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Matematický časopis 19 (1969), No. 2 

ON IRREDUCIBLE GRAPHS OF DIAMETER TWO 
WITHOUT TRIANGLES 

FERDINAND GLIVJAK, P E T E R KY§, JAN PLESNIK, Bratislava 

I. INTRODUCTION 

In paper [1] there were given some necessary and sufficient conditions 
for a graph with a diameter r without fc-gons, where 3 < k ^ r + 1 (so called 
OY-graph), to be extended (or reduced, respectively) by one vertex in order 
to obtain again a OV-graph. 

In this paper we give some necessary and sufficient conditions for a graph 
to be a OVgraph, or an 17-irreducible O2-graph, respectively. I t is shown t h a t 
for every graph G of diameter r, r ^ 2, without triangles there exists a (52-graph 
H such that G is a section graph of the graph H. A list is given of all /u-irredu­
cible OVgraphs with the number of vertices n, n ^ 10. I t is shown that for 
every natural number n, n = 3p -f- 4, p ^ 2, there exists a ^-irreducible 
(Vgraph in which the minimum degree is 3. Moreover, for every n, n ^ 8, 
there exists an r\ -irreducible OVgraph with a minimal degree of vertices 3. 
For the r\-irreducible <52-graph there is given a bound for the maximum degree 
which can be obtained. Finally we give some bounds for the number of edges 
of a OVgraph depending on the number of vertices and the maximum degree 
of vertices. 

II . DEFINITIONS AND DENOTATIONS 

We use the concepts and the denotations which are not denned here 
as we used them in [1]. First of all we repeat some necessary notions and then 
we define some new notions. 

Let C7i = (U\, H\) be a graph and G = (U, H) its subgraph. Let v e U\. 
Then we denote QG.G^V) = {x \ x e U /\ QG,(X, V) = 1} n U. Instead of QG,GX(V) 
we write QG(V) if it is clear which of the supergraphs of the graph G is consi­
dered. By fi(G) we denote the set of all //-sets. 

Let us have some graphs 0± = (Ui, H{), G2 = (U2, H2); \Ui\ = n. With 
every x\ e XJ\ there is associated a set Xt <= U2. Let it denote by 2£ = {X^x. 
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Then we define the union G± © 6?2 of graphs G\, O2 through the system 9£ = 
= {X{}ti as a graph G = (Ui u U2, Hi U H2 u H'), where H' = {(xt, z)\xte 
eUuzeXi}. 

Let 6?' be the graph arising from G = (U, H) by omitting a vertex v e U 
and all the edges incident with the vertex v. The vertex v is yw-reducible if 
d(G) = d(G'), 

^-reducible if d(G) = d(G') = 2 and moreover there exists a vertex ue U, 
u 4= v such tha t Q(u) = Q(v). A graph is ju(rj)-irreducible if every vertex 
is not /bi(rj)-reducible, respectively. Let yz(G) be the system of all kernels 
of the graph G. 

Definition 1. Let G = (U, H) be the graph and nbe a natural number. Let for 
i = 1, 2, ...,n be Xi ey2(6r). Then the system of kernels {-KJf=1 is called 

A) an oc-covering of the graph G if 
n 

I. [J xk = u, 
k=l 

2. for every two vertices x, y e U with QG(X, y) > 2 there exists k such that 
x, y G Xk; 

B) an oci-covering of the graph G if the conditions 1., 2. hold and moreover 
3. Xi + Zy /O r i * j ; 

C) em oc2-covering of the graph G if the conditions 1., 2. hold and moreover 
4. for every k = 1,2, ...,n the system {X${=1 — Xk is not an oc-covering 

of the graph G. 
R e m a r k 1. From definition 1 it follows that every a2-covering is also 

an ai-covering. 
R e m a r k 2. The existence of coverings from definition 1 is obvious. I t is 

also clear that for a graph more coverings may exist. 

Definition 2. TVe call the graph G = (U, H), where U = {zo, zi, . . . , zk}, 
H = {(zo, Zi) | i = 1, 2, ..., k} a star formed by the set of vertices U and denote 
it by Fk. 

