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M a t e m a t i c k ý časopis 20 (1970), N o . 3 

THE MAXIMAL SEMILATTICE DECOMPOSITION 
OF A SEMIGROUP, RADICALS AND NILPOTENCY 

ROBERT SULKA, Bratislava 

I n paper [7] M. Petrich dealt with the maximal semilattice decomposition 
of a semigroup and he studied the classes of this decomposition. In the present 
paper a description of these classes and their products is given in terms of 
Luh Jiang completely prime radicals and faces of a semigroup S. Also the 
case of the commutative semigroup is discussed. 

The last, 5th section is self-contained. Here a characterization of the class 
of all periodic semigroups with period 1, a characterization of the class of all 
periodic semigroups with index 1 and some characterizations of the class of 
all bands are given. We accomplished this using the mappings M-> Nt(M) (i = 
= 1,2, 3), where N±(M) (N2(M)) [N3(M)] is the set of all strongly (weakly) 
[almost] nilpotent elements with respect to the subset M of the semigroup S 
(see [9]). 

1. On an equivalence relation. 

Let S be a non-empty set and K a family of subsets of S with the property 
(oc):Ser, n$r. 

On S the following relation can be introduced (see [5] p. 203): xFy if and 
only if for every A e T, either x, y e A or x, y $ A. This relation is an equivalence 
relation on S. If x Ty holds, we say that x and y are F'-equivalent and the 
equivalence relation is called .T-e qui valence relation. 

Let A = {S} U {B | B = S \ A, A e F, A # S}. Evidently the A -equivalence 
relation is equal to the F-e qui valence relation. 

If M is an arbitrary (non-empty) subset of S, then the intersection of all 
sets of r, w^hich contain the set M, will be called a F'-hull of the set M. 

The following Lemmas are evident. 

Lemma 1. The elements x and y of S are T-equivalent if and only if they have 
the same F-hull (A-hull). 

Lemma 2. The F-equivalence relation is the intersection of the universal equi-
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valence relation and of all equivalence relations on S that have only two classes: 
AandS\A,AeT,A * S. 

Corollary. Every class Mx(xeMx) of the P-equivalence relation (A-equivalence 
relation) is the intersection of all sets of r U A which contain the element x. 

R e m a r k . If S is a semigroup and F the family of all right (left) [two-sided] 
ideals of S, then the classes of this F'-e qui valence relation are the r —(I —) 
[f —-] classes, introduced by J . A. Green in his paper [4]. In section 3 we shall 
show that the foregoing construction is useful also in the case if JP is the family 
of all completely prime ideals of a semigroup S. 

2. Completely prime ideals and faces 

A (two-sided) ideal P of a semigroup S will be called a completely prime 
ideal, if xy e P (x, y e S) implies that either x e P or y e P. 

A subset M QS will be called a face of S, if S \ M is a completely prime 
ideal or M = S (the empty set will be considered to be a face). 

I t is known that a subset M of S is a face of S if and only if x, y e M is 
equivalent to xy e M. 

We now establish some Lemmas about completely prime ideals and faces. 

Lemma 3. Let Mi be a face of S and M2 « face of Mi. Then M2 is a face of S. 

Corollary 1. If Pi is a completely prime ideal of S and P2 a completely prime 
ideal ofS \Pi, then Pi U P2 is a completely prime ideal of S. 

Corollary 2. Let M be a face of S and P' a completely prime ideal of M. Then 
P' U (S \ M) is a completely prime ideal of S. 

Lemma 4. Let S be a semigroup, S' a subsemigroup and M a face of S. Then 
M nS' is a face of S'. 

Corollary. Let S be a semigroup, S' a subsemigroup and P a completely prime 
ideal of S. Then P n S' is a completely prime ideal of S'. . 

I t is evident that the intersection of an arbitrary number of faces of a semi
group S is a face of S. Moreover the union of an arbitrary number of completely 
prime ideals of a semigroup S is a completely prime ideal of S. 

