Malkhaz Ashordia
Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations

Persistent URL: http://dml.cz/dmlcz/127304

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
CRITERIA OF CORRECTNESS OF LINEAR BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

MALKHAZ ASHORDIA, Tbilisi

(Received August 30, 1993)

STATEMENT OF THE PROBLEMS AND FORMULATION OF THE MAIN RESULTS

Let the matrix-and vector-functions $A: [a, b] \rightarrow \mathbb{R}^{n \times n}$ and $f: [a, b] \rightarrow \mathbb{R}^n$ be of bounded variation, $c_0 \in \mathbb{R}^n$ and $l_0: BV_n(a, b) \rightarrow \mathbb{R}^n$ be a bounded linear operator such that the boundary value problem

\begin{align*}
(1.1_0) \quad \frac{dx(t)}{dt} &= dA_0(x(t)) + df_0(t), \\
(1.2_0) \quad l_0(x) &= x_0
\end{align*}

has a unique solution x_0.

Consider the sequences of matrix-and vector-functions $A_k: [a, b] \rightarrow \mathbb{R}^{n \times n}$ ($k = 1, 2, \ldots$) and $f_k: [a, b] \rightarrow \mathbb{R}^n$ ($k = 1, 2, \ldots$) of bounded variation, a sequence of constant vectors $C_k \in \mathbb{R}^n$ ($k = 1, 2, \ldots$) and a sequence of linear continuous operators $l_k: BV_n(a, b) \rightarrow \mathbb{R}^n$ ($k = 1, 2, \ldots$). In [1] sufficient conditions are given for the problem

\begin{align*}
(1.1_k) \quad \frac{dx(t)}{dt} &= dA_k(x(t)) + df_k(t), \\
(1.2_k) \quad l_k(x) &= C_k
\end{align*}

to have a unique solution x_k for sufficiently large k and

\begin{equation}
\lim_{k \rightarrow +\infty} x_k(t) = x_0(t)
\end{equation}

uniformly on $[a, b]$.

In this paper the necessary and sufficient conditions are established for a sequence of boundary value problems of form (1.1_k), (1.2_k) to have the above mentioned property.
An analogous question is studied in [27] for the boundary value problem for a system of ordinary differential equations.

The theory of generalized ordinary differential equations enables one to investigate ordinary differential and difference equations from the commonly accepted standpoint. Moreover, the convergence conditions for difference schemes corresponding to boundary value problems for systems of ordinary differential equations can be obtained from the results on the correctness of boundary value problems for systems of generalized ordinary differential equations [1, 8–11].

Throughout the paper the following notation and definitions will be used:

\[\mathbb{R} = (-\infty, +\infty); \]

\[\mathbb{R}^n \] is the space of all real column \(n \)-vectors \(x = (x_i)_{i=1}^n \) with the norm

\[\|x\| = \sum_{i=1}^n |x_i|; \]

\[\mathbb{R}^{n \times m} \] is the space of all real \(n \times m \)-matrices \(X = (x_{ij})_{i,j=1}^{n,m} \) with the norm

\[\|X\| = \max_{j=1,\ldots,m} \sum_{i=1}^n |x_{ij}|. \]

If \(X \in \mathbb{R}^{n \times n} \), then \(X^{-1} \) and \(\det(X) \) are respectively the matrix inverse to \(X \) and the determinant of \(X \); \(I \) is the identity \(n \times n \)-matrix;

\(\nabla(X) \) is the total variation of a matrix-function \(X : [a, b] \to \mathbb{R}^{n \times m} \), i.e., the sum of total variations of the latter’s components;

\(X(t-) \) and \(X(t+) \) (\(X(a-) = X(a), X(b+) = X(b) \)) are the left and the right limit of the matrix-function \(X : [a, b] \to \mathbb{R}^{n \times m} \) at the point \(t \);

\(d_1 X(t) = X(t) - X(t-) \), \(d_2 X(t) = X(t+) - X(t) \);

\(C_n(a, b) \) is the space of all continuous vector-functions \(x : [a, b] \to \mathbb{R}^n \) with the norm

\[\|x\|_{C^1} = \max \left\{ \|x(t)\| : t \in [a, b] \right\}; \]

\(\tilde{C}_n(a, b) \) and \(\tilde{C}_{n \times n}(a, b) \) are respectively the sets of all absolutely continuous vector- and matrix-functions;

\(BV_n(a, b) \) is the space of all vector-functions of bounded variation \(x : [a, b] \to \mathbb{R}^n \) with the norm

\[\|x\|_{sup} = \sup \left\{ \|x(t)\| : t \in [a, b] \right\}; \]