I I I . RESULTS 

First of all we give some necessary and sufficient conditions for a graph 
in order to be a OVgraph or an 77-irreducible <52-graph, respectively. 

Theorem 1. Let G = (U, H) be a graph; ZQ G U. Then G is a b^-graph if and 
only if G is the union Fk © R of the graphs Fk, R = (V,E) through the system 
{ni}i=i where R is a graph without triangles and Fk is the star formed by the 
vertex set A = {zj*=0, (A n V = 0) whereby TZQ = 0; {:7rjf=1 is an oc-covering 
of the graph R. 
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(The set of vertices n% <-= V is associated to the vertex z% e A). 
Proof . Let G = (U, H) be a OVgraph; zo e U. Let us put A = {z0} U -Q(z0), 

R = (V, E) where V = U — A, E = {(x, y) | (x, y)sH\ x,ye V}. I t is clear 
tha t R does not contain any triangle. Obviously QR(ZQ) = 0. I t is easy to verify 
that the set QR(ZI), i = 1, 2, . . . . k is a kernel of the graph R. Let us put 
m = -Q/jfe), i = 1, 2, ..., k. The system {QR(Zi)k

i=1 is an a-covering of the 
k 

graph R. In the opposite case either V — ( J QR(Z%) = M 4= 0 and then 

£G(#> ZO) > 2 for x e .M (this is a contradiction with the assumption d(G) = 2) 
or there exist vertices x, y e V such that Dij(x. y) > 2 and #, y 4= QR(ZI) for 
all i. Then OG(O;, ?/) > 2, which is also a contradiction. 

Now we shall prove tha t the union Fk © R of such graphs F^, i? is a (Vgraph. 
I t is obvious tha t Fjc © R does not contain a triangle. Hence, we only need 
to prove that d(G) = 2. 

I t is clear tha t QG(ZO, X) < 1 for x <fc V, Let x £ V. Then there exists i, 1 ^ 
^ i ^ & such that XEQR(ZI) and hence OG(ZO, #) = 2. The set QR(ZJ) is 
a kernel of the graph R, hence QG(ZO, X) ^ 2. If #, ?/ e V and Oi^x, y) > 2 
then from the definition of an a-covering it follows tha t there exist i, 1 ^ i ^ k 
such that x, y e QR(ZI) and hence QG(%, y) = 2- I t is obvious that DG(zi, x) ^ 2 
for all x e U. 

Theorem 2. i e l 6? = (U, H)bea b^-graph, \U\ ^ 4. TAew 6? is aw rj-irreducible 
fa-graph if and only if 

V { -̂}*-i *5 an discovering of the graph R = (V, E), 
2. QR(X) 4= QR(y) for all x, y e V, x 4= y, 
3. QR(X) 4= 0 for every vertex x e V. 
R e m a r k . The denotations in this Theorem are used in the same sense 

as in Theorem 1. 
Proof . Let G be an ^-irreducible (52-graph. By Theorem 1 G = F& © R. 

If QR(X) = 0 for x G V, then QR(X) = QR(Z0) = 0 and so we must have 
QG(%) = QG(ZO) which is a contradiction. If QR(X) = QR(y) for x,y e V, 
x 4= y then we would have QG(X) = Qo(y), but this is impossible. Hence the 
system {QR(zi)}^1 is an ai-covering of the graph R. 

Let the conditions 1., 2., 3. be fulfilled. For i 4= j we have QG(Z%) 4= QG(ZJ) 

because otherwise it would be QR(ZI) = QR(ZJ) and that would be a contra­
diction. I t is obvious that QG(ZO) =t= QG(ZI)I i = 1, 2, ..., k. For xeV we 
have QG(ZO) + QG(%) because otherwise it would be QR(X) = 0 and it is 
a contradiction. Hence G is an ^-irreducible 6Vgraph. 

