4 cz is defined if and only if
B(c1) = A(cz). For any & € P we define

Ce: ={ceC; A(c) = B(c) =¢&}

The restriction of the algebraic structure of C to C¢ gives a structure of a semi-
group with the neutral element on Ce.

Now we shall provide C with the structure of a metric space. For ¢ € C
let z(o), o € €0, A(c)) be the standard representation of ¢ (¢ is the arc length).
Let us set ¢(t) = A(c).t. The representation z(t) = z(p(t)), te <0, 1> will
be called the normal representation of ¢. For ¢1, c2 € C let 551(t), :fcg(t) be their
normal representations. We set

R(c1, ¢2) = max g(:;}l(t), éz\t)).
te¢0,l

Let M be a fully parallelizable manifold and let I” be a connection on M.
The set of all closed curves starting from a fixed point # € M is provided with
such a metric that the mapping assigning to a curve the corresponding element
of the holonomy group at z is continuous.

Proposition 1. B is a metric on C.

The proof is obvious.

Remark. It can be easily seen that A(c) is not in general a continuous
function on (C, R). Neither C; provided with the induced metric is in general
a topological semigroup.
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§2. CURVES IN A FULLY PARALLELIZABLE MANIFOLD.

Let M be a fully parallelizable paracompact manifold of class C®, dim
M = n, let g be a positive definite metric tensor on M, let ¢ be a metric on
M induced by this tensor, and let I" be a linear connection on M (not neces-
sarily Riemannian). Let w1, ..., ws be C® -differentiable 1-forms on M
(throughout this paper differentiable = C® -differentiable), linearly indepen-
dent at every point of M. The existence of such wy, ..., w, follows from the
parallelizability of M.

Definition 1. Let ¢ € C . ¢ is said to be piecewise differentiable if there is a piece-
wise differentiable curve x(t), T € {a, by which is a representation of c.

It is well known that if ¢ € C is piecewise differentiable then its standard
representation is a piecewise differentiable curve. Hence it follows that its
normal representation is also a piecewise differentiable curve. Let us denote

D = {c € C; c is piecewise differentiable},

Dg=DnNC,.

Therefore D = C and Dg < C¢ is a subsemigroup of the semigroup C:. By
the restriction of R to D and D induced metrics we shall also denote by R.
Now we introduce one more metric on D. For dy, ds € D let 1(f), xa(t) be
their normal representations. Let us denote by #1(t) and z»(f) a tangent vector
to the curves zi(t) and xq(t) at the point ¢ respectively (at a singular point
let us take the lefthand tangent vector). Further let « > 0 be a real number,
and let mg, and mg, be the number of singular points of the curves z;(t) and
2o(t) respectively. Let us set

S(dl, dz) = R(dl, dz) + maxts%r;>| wi(a':l(t))

— wi(@2(t)) | + « | mg, — myq, |.

Proposition 2. S is a metric on D.
The proof follows easily using Proposition 1. For any di, d2 € D there is
RB(d1, d2) < D(da, do).

Definition 2 .Let (U, ¢) be a chart on M. (U, ¢) is said to be symmetric with
the center at a point p € M if there io 1 > 0 such that U = {qg € M ; o(p,q) < n}.

Now we shall define a ,,function® &(p) on M in the following way. Let
Zp be the set of all positive real numbers such that for every 5 € 5, there
exists a symmetric chart (U, ¢) with the center at p and the radius #. Let us
set &(p) = sup Zp.

Lemma 1. There is either £(p) = © for all p € M or &(p) is a uniformly conti-
nuous function on M.
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The proof follows easily from the inequality | &(») — &(¢) | < o(®, 9).

Lemma 2. Let ¢ € C with the normal representation x(t). There exists a partition
0=ty <ty...<<tp=1 of the interval €0, 1), symctric charts (Us, ¢1), ¢ =
=1, ..., k with the centers z(t;—1) and the same radius n, and a number 6 > 0
such that the following assertion holds: if ¢ € C is such that R(c, c1) < 6 and
21(t) is its normal representation, then {x:1(t); t € {ti-, tip} = U,.