Let S' be a subsemigroup of a semigroup S and M a non-empty subset of S\ 
The intersection of all completely prime ideals of S', which contain M, will be 
denoted by C(M, S'). If M = {x} is a one-element set, we shall write C(x, S') 
instead of C ({x}, S'). If M is a (two-sided) ideal of S', then C (M, S') 
is called a Luh Jiang radical of the semigroup S' with respect to M. For. 
S' = S we shall write C(M) and C(x) instead of C(M, S) and C(x, S). The 
principal two-sided (right) [left] ideal of S'', generated by the element x, will 
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be denoted by J(x, S') (B(x, S')) [L(x, S')]. If S' = S, we shall write J(x), 
B(x), L(x) instead of J(x, S), B(x, S) and L(x, S). 

I t can be shown (see [8]) that C(M) is the set of all such elements r e S 
that every face, w^hich contains r, has a non-empty intersection with M. 

Lemma 5. For every two elements x, y e S, C(xy) = C(J(xy)) = C(J(x)J(y)) — 

= C(J(x) n J(y)) = C(J(x)) n C(J(y)) = C(x) n C(y) holds. 
Proof . For every semigroup S, J(xy) QJ(x)C\J(y) holds, therefore 

C(J(xy)) Q C(J(x) n J(y)) = C(J(x)) n C(J(y)) (see [8]). 
Let r e C(J(x) n J(y)). Then each face of S, which contains r, contains an 

element of J(x) n J(y). Hence each face, which contains r, contains x and y. 
Thus it contains xy and it has a nonempty intersection with J(xy), which 
implies r e C(J(xy)). This means that C(J(x) n J(y)) Q C(J(xy)) and therefore 
C(J(xy)) = C(J(x)) n C(J(y)). 

Evidently in every semigroup S, J(xy) Q J(x) J(y) Q J(x) n J(y) holds. 
Thus C(J(xy)) = C(J(x) J(y)) = C(J(x) n J(y)) = C(J(x)) n C(J(y)). 

The rest of Lemma 5 follows from the fact that for every x e S, C(x) = 
= C(J(x)) holds. 

3. The maximal semilattice decomposition of a semigroup S. 

Let ZT be the family of all completely prime ideals of a semigroup S. The 
^"-equivalence relation is a congruence. This was shown by M. Petrich (see [7]) 
and follows immediately from Lemma 2, because every equivalence relation 
of Lemma 2 is a congruence. Moreover all factor semigroups of S modulo these 
congruences are semilattices, therefore the factor semigroup modulo ^"-equiva
lence relation is a semilattice too . (This holds also for an ^-equivalence rela
tion, where si is a subfamily of the family 3?~.) 

A decomposition of a semigroup S will be called (in agreement with [7]) 
a semilattice decomposition of S if this decomposition belongs to a congruence 
of S and the factor semigroup modulo this congruence is a semilattice. M. 
Petrich has shown (see [7]) that the decomposition belonging to the ^"-equiva
lence relation is the maximal semilattice decomposition of the semigroup S 
in the sense tha t every homomorphic image of S, which is a semilattice, is 
a homomorphic image of the factor semigroup of S modulo the ^-equivalence 
relation. 

M. Petrich [7] has shown some properties of the maximal semilattice de
composition of a semigroup S. On the base of the preceding two sections we 
can establish some other properties of this decomposition. 

Let SCR be the set of all faces of a semigroup S without • . Let Nx be the 
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class of the maximal semilattice decomposition of S which contains the element 
x. If S' is a subsemigroup of the semigroup S, we denote by N(x, S') the 
intersection of all faces of S' that contain x (it is the minimal face of S' which 
contains x). Instead of N(x, S) we shall write simply N(x). 

From the preceding sections the following Theorems follow: 
Theorem 1. The fulfilment of the following conditions for elements x, y of 

a semigroup S is equivalent: 

a) xSTy 

b) xyky 
c) N(x) = N(ij) (see [7]; 
d) C(x) = C(y) 
e) C(J(x)) = C(J(y)). 