\(BV_{n \times n}(a, b) \) is the set of all matrix-functions of bounded variation \(X : [a, b] \to \mathbb{R}^{n \times n} \), i.e., such that \(\nabla(X) < +\infty \).
If $g \in \mathcal{BV}_1(a,b)\colon x\colon [a,b] \to \mathbb{R}$ and $a \leq s < t \leq b$, then
\[
\int_s^t x(\tau) \, dg(\tau) = x(t) \, d_1 g(t) + x(s) \, d_2 g(s) + \int_{[s,t]} x(\tau) \, dg(\tau),
\]
where $\int_{[s,t]} x(\tau) \, dg(\tau)$ is Lebesgue-Stieltjes integral over the open interval $]s,t[$ (if $s = t$, then $\int_s^s x(\tau) \, dg(\tau) = 0$);

If $G = (g_{ij})_{i,j=1}^n \in \mathcal{BV}_{n \times n}(a,b)$, $x = (x_i)_{i=1}^n : [a,b] \to \mathbb{R}^n$, $X = (x_{ij})_{i,j=1}^n : [a,b] \to \mathbb{R}^{n \times n}$ and $a \leq s \leq t \leq b$, then
\[
\int_s^t dG(\tau) \cdot x(\tau) = \left(\sum_{k=1}^n \int_s^t x_k(\tau) \, dg_{ik}(\tau) \right)_{i=1}^n,
\]
\[
\int_s^t dG(\tau) \cdot X(\tau) = \left(\sum_{k=1}^n \int_s^t x_{kj}(\tau) \, dg_{ik}(\tau) \right)_{i,j=1}^n,
\]
\[
\mathcal{B}(G,x)(t) = G(t) \cdot x(t) - G(a) \cdot x(a) - \int_a^t dG(\tau) \cdot x(\tau),
\]
\[
\mathcal{B}(G,X)(t) = G(t) \cdot X(t) - G(a) \cdot X(a) - \int_a^t dG(\tau) \cdot X(\tau),
\]
\[
\mathcal{I}(G,X)(t) = \int_a^t d[G(\tau) + \mathcal{B}(G,X)(\tau)] \cdot G^{-1}(\tau);
\]

$||l||$ is the usual norm of the bounded linear continuous operator l.

Let $k \in \{0,1,\ldots\}$ be fixed. A function $x \in \mathcal{BV}_n(a,b)$ is called a solution of problem (1.1), (1.2) if it satisfies condition (1.2) and

(1.4) \hspace{1cm} x(t) = x(s) + \int_s^t dA_k(\tau) \cdot x(\tau) + f_k(t) - f_k(s) \quad \text{for} \quad a \leq s \leq t \leq b.

Alongside with (1.1), we shall consider the corresponding homogeneous system

(1.5) \hspace{1cm} dx(t) = dA_k(t) \cdot x(t).

A matrix-function $Y \in \mathcal{BV}_{n \times n}(a,b)$ is called a fundamental matrix of the homogeneous system (1.5) if

\[
Y(t) = Y(s) + \int_s^t dA_k(\tau) \cdot Y(\tau) \quad \text{for} \quad a \leq s \leq t \leq b
\]

and

$\det(Y(t)) \neq 0$ for $t \in [a,b]$.

387
Definition 1.1. We say that a sequence \((A_k, f_k, l_k) (k = 1, 2, \ldots)\) belongs to the set \(S(A_0, f_0, l_0)\) if for every \(c_0 \in \mathbb{R}^n\) and \(c_k \in \mathbb{R}^n (k = 1, 2, \ldots)\) satisfying the condition

\[\lim_{k \to +\infty} C_k = C_0\]

the problem \((1.1_k), (1.2_k)\) has a unique solution \(x_k\) for any sufficiently large \(k\) and \((1.3)\) holds.

Without loss of generality we may assume that \(A_k(a) = 0 (k = 0, 1, \ldots)\) and \(f_k(a) = 0 (k = 0, 1, \ldots)\).

Theorem 1.1. Let conditions \((1.6)\).

\[(1.7)\] \[\lim_{k \to +\infty} l_k(y) = l_0(y) \quad \text{for} \quad y \in BV_n(a, b),\]

\[(1.8)\] \[\lim_{k \to +\infty} \sup \|l_k\| < +\infty\]

and

\[(1.9)\] \[\det (I + (-1)^j a_j A_0(t)) \neq 0 \quad \text{for} \quad t \in [a, b] (j = 1, 2)\]

hold. Then

\[(1.10)\] \[\{(A_k, f_k, l_k)\}_{k=1}^{+\infty} \in S(A_0, f_0, l_0)\]

if and only if there exists a sequence of matrix-functions \(H_k \in BV_{n \times n}(a, b) (k = 0, 1, \ldots)\) such that

\[(1.11)\] \[\lim_{k \to +\infty} \sup_{a}^{b} \left\{ H_k + B(H_k, A_k) \right\} < +\infty.\]

\[(1.12)\] \[\inf \{ |\det (H_0(t))| : t \in [a, b] \} > 0\]

and the conditions

\[(1.13)\] \[\lim_{k \to +\infty} H_k(t) = H_0(t)\]

\[(1.14)\] \[\lim_{k \to +\infty} B(H_k, A_k)(t) = B(H_0, A_0)(t)\]

