John W. Moon On Cycles in Tournaments

Matematický časopis, Vol. 19 (1969), No. 2, 121--125

Persistent URL: http://dml.cz/dmlcz/127094

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ON CYCLES IN TOURNAMENTS(1)

J. W. MOON, Edmonton (Canada)

§ 1. SUMMARY

If R denotes a set of r points chosen from a tournament (complete oriented graph) T_n with n points, then for which integers h do there exists cycles in T_n of length h that contain every point of R? Kotzig [2] answered this question when n is odd and there are an equal number of arcs oriented towards and away from each point of T_n . Our object here is to show that Kotzig's argument may be extended to yield analogous results for irreducible tournaments in general.

§ 2. DEFINITIONS

A tournament T_n consists of n points p_1, p_2, \ldots, p_n such that each pair of distinct points p_i and p_j is joined by one and only one of the oriented arcs $\overrightarrow{p_ip_j}$ or $\overrightarrow{p_jp_i}$. If the arc $\overrightarrow{p_ip_j}$ is in T_n , then we say that p_i beats p_j and that p_j loses to p_i . The score of a point p is the number s(p) of points that p beats. A tournament T_n is regular if the scores of its points are as nearly equal as possible, that is, if s(p) = m for every point p when n = 2m + 1 and s(p) == m - 1 or m for every point p when n = 2m.

A sequence of the type (a, ab, b, bc, ..., l, lm, m) is called a *path* from a to m; if the arc ma is also included in the sequence then it is called a *cycle* (we assume that the points a, b, ..., m are all distinct). The *length* of a path or cycle is the number of arcs it contains; we adapt the convention that a single point constitutes a path of length zero and a cycle of length one. Cycles and paths of length k will be denoted by C_k and P_k .

If it is possible to partition the points of a tournament T_n into two non-

⁽¹⁾ This paper was prepared during the Summer Institute of the Canadian Mathematical Congress at Dalhousie University, Halifax, Nova Scotia.

empty sets B and A such that every point of B beats every point of A, then T_n is *irreducible*; if not, then T_n is *irreducible*. Every reducible tournament T_n has a unique decomposition into irreducible subtournaments $T^{(1)}$, $T^{(2)}$, ..., $T^{(l)}$ such that every point of $T^{(j)}$ beats every point of $T^{(i)}$ if $1 \leq i < j \leq l$; the subtournaments $T^{(1)}$ and $T^{(l)}$ are the *bottom* and *top components* of T_n and the remaining irreducible subtournaments are the *intermediate components* of T_n . A tournament T_n is irreducible if and only if there exists a path from p to q for every ordered pair of points p and q of T_n (see Roy [4]).

If C_k is a cycle in the tournament T_n , let $B(C_k)$ $(L(C_k))$ denote the set of points of $T_n - C_k$ that beat (lose to) every point of C_k and let $M(C_k)$ denote the remaining points of $T_n - C_k$. It is easy to see that a point p of $T_n - C_k$ belongs to $M(C_k)$ if and only if there exist two consecutive points of the cycle C_k , e and f say, such that e beats p and p beats f. We shall frequently use the same symbol to denote the set of points of a tournament or cycle as we use to denote the tournament or cycle itself.

§ 3. RESULTS ON CYCLES

The following two lemmas are direct consequences of the hypotheses and the definition of irreducibility (see lemmas 1 and 2 of [2]).

Lemma 1. If C_k is a cycle of the irreducible tournament T_n and if p is any point of $T_n - C_k$, then there exists a cycle C_{k+1} in T_n such that $C_k \cup p \subset C_{k+1}$ if and only if $p \in M(C_k)$.

Lemma 2. If C_k is a cycle of the irreducible tournament T_n such that k < nand $M(C_k) = \emptyset$, then there exists at least one point l in $L(C_k)$ and at least one point b in $B(C_k)$ such that l beats b. Furthermore,

- (a) there exists a cycle C_{k+2} in T_n such that $C_k \cup l \cup b \subset C_{k+2}$, and
- (b) if w is any point of the cycle C_k and $k \neq 1$, then there exists a cycle C_{k+1} in T_n such that $(C_k - w) \cup l \cup b \subset C_{k+1}$.