Proof: The assertion is clear in the case &(p) = co. Thus let us consider
the case when &(p) is a real function. We can restrict ourselves to the case
Ac) > 0, for in the case A(c) = O the assertion is also clear. There is

0 < & = min &(x(t)).

te¢0,1)

i
and let us set & = —
4A(c) k

. 3k .
t=0,...,k Ui={peM, op, x(ti-)) <—4~, 1= 1, ..., k. Obviously

1
Let k& be a positive integer such that— <

there exist functions ¢; defined on U; such that (U, ¢;) is a symmetric chart.
o
Let us set § = : We shall show that just chosen #;, U;, § have the required

properties.

Let ¢1 € C, R(c, c1) < 8. For the sake of simplicity let us denote by ¢® and
¢ the curves x(t), t € (-1, t;> and z(t), t € {t;i—1, ti>, respectively. With
respect to the fact that ¢ is a Riemannian metric on M we have for any ¢ €
{ti-1, 8> an inequality

e(@(t), x(ti-1)) < e(xa(t), x(t)) + o(x(f), x(ti-1)) <

i-l—/l ())___*_ Ac) o &o E{ito~

___;__N
k 4

This completes the proof.

Proposition 3. 1 ¢s a continuous function on D.
Proof: Let us keep the notation from the above lemma. Let d, die D
and let S(d, d1) < 8. There is

| A(d) — Ada) | < 2 | 2(d®) — A(d?) |

and both d®, d{ lie in U;. Let ¢ = {&1, ..., 2"}, let gap be the components
of the metric tensor with respect to ¢ and let z*(t) and 2%(f) denote coordi-
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nates of points x(f) and x:1(f), respectively. Further let us set gua(t) = gagl((t)),
9ap(t) = gup(za(t)). Now we set

K; = max max
R s: | g.6(0)) |

3

tedk-r b dt dﬂ

[
i dae daf
e e

-1

We have

4 dxt daf dad d,fc‘i
_ Gat _?i_c_?-_g"” a di N
l Fap dxa'd_x{ 1/9@%_@_{
| J d & A d

&
dot g aeh
Gag gﬂﬁ d a
1

[

doe dof | dom dep | das dof
gmﬂ——_gaﬂ_—___i_

a dt @& & @ a

4]

1 ' dxo dmﬂ
A< — | lgap — Gus | - dt
Iy

, 94 44

1

Components of the metric tensor gus are uniformly continuous functions

3
n {p e M; olp zl4)) < %} . Henee it follows that choosing § sufficiently

dax dxf

dt can be made arbitrarily small.
de dt

1
amall, the term L—- J Jag — Gus

Now deal we shall with the second term of the above expression. First we
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) dao das |
shall consider the expression |[—— —
| dt de

Z1(t) the tangent vectors to the curves z(t), t € {ti—1, t;> and @i(t), te {ti, &)
at the points a(t)and xi(t), respectively. There is

. Let us denote by z(t) and

dae da
dt dt

= da(z(t)) — dxex(z1(t)).

Now let us write dv* = ajw,, where a; arc differentiable functions. Hence
we have

drx  daf
de de

< laf(x(t)) — af(@a(®) | - | wul@(®) | + | af(@a(t)) | - | wr(@(t)) —

— wi(@1(?)) .

3&o
According to the compactness of the set {p e M; o(p, x(ti-1)) < e we

see again that choosing J sufficiently small we can make the expression arbit-
rarily small. We have

&

|dzx daf daf daf
D — -2
| & a dc dt

dzx dxf daf daf

-1 ti-1
U
X dex dozf  dax> dof  dax daf  dat dof | d
== —_— — _—
e ¢ @ & @ & A

i1

| dax das dr? 1 da> da]
< K; | &t + K; — — —| dt
]| at d dt dt . dt
ti-1 ti1
f‘g 123
dax dzf  daf | ds dzx  daf
< K == at+ K| |- — 2l
Jla ] |a  a | |t de
ti—1 ti1
4
dzf dof| |dav  dat
+ K | |— — - — as.
ds de d¢ dt

ti-1

And now the assertion follows easily.

Remark: It can be easily seen that Dg, even with the metric S, is not
a topological semigroup.
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§ 3. MAPPING OF THE SPACE (D¢, S) INTO THE HOLONOMY GROUP OF
A LINEAR CONNECTION I' ON M.