Proof . N(x) is the 2R-hull of x, C(x) is the ^ - h u l l of x and C(x) = C(J(x)). 
R e m a r k . In d) of Theorem 1 we can replace the elements x and y by their 

principal right (left) ideals, since C(x) = C(E(x)) = C(L(x)). 
M. Petrich has shown (see [7]) that a class Nx of the maximal semilattice 

decomposition of a semigroup S contains no proper completely prime ideals. 
From this follows 

Lemma 6a. Let S' be a subsemigroup of a semigroup S and let Nx Q S'. Then 
every completely prime ideal of S' is either disjoint with Nx or contains Nx. 

Proof. Suppose, by way of contradiction, that there exists a completely 
prime ideal P' of S', which has a non-empty intersection with Nx but P' 
does not contain Nx. Then, as a consequence of Lemma 4, Nx n P' is a proper 
completely prime ideal of Nx. But this is a contradiction. 

Evidently the following Lemma holds. 

Lemma 6b. Let S' be a subsemigroup of a semigroup S and let Nx Q S'. 
Then every face of S' is either disjoin^ with Nx or contains Nx. 

Now we can easilly prove 
Theorem 2. For each x e S we have: 
a) Nx is the intersection of all completely prime ideals and of all faces of the 

semigroup S that contain the element x. 
b) Nx = N(x) n C(x), 
c) Nx = C(x, N(x)), 
d) Nx = N(x, C(x)). 
Proof, a) follows from the Corollary of Lemma 2. b) is equivalent to a), 

b) and the Corollary of Lemma 4 and Lemma 6a imply c). d) follows from b), 
Lemma 4 and Lemma 6a. 

R e m a r k 1. Evidently Nx = N(x) n C(J(x)), Nx = C(J(x, N(x)),N(x)) and 
Nx = N(x, C(J(x))) holds. 

R e m a r k 2. From Lemma 4 and its Corollary, from Lemma 6a and Lemma 
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6b it is evident that if S' is a subsemigroup of a semigroup S and Nx Q 8', 
then Nx is also a class of the maximal semilattice decomposition of the semi
group S'. Thus if Nx QS', we have by Theorem 2: 

Nx = N(x, S') n C(a?, /S'), 
Nx = C(s, tf (a, /S')) and 
Nx = N(x, Of*, S')). 

We can take for S' an arbitrary face of S which contains x or an arbitrary 
completely prime ideal of S which contains x. 

The set of all faces of a semigroup S is a lattice if for every two faces M\ 
and M2 of S, M\ f\M2 = M\C\ M2 and M± V M2 is the minimal face of S, 
which contains M± and M2. Then we have 

Theorem 3. For every two elements x, y of S the following holds: 

a) Nxy = (N(x) V N(y)) n C(x) n C(y) 
b) Nxy = (N(x) V N(y)) n O(J(*) J(*/)). 

Proof . By Theorem 2, N^ = N(xy) n C ( ^ ) . Evidently N(^) = N(x) V 
V N(*/), but on the other hand C(xy) = C(J(xy)) = C(J(x) J(y)) = C(J(z)) n 
n C(J(y)) by Lemma 5 and this proves Theorem 3. 

4. The case of a commutative semigroup. 

There are other possibilities how to express the sets C(M) of a commutative 
semigroup S. This leads to other expressions for the ^"-equivalence relation 
and for the classes Nx. 

Let J be a (two-sided) ideal of S. 
a) Let x be such an element of S that for some positive integers n,xn e J 

holds. Then x will be called a nilpotent element of the semigroup S with 
respect to the ideal J . The set of all nilpotent elements of the semigroup S 
with respect to J will be denoted by N(J). 

b) An ideal / of the semigroup S, each element of which is nilpotent with 
respect to J , will be called a nilideal of S with respect to J. The union B*(J) 
of all nilideals of S with respect to J is called the Clifford radical of S with 
respect to J. 