Theorem 1. If C_k is a cycle of the irreducible tournament T_n and if $1 \le k < < h \le n$, then there exists a cycle C_h in T_n such that $C_k \subset C_h$ except when h = k + 1 and $M(C_k) = \emptyset$.

This follows by induction on h, using Lemmas 1 and 2; whenever we apply Lemma 2b we take w to be one of the points added to C_k at an earlier stage. (See Lemmas 3, 4, and 5 of [2].)

The following result, obtained by letting k = 1, is stated in [3].

Corollary 1. If p is any point of the irreducible tournament T_n and if $3 \leq \leq h \leq n$, then there exists a cycle C_h in T_n such that $p \in C_h$.

A tournament is *Hamiltonian* if it contains a cycle passing through every point once and only once; if a tournament is reducible then it obviously is not Hamiltonian. Hence, corollary 1 implies the following result due to Camion [1].

Corollary 2. A tournament is Hamiltonian if and only if it is irreducible.

§ 4. RESULTS ON REDUCIBLE SUBTOURNAMENTS

If T_u and T_v denote the bottom and top components of a reducible subtournament T_r of an irreducible tournament T_n , let x(y) be one of the points of $T_u(T_v)$ that beats the smallest (greatest) number of other points of $T_u(T_v)$. (These numbers need not be the same as the scores s(x) and s(y) of x and yin the tournament T_n). Let $m(T_r)$ denote the length of any shortest path P_m in T_n of the form $(t_0, t_0 t_1, t_1, \ldots, t_{m-1} t_m, t_m)$ where t_0 is in T_u and t_m is in T_v . It is clear that P_m exists (since T_n is irreducible) and that none of the points t_1, \ldots, t_{m-1} belong to T_u or T_v . Let z denote the number of points in the intermediate components of T_r that do not belong to the path P_m .

Lemma 3. If T_r is a reducible subtournament of an irreducible tournament T_n , then

$$2 \leq m(T_r) \leq \max \{2, 3 + s(y) - s(x) - z - \frac{1}{2}(u+v)\}$$

Proof. Every point of T_v beats every point of T_u , so it must be that $m = m(T_r) \ge 2$; let us suppose that m > 2. Since P_m is a shortest path from T_u to T_v it follows that every point of T_u loses to the m - 2 points $t_2, t_3, \ldots, t_{m-1}$ and that every point of T_v beats the m - 2 points $t_1, t_2, \ldots, t_{m-2}$. Furthermore, every point of T_u loses to the z points in the intermediate components of T_r that do not belong to P_m and to the v points of T_v ; similarly, every point of T_v beats these same z points and the u points of T_u .

Let e and f denote the number points of T_n belonging neither to T_r nor to P_m that the point x beats and loses to; the point y must beat all the e points that lose to x (since m > 2) and

(1)
$$e+f+u+v+z+(m-1)=n$$
.

Finally, x must lose to at least $\frac{1}{2}(u-1)$ points of T_u and y must beat at least $\frac{1}{2}(v-1)$ points of T_v .

If we combine all these statements we obtain the inequalities

(2)
$$(n-1) - s(x) \ge (m-2) + z + v + f + \frac{1}{2}(u-1)$$

and

(3)
$$s(y) \ge (m-2) + z + u + e + \frac{1}{2}(v-1)$$
.

123

1

It follows from (1), (2), and (3) that

(4)
$$m \leq 3 + s(y) - s(x) - z - \frac{1}{2}(u+v),$$

and the lemma is proved.