First of all we shall prove

Lemma 3. Let ay, 1, j =1, ..., n be continuous functions on an interval
{Zo, x1). Let y; be a solution of the system

n

dv;
& +$‘a¢jy,=O, 1=1...,n

dx -
j=1

in the interval {xo, 21> with the initial conditions wyi(xo) = y\*. Then there
exist N > 0, do > 0 such that if 0 <6 <o and if by, i,j=1,...,n are

continuous functions on {xo, x1) such that max, max |ayx) — by(x)| <o
%] Te<ZY, T,>
and if z; is a solution of the system

n

dzi .
+ b,;jZ;:O, 1=1,...,n

dx

i=1

such that max | y{¥ — 2 | < & then

D

max max |y(x) — z(z)| < NS.

1 TE <Zy, T;>

Proof: Let us define the following sequences of functions on {xo, 21):

y}” == yi(xo), % = 2i(o)

Y =y — f > g do

Tyj=1

A =20 — f Z aiy Y dz

Ny j=1

There is y; = lim y{*, resp. z; = lim 2® uniformly on (xo,%1) (see for instance
k—>o k—>0

1
[3] Chap. VII, § 2). Let K > 0, L > 0 be such that max max |a;| <— K,

1,7 z€ <, T,>

1
max max |J"‘)|<~ L for all F, 60/;mm (K, L) and let 0 < d < 6o,

1 TE<L<Ty, T>

max max | a;;(x) — bi;(x) | <6, max |y® — ¥ | <é. For i =1,...,n we
S, 7 2e< o, 7> b

have
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0
|y — 2" <o
R (0 T 0 0
Y — ZD = y® — 20 4 fZ (biy — ayy) ¥ do + J.Z bif(zg' ) — ?/§ ) da.
Z,j=1 Z,j=1

From this we have the estimation

L

K
| yh — D] < 6[1 5- (nK) (x — yco)] :

By induction we can easily prove that for every k there is

F—1 k
|y — 20 | < 6 ‘> (nK)t (x — o)t I K+ L S‘ (nK)t (x — o)t .
=0 i=1

Now it is sufficient to set
) K+ L
N={14+ T exp [nK(x1 — zo)].

Definition 3. A function f(x) defined on {xo, ®1) is said to be piecewise conti-
nuous on {xo, x1y with the index of discontinuity m if there is a partition

Xo=lo<hh<...<<tlpm=m
of the interval {xo, 21) such that

(i) f(x) is continuous on by, t;), it =1,...,m — 1 and on {m-1, tm),
(ii) there exists the finite limit :
lim f(x) ¢=1,...,m,
T—>t—
(iii) the points b, 1 = 1, ..., m — 1 are the points of discontinuity of the func-
tion f(x).
Definition 4. Let ai; 9, j = 1, ..., n be piecewise continuous functions on

{xo, x1>. Let
To=U <M< ... <<U =21

be a partition of the interval {xo, x1)> such that

(i) any interval (ux-1, ur) does not contain a point of discontinuity of any
Sfunction a;,

(ii) every point ux, k=1, ...,r — 1 is a poin of discontinuity of at least
one of the functions ag;.
Let us define the functions *a{® on (ux_1, me), bk =1, ..., r by
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(k)/azj for x € {ag—1, w)

i Nlim ai; for © = wug.
T>Uk—
We say that functions the #; defined on {zo, 1) are a solution of the genera-
lized system

dy:
—’24— z aiy; = 0

dx j=1

if (i) y; are continuous on <{x, z1>,
(ii) #; are on {ug — 1, Uiy a solution of the system

dyi
E"_ Z —,—a(.;-‘)yjs 0

for all £ =1,
The generalization of lemma 3 is

Lemma 4. Let a;5; 1, j = 1, ..., n be piecewise continuous functions on the
tnterval {xo, x1). Let y; be the solution of the generalized system

dyi " Z 0, i—1

— Qi Yy = t=1...,n

d A YT
on the interval {xo, x1y with the initial conditions yi(zo) = y*. Let P be a non-
negative integer. Then for any e > 0 there exists 6 > 0 such that if by; i, j =
=1, ..., n are piecewise continuous functions on {xo, 21y such that the index

of discontinuity of each of them is < P and max max |a;(x) — by(x) | <6
1] 2E<Zo,¥1>

and if z; is a solution of the generalized system

dz;

——I—Zb@ij—O i=1,...,n

such that max | ¥ — zi(wo) | < 6, then there is

D)

max max | y(x) — zi(x) | < €
T XE@0,x1)

The proof follows easily from Lemma 3.