c) An ideal (subsemigroup) I of the semigroup S, for which there exists 
such a positive integer n that In Q J, is called a nilpotent ideal (subsemigroup) 
of S with respect to J . The union R(J) of all nilpotent ideals of S with respect 
to J will be called the Schwarz radical of S with respect to J . 

d) An ideal I of the semigroup S, with the property that each subsemigroup 
of I generated by a finite number of elements of I is nilpotent with respect 
to J , is called a locally nilpotent ideal of S with respect to J . The union L(J) 
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of all locally nilpotent ideals of S with respect to J will be called the Sevrin 
radical of S with respect to J . 

e) An ideal P of the semigroup S is called a prime ideal of S, if for any two 
ideals A and B of S, AB Q P implies either A QP or B QP. The intersection 
M(J) of all prime ideals of S that contain the ideal J is called the McCoy 
radical of S with respect to J . 

R e m a r k . I t is known that in a commutative semigroup an ideal P is a 
prime ideal if and only if it is a completely prime ideal. 

Then from Theorem 1 we obtain 

Theorem 4. The following conditions for the elements x, y of a commutative 
semigroup S are equivalent: 

a) x (3T)y 

b) x qh)y 
o) CW = C(y) 
d) M(x) = M(y) 
e) C(J(x)) = C(J(y)) 
f) M(J(x)) = M(J(y)) 
g) N(J(x)) =-- $T(J(y)) 
h) B*(J(x)) = B*(J(y)) 
i) B(J(x)) = B(J(y)) 
j) L(J(x)) = L(J(y)). 
The proof follows from the Remark preceding Theorem 4 and from the fact 

that in every commutative semigroup S, C(J) = M(J) = iV(J) = B*(J) = 
= B(J) = L(J) holds for each ideal J of S (see [8] and [1]). 

From Theorem 2 we obtain 

Theorem 5. For every x e S we have: 
a) Nx = N(x) n C(x) = N(x) n M(x) 
b) Nx = N(x) n C(J(x)) = N(x) n M(J(x)) = N(x) n N(J(x)) = 

= N(x) n B*(J(x)) = N(x) n B(J(x)) = N(x) n L(J(x)). 
c) Nx = C(x, N(x)) = M(x, N(x)) 
d) Nx = C(J(x, N(x)), N(x)) = M(J(x, N(x)), N(x)) = 

= N(J(x, N(x)), N(x)) = B*(J(x, N(x)), N(x)) = B(J(x, N(x)), N(x)) = 
= L(J(x, N(x)), N(x)) 

e) Nx = N(x, C(x)) = N(x, M(x)) 
f) Nx = N(x, C(J(x))) = N>, M(J(x))) = N(x, N(J(x))) = 

= N(x, B*(J(x))) = N(x, B(J(x))) = N(x, L(J(x))). 
A similar adaptation of Theorem 3 for commutative semigroups is obvious. 

5. On nilpotency. 

In paper [9] the notions of strong nilpotency, weak nilpotency and almost 
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nilpotency of an element of a semigroup S with respect to an arbitrary subset 
of S were introduced. We shall characterize three classes of periodic semigroups 
using these notions. 

Let S be a semigroup and M a subset of S. 
a) An element x e S will be called strongly nilpotent with respect to M if 

there exists such a positive integer N that for every integer n > N, xn e M 
holds. The set of all strongly nilpotent elements of S with respect to M will 
be denoted by Ni(M). 

b) An element x G S will be called weakly nilpotent with respect to M if 
for infinitely many positive integers n, xn G M holds. The set of all weakly 
nilpotent elements of S with respect to M will be denoted by N2(M). 

c) An element x G S will be called almost nilpotent with respect to M, if 
for some positive integers n, xn G M holds. The set of all almost nilpotent 
elements of S with respect to M will be denoted by N3(M). 

In paper [9] the mappings M-> Nt(M), i = 1, 2, 3 were studied. We shall 
show some other properties of these mappings. 

Theorem 6. The class of all periodic semigroups with the period 1 is equal 
to the class of all semigroups in which the mappings M -> N\(M) and M -> N2(M) 
are equal. 