Assertion 1. Let G = (U,H) be a /n-irreducible digraph. Let 9C = {n0)
k
=1, 

R = (V,E) have the same meaning as in Theorem 2. Then 3C is an ^-covering 
of the graph R. 
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Proof . Let us suppose that SC is not an a2-covering of the graph E. Then 
there exists a number m such that {^}|Li — ~m is an a-covering, hence the 
vertex zm is a ^-reducible vertex and this is not possible. 

R e m a r k 3. The reverse assertion does not hold as the graph in Figure 1 

shows. 

Fig. 1. 

The system {{6, 8, 10}, {6, 9, 11}, {7, 9, 10}, {7, 8, 11}} is an a2-covering 

of the graph E = (V,E), where V = {6, 7, 8, 9, 10, 11} andF7 = {(6, 7), (8, 9), 

(10, 11)}; but in this graph the vertex 1 is ^-reducible. 

Assertion 2. For every graph Gi without triangles there exists a b^-graph 6r2 

such that G\ is a section graph of the graph C72. 

Proof . The assertion follows immediately from Theorem 1 if we take for 

the graph E the graph G\. 

R e m a r k 4. Let G = (U, H) be a (32-graph and \U\ = n. Then it is clear 

that for every vertex x e U we have 1 ^ |-Q(#)| < n — 1, with equalities for 

the star FV_i. 
The following two theorems give some estimations for the degrees of the 

vertices of 77-irreducible (Vgraphs. 

Theorem 3. Let G = (U,H) be an rj-irreducible digraph. Let us denote 

k = max |-Q(a)|, \U\ = n. Then k ^ [y] where y is the root of the equation 
xeu 
n — 1 x 

x = 22 - 2 2 . 

Proof . According to Theorem 2 we may write G = Fr © E, E = (V,E) 

where z0 is an arbitrary vertex from U, r = |-Q(zo)|, IVI = n — r — 1. Since 

the system {^(^)}f=1 is an ai-covering of the graph E, r < \yi(E)\ holds. 

By Theorem 6 from [1], \y<z(E)\ ^ 2 , i. e. r ^ 2 . Hence r ^ [y], where y 
г-l 

is the root of the equation x = 2 -2 

R e m a r k 5. The values of [y] for some numbers n are in the following table: 

n I 5 I 6 I 7 J 8 I 9 I 10 I 20 I 3 0 I 40 I 5 0 

\y] I 2~~] 2 I 2 I 3~~| 4~~j 4 | 11 | 20 | 2 9 | 38 
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R e m a r k 6. There exist ^-irreducible O2-graphs S(i) with the number 
of vertices n = 2l + 2i + 1 where i is a natural number, whereby k = [y]. 
We construct the graph S(i) according to Theorem 2 so t h a t S(i) = Fjc ® R, 
where the graph R consists of i components; every component has one edge 
and two vertices. I t is obvious that |y2(-R)| = 2l Hence it suffices to put 1c = 2l. 
This construction for i = 3 is illustrated in Figure 2. 

Fig. 2. 

R e m a r k 7. For the root y of the equation x = 2 -2 the following 

holds: 

У 
a) lim — = lim 

У 

n-»oo n ŵoo y -\- 2 log y + 1 
= V 

b) lim (n — y) = lim (y + 2 log y + 1 -- y) = oo. 
tt-*oo #-*<» 

Assertion 3. Let G = (U, H) be an rj-irreducible b2-graph, \U\ = n. Let the 
^minimum degree of vertices in G be s. Then: 

a) If s = 1 then G is isomorphic with the star F2. 
b) If s = 2 then G is isomorphic with the pentagon. 
Proof, a) Let \Q(x)\ = 1; denote Q(x) = {y}. Then for every vertex ze U — 

— {x, y} we have z e Q(y) (because otherwise Q(Z, X) > 2). Hence the graph G 
is the star FVi ,which is for every n > 3 ^-reducible, so the graph G must 
he isomorphic with the star F2. 

b) Let \Q(x)\ = 2, Q(x) = {zu z2}. Let us denote 

MQ = Q(zi) nQ(z2), 

Mi = {u\ueQ(zi) /\ueQ(z2)}, 
M2 = {u\u$ (zi) /\ue Q(z2)} 

I t is clear that xeMQ. We have Jf0 = {x} because if a vertex y would 
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exist such that y e M0, y 4= x then we would have Q(x) = Q(y), which is 
impossible. Let a e M\. Then q(a, z) = 1 holds for every vertex z e ilf2 (other­
wise it would be q(a, z) > 2). Hence \M\\ = 1 because G is ^-irreducible. 
Analogously we may prove that |Jf2| = V Thus I f 1 = {a}, M% = {b}, q(a, b) = l 
i. e. 6? is isomorphic with the pentagon. 