Lemma 4. If T_r is a reducible subtournament of an irreducible tournament T_n and if $k(T_r)$ denotes the length of any shortest cycle C_k in T_n such that $T_r \subset C_k$, then

 $r + 1 \leq k(T_r) \leq \max\{r + 1, 2 + s(y) - s(x) + \frac{1}{2}(u + v)\}.$

Proof. Let P_m denote, as before, a shortest path from the bottom component T_u of T_r to the top component T_v . It follows from corollary 2, that the points of T_u and T_v can be labelled u_1, u_2, \ldots, u_u and v_1, v_2, \ldots, v_v so that $u_u = t_0, v_1 = t_m$, and u_i beats u_{i+1} for $i = 1, 2, \ldots, u - 1$ and v_j beats v_{j+1} for $j = 1, 2, \ldots, v - 1$. The cycle

$$C = P_m \cup (v_1v_2, v_2, v_2v_3, \ldots, v_v, v_vu_1, u_1, u_1u_2, \ldots, u_{u-1}u_u)$$

has the length $m(T_r) - 1 + u + v$ and it contains every point of T_r except the z points in the intermediate components of T_r that do not belong to the path P_m . We may apply Lemma 1 to these z points and conclude that there exists a cycle of length $m(T_r) - 1 + u + v + z$ that contains every point of T_r . The required result now follows from Lemma 3.

§ 5. MAIN THEOREM

The preceding results may be combined to yield the following theorem. (If T_r is a subtournament of T_n we let $M(T_r)$ denote the set of points p of $T_n - T_r$ such that p beats at least one and loses to at least one point of T_r).

Theorem 2. Let T_r denote a subtournament of an irreducible tournament T_n . (a) If T_r is irreducible and $r \leq h \leq n$, then there exists a cycle C_h in T_n such that $T_r \subset C_h$ except when h = r + 1 and $M(T_r) = \emptyset$.

(b) If T_r is reducible and $k(T_r) \leq h \leq n$, then there exists a cycle C_h in T_n such that $T_r \subset C_h$.

Corollary 3. Let T_r denote a subtournament of a regular tournament T_n . If $1 \leq r \leq h \leq n$, then there exists a cycle C_h in T_n such that $T_r \subset C_h$ except when

(a) T_r is irreducible, h = r + 1, and $M(T_r) = \emptyset$,

(b) T_r is reducible and h = r, or

(c) r = 2, h = 3, n is even, and $M(T_r) = \emptyset$.

Proof. (This corollary is essentially the same as Theorem 5 of [2] when n

is odd and r > 2). It is easy to show that a regular tournament T_n is irreducible when $n \neq 2$ (recall that a tournament T_n is reducible if and only if the sum

of the k smallest scores of T_n equals $\binom{k}{2}$ for some integer k where k < n).

Hence, we can apply Theorem 2 when $n \neq 2$. If T_r is irreducible there is nothing more to prove. If T_r is reducible and $r \neq 2$ then it follows from Lemma 4 that $k(T_r) = r + 1$ when T_n is regular since $2 + s(y) - s(x) + \frac{1}{2}(u + v) \leq \leq 3 + \frac{1}{2}r < r + 2$ if r > 2; similarly, if r = 2 then $k(T_r) = r + 1$ when nis odd, and $k(T_r) = r + 2$ or r + 1 according as $M(T_r)$ is or is not empty when n is even. This suffices to complete the proof of the corollary since it is clearly true when n = 2.

In closing we remark that in view of the unique decomposition every reducible tournament has into irreducible components there is no serious loss of generality in assuming T_n is irreducile in Theorem 2.

REFERENCES

- Camion P., Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris 249 (1959), 2151–2152.
- [2] Kotzig A., Cycles in a complete graph oriented in equilibrium, Mat. Fyz. časop. 16 (1966), 175-182.
- [3] Moon J. W., On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297-301.
- [4] Roy B., Sur quelques propriétes des graphes fortement connexes, C. R. Acad. Sci. Paris 247 (1958), 399-401. Received May 27, 1967.

University of Alberta Edmonton, Alberta, Canada