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M a t e m a t i c k ý časopis 20 (1970), N o . 3 

REGULAR GRAPHS, EACH EDGE OF WHICH BELONGS 
TO EXACTLY ONE 8 GON 

ANTON KOTZIG, Bratislava and BOHDAN ZELINKA, Liberec 

At the Colloquium on Graph Theory at Tihany (1966) the first author 
expressed the following conjecture: 

To every pair of positive integers r, s there exists a regular graph G of the 
degree 2r, in which each edge belongs to exactly one s-gon. 

We are going to prove this conjecture. 
The conjecture is evidently true for s = 1 and 5 = 2. 
We define the (r, s)-graph as a graph whose vertex set is the union of two 

disjoint sets U and V, while each vertex of U has the degree r, each vertex 
of V has the degree s and each edge of this graph joins a vertex of U with 
a vertex of V. 

We shall prove a theorem, which has the character of a lemma for us. 

Theorem 1. Let g, r, s be given positive integers. There exists such an (r, s) 
-graph which does not contain any circuit of the length less than g. 

Proof . P. E r d o s and H. S a c h s [1, 3] have proved that for every 
two positive integers d 4= 1, t there exists a regular graph of the degree d, 
whose girth is equal to t (the girth of the graph is the minimal length of 
a circuit in this graph). Let p be a common multiple of the numbers r and s 
and construct such a graph G± for d = 2p and t = g. The graph 6a is a regu
lar graph of an even degree, therefore it can be decomposed into quadratic 
factors Fi, . . ., Fv. Now direct this graph so that each circuit which is a 
component of any of the factors F±, . . .,FV might become a cycle (directed 
circuit). I n this way we obtain from the non-directed graph G± a directed 
graph 6?2, in which from each vertex exactly p edges go out and also exactly p 
edges come into it. The vertices of the graph G% will be denoted by u±, . . ., un. 
Now construct the non-directed graph G%. I ts vertices will be v±, . . ., vn, 
w\, . . ., wn. The vertex vi is joined with the vertex Wj(l ^ i ^ n, 1 ^ j ^ n) 
by a non-directed edge if and only if in C?2 a, directed edge goes from the 
vertex m to the vertex uj. No two of the vertices v\, . . ., vn and no two 
of the vertices w\, . . ., wn are joined by an edge. Thus the graph G3 is a bi
partite regular graph of the degree p; its girth evidently cannot be less than 
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the girth of the graph G± and therefore it is greater than or equal to g. Finally 
construct the graph G. The vertices of the graph G will be v^, w(p for 
i = 1, . . ., n; a = 1, . . .,pjr; (j = 1, . . .,pjs. In the graph G% we decompose 
the set of the edges incident with the vertex vi (for each i = 1, . . ., n) 
in an arbitrary way into pjr subsets H(P, . . ., H(?/r), which are pairwise 
disjoint and each of which contains exactly r elements. Similarly we 
decompose the set of the edges incident with the vertex w% into p\s sub
sets KV, . . ., K(?ls), which are pairwaise disjoint and each of them contains 
exactly s elements. In the graph G the vertex vf> is joined with the vertex 
w(p if and only if in the graph C73 the vertex vt is joined with the vertex 
Wj by an edge belonging to Hf} n K(p. No two of the vertices v(p and no 
two of the vertices w(p are joined by an edge. Therefore G is a bipartite 
graph, each of the vertices v(p has the degree r, each of the vertices w(p has 
the degree s. The girth of the graph G cannot be less than the girth of the 
graph O3 and therefore it is greater than or equal to g. 

With the help of Theorem 1 we shall prove our conjecture. 

Theorem 2. To each pair of positive integers r and s there exists a regular 
graph of the degree 2r, in which each edge belongs to exactly one s-gon in the 
graph. 

Proof. Construct the graph G from Theorem 1 for g = 2s -f- 1. I t is not 
useful here to use the complicated symbols from the proof of Theorem 1, 
hence denote the vertices of the degree r by v\, . . .,vjc and the vertices of 
the degree s by W\, . . .,wi. Now construct the graph Ho consisting of I com
ponents, each of which is an s-gon. Denote these s-gons by C\, . . ., C\. For 
i = ] , . . . , I denote the vertices of the s-gon C% by the symbols Uij, where j 
runs through all such positive integers for which there exists an edge joining 
Vj and wi in G. I t does not matter in what order we number those vertices. 
When we identify the vertices uij for all i (always at the fixed j), we obtain 
from the graph Ho the graph H; the vertex created by identifying the vertices 
u^ for all i will be denoted by Uj. We can easily show that the thus construc
ted graph II is the wanted graph. 

For some special cases we can construct the graph satisfying our conditions 
in a more simple way. 

Construction A (for odd s and arbitrary r). 
Let n = (s — l)/2, R = {I, 2, . . ., r}, S = {1, 2, . . ., s}. By the symbol V 

we demote the Cartesian product 

V = S x S x ... x S 

r times 



Now construct the graph Gr
s in the following way. I ts vertex set is the set V. 