Theorem 4. For every natural number N there exists a jbt-irreducible b^-graph 
with the minimal degree 5 = 3 and with a number of vertices n > N. 

Proof . For every natural number p, p ^ 2 we construct a //-irreducible 
oVgraph with 3#> + 4 vertices, (the diagram of this graph is shown in Figure 3). 

Fig. 3. 

We describe the construction of these graphs using the neighbourhoods 
of the vertices; we denote A = {ajf=1, B = {bjf=1, C = {cjf=1. For every 
i = I, 2, . . . , p denote At = A -• {at}, Ct = G — {a}. Q(at) = {a0, bt} U d; 
Q(bi) = {b0, ai, a}, Q(Ci) = {c0, bi} U Ai. For the remaining vertices we have 
Q(a0) = {v}u A; Q(b0) = {v} U B; Q(c0) = {v} U C; Q(v) = {a0, b0, c0}. Now 
we show that every vertex is //-irreducible. We cannot //-reduce the vertex 

v, because then q(ao, bo) = 3, 
ao, because then Q(V, ai) = 3 for i = 1, 2, . . . , p. Analogously we find out 

that the vertices bo, Co cannost be reduced. 

For i = 1,2, ..., p we cannot //-reduce the vertex 

ai, because then q(ao, bi) = 3, 
b$, because then q(b0, a) = 3 and also o(bo, at) = 3, 
c ,̂ because then o(c0, bi) = 3 . 
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Hence, this graph is //-irreducible, the minimum degree of the vertices 
N - 4 

is 3 and it is sufficient to put p > . 
3 

Corollary 1. For every natural number n = 3k + 4, where Jc ^ 2 is natural 
there exists a /u-irreducible b^-graph with n vertices. Hence there exists an infinite 
number of [i-irreducible digraphs, and hence also of rj-irreducible digraphs. 

Theorem 5. Every /u-irreducible b^-graph with n vertices, where n ^ 10 
is isomorphic with one of graphs shown in Figures 4. 

0 
Fig. 4.1. Fig. 4.2. Fig. 4.3. 

Fig. 4.5. Fig. 4.4. 

Proof. By Theorem 2 every //-irreducible OVgraph with at least 4 vertices 
may be considered as the union Fk ® R, R = (V,E) through the system 
of bases ££, where R fulfills the conditions 2., 3. of this Theorem and 2£ is an 
ai-covering. By Assertion 3 every ^-irreducible OVgraph with minimum 
degree s < 3 is isomorphic with a graph in Figure 4.1 or 4.2. Hence it is 
sufficient to consider minimum degree s ^ 3. From Theorem 2 it follows 
that | V| ^ 6. According to Remark 5, \2£\ ^ 4. By Assertion 1 it is sufficient 
to take only those 2£ which are a2-coverings. From graphs constructed in this 
way we exclude the //-reducible and isomorphic graphs. 

Theorem 6. For every natural number n, n ^ 8 there exists an rj-irreducible 
bz-graph with n vertices and minimum degree s = 3. 

Proof. For n = 8 and 9 there are such graphs on Figure 4.3 and 4.4. In the 
proof of Theorem 4 we constructed //-irreducible O2-graphs for n = 3p -f- 4, 
where p ^ 2. By a ^/-extension through the system A U {bo,Co} we obtain 
^-irreducible O2-graphs with 3p + 5 vertices and by a ^-extension of these 
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graphs through the set B U {ao, c0} there arise ^-irreducible ^2-graphs with 
3p -f- 6 vertices. Hence we are able to construct an ^-irreducible G2-graph 
for all n ^ 8. I t is obvious that the degree of the vertex v (see Figure 3) 
remains 3. 