Now let us denote respectively by T'(M) and T'p(M) the tangent bundle
and the tangent space at the point p € M of a fully parallelizable Rieman-
nian manifold M. Let Xi, ..., Xn(n = dim M) be differentiable vector
fields, linearly independent at every point of M. Now we shall define on
T(M) a pseudometric ¢ in the following way. Let Y,, Y,eT(M), Y, =
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:‘z E(Xi)p, Yo = D ni(Xs),. We set
o(Yp, Yg) = max | & — oyt |.
It can be easily seen that the restriction of o to 7y(H) is a metric.

Proposition 4. Let (U, ¢), ¢ = {2, ..., 2"} be a chart on M. Let d e D,
x(t) be its normal representation. Let us suppose {z(t); t € <0, 1>} = U. Finally
let W(0) € Txo)(M) and W(t) € Tewy(M) be the vector obtained by the parallel
displacement of W(0) along the curve x(t) with respect to I'. Then for any & > 0
there exists 0 > 0 such that if dy € D with the normal representation x1(t) such
that S(d, d1) < 0 and if V(0) € Tzy0)(M) such that o(W(0), V(0)) < 6, then

(i) {xa(t); £ € <0, 1)} = U;

(ii) if V(t) € Ts1(6y(M) denotes the vector obtained by the parallel displacement
of V(0) along z\(t), then
a(W(1), V(1)) < e.

Proof: (i) is obvious. As to (ii) we shall first prove the following lemma, :
Let 61 >0, pe U, Y,eT,(M). Then there exists § > 0 such that if ge U,
Yq € To(M) are such that o(p, q) <9, o(Yp, Yq) <6, then writing Y, =

7 _ 0
= gl—), Yq= ni{—] we have
ozt) p oxt]y

= i=

max | & — nt | << §;. Let us write therefore
¢ n

0 )
— ) A, i=1,...,n
@ﬂl i0),.

are differentiable functions onu U. From these relations we obtain

Yo =3 E(X0y, Yo =3 X0 (X =3 Al

E=> Aip) &, ni = Alq)7’

j=1 j=1

and therefore

Eo— i = ﬁ (Aip) & — AUq) 77) =

j=1

=_Zl[(A§ (p) — Aj(@) & + Aj{q) (& — 7))
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| & — 7t s_il[lA;:(p)*Aﬁ(Q)l-léfl + | ()] - 18 — ] ]

From the last inequality our lemma follows easily.

0 0
Now let us write W(t) = z wit)l—) , V(@) = zvi(t) — and
0xt) (ty A
i=1 1

= i=

let us denote by [}, the components of I' with respect to the coordinate
system {1, ..., 2,}. The functions wi(t) and ({) are on <0, 1) solutions
of the generalized systems

n

dut + I (xlt )dxk J =0
_ ® (v —w! =
dt (@ () dt

Jk=1

df N . dat
Et"*" ij (-’Ill(t))?vj =0,

hk=1

and

respectively (see [1], chap. III, § 7).

Hence let us have ¢ > 0. According to Lemma 4 there exists 61 > 0 such

k=1

max [wi(0) — v¥(0) | < 6,

max max < 61

1,j te<0,1>

then max |wi(1) — vi(1)| < . From the equality

O dat dat
F,k(x(t))g — Iy (21lt)) E‘ =

k=1

; X da* ) det  do
= 2 (Fje(a(®) — Diplwa®) ~= + Liglan(®)) T

k=1

we have the estimation
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) da¥ , dat ‘
z(r;‘k(x(t))g_ ;L(xl(t))g % <

n
k=1

< 2 [Il’ﬁk(x(t)) — Ii(a(®)] -
1

k

@

dak da¥

ds d¢

+ [Lj(a())] -

|

Writing similarly as in the proof of proposition 3

Eﬁ—dxk"t d—xllc—dk't dak = k
& (%(8)), Pras xk(£1(t)), _zalwl’
=1

we get

A N

@ @ 2 [af @(6) en(@(®) — af(@(t) en@a(t)] =

=1
= 2 [(af(2(t)) — af(@(t))) wu(@(t)) + af(@1(t)) (wi(@(t)) — @ (t)))]
I=1

and from this equality we have the estimation

dot  dat

dt d¢

< 2 [ af(@(t) — af(@(t)) | . | on(@(t) | +
=1

+ laf(@a(®) | - | (@) — enl@r(®) |1
Now it can be easily seen that there exists d2 > 0 such that if S(di, d) < 8,