The vertex x = (x±, x2, . . ., xr)e V is joined by an edge with the vertex 
y = (ylf 2/2, . . ., yr) £ V if and only if there exists a number i e R such that 
I xi ~~ Vi I — I (mod s) and for each j =# i, j e R we have x3- = yj. The num
bers of an r-tuple of V will be called co-ordinates of a vertex and the i-th 
of them will be called the i-th co-ordinate of a vertex. Now we shall prove 
that we have obtained the wanted graph. 

From the construction it is evident that Gr
s is a regular graph of the degree 

2r. Let e be an arbitrary edge of Gr
s and let e join the vertex u = (u±, u^, . . ., 

Ui-\, ui, in +i, . . ., ur) writh the vertex v = (u\, U2, . . ., Ut - 1 , 1 + u%, ui +1, . . ., 
ur). Evidently the edge e belongs to the s-gon Ko of the graph Gs 

with the vertices (u\, U2, . . ., u% ~ \, z, u\ +1, . . ., ur), where z runs 
through all values of 8. Thus it suffices to prove that e does not belong 
to any other s-gon of the graph Gr

s. Let K\ be an arbitrary s-gon in 
Gr

s containing the edge e. Go around the circuit K\ issuing for example 
from the vertex u through the edge e and consider this: to the vertex u we 
shall return after going through an odd number of edges (because s = 2n -\- I 
is odd) and after going through an arbitrary edge exactly one of the co-ordina
tes of the vertex will be changed and it will be in such a way that it will be 
increased or decreased by one. As the total number of such changes at the 
mentioned ,,travel" is odd, at least for one number k e R the following must 
be t rue: the k-th co-ordinate will be changed at this ,,travel" an odd number 
of times. After the mentioned changes we must obtain from the number ujc 
again the number ujc (because the first vertex and the last are u). From the 
construction of the fraph 6?J it follows that an odd number of the mentioned 
changes can lead to the initial value ujc only if we go through the whole set 
8 (i. e. if we increase s times or decrease s times the k-th co-ordinate by one — 
it is understood modulo 6*). Thus the k-th co-ordinate will be changed at least 
s times. As the total number of changes is s and at each change only one 
co-ordinate is changed, it means that no other than the k-th co-ordinate will 
be changed during that ,,travel". The vertices u and v belong to K\ and have 
the different i-th co-ordinates. From that it follows that i = k and also K\ = 
= Ko. Therefore an arbitrary edge e belongs to exactly one s-gon of the 
graph Gr

s, which was to be proved. 

In the following the complete graph with q vertices will be denoted by <q>. 

Construction B (for r = 2 and arbitrary s). 

We shall construct a regular graph E of the degree s whose girth is equal 
to s -f- 1 (see [1], [3]). Let F be the interchange graph (see [2]) of the graph E. 
The following is evident: the set of edges incident with some vertex xeE 
corresponds to the set of s vertices of some subgraph of F isomorphic wTith 
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<s> and each vertex 'v e F belongs to exactly two such complete subgraphs 
(because each edge in E is incident with two vertices). Also this is t rue: if 
61, 62 are two edges of F incident with the vertex v in F, but not belonging 
to the same subgraph isomorphic with <s>, then in F there does not exist 
any circuit of the length less than s -f- 1 which would contain both e± and e^. 
Therefore each edge of F belongs to exactly one subgraph of F isomorphic 
with (s). Thus from each subgraph of F isomorphic with <s> omit all edges 
except the edges of some of its s-gons. We obtain the graph Q which has 
the following two properties: (1) its degree is 4; (2) each of its edges belongs 
to exactly one s-gon. Thus the construction is finished. 

At the end of the article we shall prove the non-existence of such a graph 
of an odd degree. 

Theorem 3. There does not exist any regular graph of an odd degree such that 
each edge of it would be contained in exactly one s-gon where s is a positive integer. 

Proof . Assume that such a graph G exists; let its degree be p. Let u be 
a vertex of G and h an edge incident with u. The edge h belongs to exactly 
one s-gon in G\ denote this s-gon by Co- The vertex u is incident with the 
edge h of Co, hence it belongs to Oo and must be incident with exactly two 
edges of Co- We see that if C is an s-gon of G, then the vertex u is incident 
either with exactly two edges of C, or with no edge of C; in both the cases 
the number n(u, C) of the edges of C incident with u is even. As each edge 
of G belongs to exactly one s-gon in G, the number of edges incident with u, 
i. e. the degree of u, is the sum of n(u, C) taken over all s-gons C in G. As 
all n(u, C) are even, their sum must be even, too. But the degree of the vertex 
u is p and p is odd, because G is a regular graph of an odd degree. Thus we 
have obtained a contradiction. 
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