Corollary 2. Let R = (V,E) be a graph with n vertices without triangles, 
fulfilling the conditions 2., 3. from Theorem 2. Let SC be an cci-covering of the 
graph R. Then for all n ^ 4: 

a) \X\ > 3, 
b) there exist R such that \2£\ = 3. 

Corollary 3.1. Let G be an rj-irreducible b^-graph with n vertices and M e JLC(G). 

Then \M\ > 3 for n > 5. 

Corollary 3.2. For all n ^ 8 there exists an r\-irreducible b^-graph with n 
vertices and M e /u(G) such that \M\ = 3. 

P r o o f of C o r o l l a r y 3.L Let M e ju(G) exist such tha t \M\ = 2. I t follows 
from Assertion 3 for n > 5 that M cannot be the neighbourhood of any vertex. 
If we /^-extend the graph G through M, we get an 77-irreducible OVgraph 
with n -f- 1 vertices (n -f- 1 > 6) and with minimum degree 2. This is a contra­
diction with Assertion 3. 

Theorem 7. Let G = (U, H) be a b^-graph. Let \U\ = n, \H\ = m. 

A. If k = max \Q(x)\ then m ^ k(n — k). 
xs U 

B. If p = max \M\ then m < p(n — p). 
Mefi(G) 

Proof . A. Let for a e U be \Q(a)\ = k. Since for every two vertices y\, yz e 
e Q(a) we have (y\, y<i)$H, hence for every y e Q(a) we have \Q(y) < n — k 
and for the remaining vertices z e U it is obvious chat \Q(z)\ ^ k holds. Thus 
we may write: 2m = 2 |-Q(#)| ^ Hn — k) -\- (n — k)k, and hence m ^ k(n — k). 

xeU 

n 
~2 

then k ^ p ^ 
n 

2 
B. 1. If p -̂  — then k ^ p ^ — and hence m < k(n — k) ^ p(n — p). 

2. We shall prove by induction the assertion for p ^ . Our theorem 
n + 1 

2 
obviously holds for graphs with |U| — 3. Let us suppose tha t the assertion 
holds for graphs with at most n vertices. Let us consider a graph G = (U, H) 
where |U| = n + 1, max \M\ = p = \M\\, Mi e JLI(G). Let y be an arbitrary 

Men(G) 

vertex from M\. Then there exists at most one vertex xe Q(y) such tha t 
the set (Mi — {y}) U {x} is a ^-set of the graph G. In the reverse case there 
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exist at least two such vertices x\, x2 and one may form a ^-set N = (M — {y}) U 
U {xi, X2} with |N| > p which is a contradiction with the assumption. 

By omitting the vertex y and the edges incident with it we get the graph G' 
which we may complete to a oVgraph G" by adding to it some edges. For G" 
it is obvious that either max IMI == p — 1 and because of \Q(y)\ ^ n + 1 — p 

Me»{G») ' ^ ' KUn * 

we have m ̂  (p — 1) [n — (p — 1)] + n + 1 — p = p(n + 1 — p) or max |M| = 

= p and we have m ^ p(n — p) + n-\-l—p= p(n + 1 — p)-\- (n + 1 — 

— 2p) ^ p(n + 1 — p), since w + 1 — 2j? ^ 0 for p > 
2 j 

R e m a r k 8. Assertion A from Theorem 7 may be evidently sharpened 
n n 

as follows: m ^ fc— if k ^ —. In the proof of Assertion A \Q(y)\ ^ min (k, n—k) 
- J _ j 

n 
for every 1/ e Q(a); thus |-Q(;*/)| ^ k for k ^ —. Hence 2m ^ k . k + (w — k)k = 

n 
= nk, i. e. m ^ k —. 

2 

Corollary 4. Le£ G = (U, H) be a graph without triangles. Let \U\ = n 

|H| = m. Then m ^ — . (See also [2]). 
4 
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