then
N ; daxk : duc®
Z I (=(t)) @ I (21(t)) _dT
1

Choosing ¢z sufficiently small then according to our lemma at the beginning
of the proof o(W(0), V(0)) < d2 implies max | wi(0) — v{(0) | < dy. Setting
0 = 02, then according to Lemma 4 S(di1, d) < 6, o(W(0), V(0)) < &

imply

max max < &

%7 te0,1>

max | wi(l) — vi(l) < ¢'.
i
Now it is easy to show that for sufficiently small J, & there is
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o(W(1), V(1)) < e
and this completes the proof of the proposition.

Proposition 5. Let de D, z(t) be its normal representation. Let W(0) € Tz (M)
and let W(t) € Txwy(M) be the vector obtained by the parallel displacement of
W(0) along the curve x(t) with respect to I'. Then for any ¢ > 0 there exists 6 > 0
such that if dye D with the normal representation zi(t) such that S(d, d1) << 6
and V(0) € Tz10/(M) such that o(W(0), V(0)) < 8, then

o(W(1), V(1)) < &,

where V(t) € Txi(M) denotes again the vector obiained by the parallel displace-
ment of V(0) along x:1(¢).
Proof: Let us have ¢ > 0. Let 6 > 0 and let

O=to<ti< ... <fp=1

be the partition of the interval <0, 1) with the properties described in Lem-
ma 2. We shall keep the notation of Lemma 2, only instead of ¢® we shall
write d®. According to the inclusion {(t), t € {&; -1, t;>} < U; and according
to the fact that Z(t') = x((t; — t —1) ¢’ + t; —1), t'€ <0, 1> is the normal
representation of d, it follows from proposition 4 that there exists dx > 0
such that if d® e D is such that S(d®, d®) < §; and if V® e T 4o, (M)
is such that o(W( - 1), V®) < & and if we denote by V® e Tpawy (M)
the vector obtained by the parallel displacement of V@& along d®, then
o(W(te), V®) < &. Successively we can find ¢; > 0, i = 1, ..., k such that
if d® € D is such that S(d®, d¥) < & and if V@ €T, (M) is such that
o(W(ti -1), VO®) < é; and if V@ € T'p50, (M) is the vector obtained by the
parallel displacement of V® along d®, then o(W(t), V®) < 6; +1.-

- Now let us choose 6 < min (8, 8y, ..., d) so small that S(d, di) < § will
imply S(d®, dP) < 6;. Thus if W(0) € Tz)(M), VI(0)e T 0)(M) are two
vectors such that o(W(0), V(0)) << 8, we can easily see that (W (1), V(1) < ¢
and this proves the proposition.

Now let £ M and let Ey, ..., E, € T¢(M) be an orthonormal frame. Let
PD(&) C GL(n, R) be the holonomy group of I" with the reference point &.
We define the mapping H: (D¢, S)— @(£) in the following way: let d € D,
and let B, ..., E, € T¢(M) be the vectors obtained by the parallel displace-

ment of the vectors Ej, ..., B, along the curve d. Let ay; 4, j=1,...,n
n

be such that E; = > ayH; and let A = (ay). We set H(d) =A. If we
i=1
take @(&) with the topology induced from GL(n, R), we have

Proposition 6. The mapping H: (D¢, S)— ®(&) is continuous.
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Proof: Let us have ¢ > 0, d € De. We denote by || ... | the norm on
T¢(M) arising from the metric tensor g. It is clear that there are ki, k2 > 0
such that for any X € T¢(M) we have kio(X, 0) < || X|| < k20(X, 0). According
to this fact and proposition 5 it is obvious that there exists 6 > 0 such that
if d1 € D¢ is such that S(d, di1) < 4, then

P —FO <e, i=1,...,m,

where F; and F{" are the vectors from 7T'¢(}) obtained by the parallel dis-

placement of the vector E; along the curves d and di, respectively. Let us
write

j=1

n n
Fi = Z aqu, Fgl) == 2 a%’Ej.
j=1

From this we have

Fi — FP = 3 (ay — o) Ej

i=1
and after the scalar multiplication

n
S (ay — aPR = B — PO < 22
j=1
This implies the inquality max | a;; — af’ | < e. The proposition is therefore
i
proved.
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