Proof. Let a e S. Let A = <a> (the cyclic semigroup generated by a) and 
let A' be the set of the elements of the sequence {a2k}^=1. Clearly a e N2(A'). 
If the mappings M->Ni(M) and M->N2(M) are equal, then a e Ni(A'). 
Hence there exists such a positive integer Ni that for all integers n > Ni, 
an e A' holds. Therefore (a) is a cyclic semigroup of finite order (and S is 
a periodic semigroup). Let r be the index and m the period of <a>. Then a e 
G N2(a

r) = Ni(ar). Thus there exists such a positive integer N2 that for all 
integers n' > AT

2, an' = ar, i. e. the period m = I. This means that the semi
group S is a periodic semigroup with the period 1. 

If conversely S is a periodic semigroup with the period 1 and a e N2(M), 
then there exist infinitely many positive integers n such that an G M. J^ut 
then there exists such a positive integer N that for all integers n> N, an e M. 
Hence a e Ni(M). Therefore we have N2(M) = Ni(M) for every subset M c S 
and the mappings M-> N\(M) and M-> N2(M) are equal. 

Theorem 7. The class 3 of all bands is equal to the class of all semigroups in 
which the mappings M-> Ni(M) and M-> N3(M) are equal. The class 3 is also 
the class of all semigroups in which the mappings M -> Ni(M), M -> N2(M) and 
M-> N3(M) are equal. 

Proof. Let aeS. Then a e N3(a). If M->Ni(M) and M-> N3(M) are 
equal, then a e Ni(a) = N3(a). Hence a is strongly nilpotent with respect to 
{a} and there exists such a positive integer N that for all integers n > N, 
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an = a. This holds for every a e <S i. e. S is a periodic semigroup with the 
period 1 and the index 1. Thus S is a band. 

If conversely S is a band, then a e N3(M) implies a e Ni(M). Therefore 
N3(M) = Ni(M) for every subset M of S, i. e. the mappings M->Ni(ilJ) 
and M-> N3(iJF) are equal. 

The last statement of Theorem 7 follows immediately. 
If S is a band, then the mappings M-> Nt(M), i = 1, 2, 3 are clearly identity 

mappings. Moreover, we have 

Theorem 8. The class of all bands is equal to the class of 

a) all semigroups in which the mapping M-> N\(M) is the identity mapping, 
b) all semigroups in which the mapping M -> N2(M) is the identity mapping, 

c) all semigroups in which the mapping M-> N3(M) is the identity mapping. 

Proof, a) If M -+ N\(M) is the identity mapping, then Ni(a) = a, i. e. 
there exists such a positive integer N that for all integers n > N, an = a 
holds. Hence (a) is a cyclic semigroup with the period 1 and the index 1, 
therefore a is an idempotent. 

b) Let M -* N2(M) be the identity mapping. Then N2(a) = a and for some 
positive integers n > 1, an = a holds. Therefore <a> is a cyclic group with 
the identity e. Hence there exists such a positive integer m, that am =- e, 
which implies a e N2(e) = e. Thus a is an idempotent. 

c) If M-> Ns(ilJ) is the identity mapping, then a e N3(a
2) = a2 implies 

a -_-. a2 for every a e S. 
The converse statement is evident. 

Theorem 9. The class of all periodic semigroups ivith the index 1 is equal to 
the class of all semigroups in which the mappings M-> N2(M) and M-> N3(M) 
aie ccual. 

Proof . Let the mappings M-> N2(M) and M-> N3(M) be equal. Let 
a e S. Then ae N3(a) = N2(a) and for infinitely many positive integers n, 
an = a holds. Thus <a) is a finite cyclic group. Hence S is a periodic semigroup 
with the index 1. 

Let a G N3(M) and let S be a periodic semigroup with the index 1. Then for 
infinitely many positive integers n, an e M holds. Hence a e N2(M) q. e. d. 

R e m a r k . Theorem 6 follows also from Theorem 7 and 9, because NL(M) c 
c N2(M) c N3(M) for every subset M of S. 
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