\[(1.15)\] \[\lim_{k \to +\infty} B(H_k, f_k)(t) = B(H_0, f_0)(t)\]

are fulfilled uniformly on \([a, b]\).
Corollary 1.1. Let $A_k \in \tilde{C}_{n \times n}(a,b)$ $(k = 0, 1, \ldots)$. $f_k \in \tilde{C}_n(a,b)$ $(k = 0, 1, \ldots)$ and $l_k : C_n(a,b) \to \mathbb{R}^n (k = 0, 1, \ldots)$ be a sequence of linear continuous operators satisfying equality (1.7) on the set $\tilde{C}_n(a,b)$. Let, moreover, conditions (1.6) and (1.8) be satisfied. Then (1.10) holds if and only if there exists a sequence of matrix-functions $H_k \in \tilde{C}_{n \times n}(a,b)$ $(k = 0, 1, \ldots)$ such that

$$\lim_{k \to +\infty} \sup_{a \leq s \leq b} \int_a^b \|H_k'(s) + H_k(s)P_k(s)\| \, ds < +\infty$$

and conditions (1.13).

$$\lim_{k \to +\infty} \int_a^t H_k(s)P_k(s) \, ds = \int_a^t H_0(s)P_0(s) \, ds$$

and

$$\lim_{k \to +\infty} \int_a^t H_k(s)q_k(s) \, ds = \int_a^t H_0(s)q_0(s) \, ds$$

are fulfilled uniformly on $[a,b]$, where

$$P_k(t) = A_k'(t), \quad q_k(t) = f_k'(t).$$

Note that Corollary 1.1 represents a more precise version of Theorem 1 from [7].

Theorem 1.2. Let $A_0^* \in BV_{n \times n}(a,b)$. $f_0^* \in BV_n(a,b)$. $c_0^* \in \mathbb{R}^n$ and $l_0^* : BV_n(a,b) \to \mathbb{R}^n$ be a linear continuous operator such that

$$(1.16) \quad \det \left(I + (-1)^j d_j A_0^*(t) \right) \neq 0 \quad \text{for} \quad t \in [a,b] (j = 1, 2)$$

and the boundary value problem

$$(1.17) \quad dA_0^*(t) = x(t) \, dt + df_0^*(t),$$

$$(1.18) \quad l_0^*(x) = c_0^*$$

has a unique solution x_0^*. Moreover, let there exist sequences of matrix and vector-functions. $H_k \in BV_{n \times n}(a,b)$ $(k = 1, 2, \ldots)$ and $h_k \in BV_n(a,b)$ $(k = 1, 2, \ldots)$ such that

$$(1.19) \quad \inf \left\{ \det \left(H_k(t) \right) : t \in [a,b] \right\} > 0$$

for sufficiently large k and for the sequences

$$l_k^*(y) = l_k(H_k^{-1}y) \quad (k = 1, 2, \ldots), \quad A_k^*(t) = I(H_k, A_k)(t) \quad (k = 1, 2, \ldots).$$
and
\[f_k^*(t) = h_k(t) - h_k(a) + \mathcal{B}(H_k, f_k)(t) - \int_0^t dA_k(s) : h_k(s) \quad (k = 1, 2, \ldots) \]

the conditions
\begin{align*}
(1.20) & \quad \lim_{k \to +\infty} \left[C_k + l_k^*(h_k) \right] = C_0^* , \\
(1.21) & \quad \lim_{k \to +\infty} l_k^*(y) = l_0^*(y) \quad \text{for } y \in BV_n(a, b) , \\
(1.22) & \quad \lim_{k \to +\infty} \sup_{t \in [a, b]} \| l_k^* \| < +\infty , \\
(1.23) & \quad \lim_{k \to +\infty} \sup_{t \in [a, b]} (A_k^*) < +\infty
\end{align*}

hold and the following conditions
\begin{align*}
(1.24) & \quad \lim_{k \to +\infty} A_k^*(t) = A_0^*(t) , \\
(1.25) & \quad \lim_{k \to +\infty} f_k^*(t) = f_0^*(t) ,
\end{align*}

are fulfilled uniformly on \([a, b]\). Then for any sufficiently large \(k\) problem \((1.1_k), (1.2_k)\) has a unique solution \(x_k\) and
\begin{equation}
(1.26) \quad \lim_{k \to +\infty} \| H_k x_k + h_k - x_0^* \|_{sup} = 0 .
\end{equation}

Corollary 1.2. Let \((1.7), (1.9), (1.11), (1.12)\).
\begin{equation}
(1.27) \quad \lim_{k \to +\infty} \left[C_k - l_k(\varphi_k) \right] = \epsilon_0
\end{equation}

hold and conditions \((1.13), (1.14)\) and
\begin{equation}
(1.28) \quad \lim_{k \to +\infty} \left[\mathcal{B}(H_k, f_k - \varphi_k)(t) + \int_0^t d\mathcal{B}(H_k, A_k)(s) : \varphi_k(s) \right] = \mathcal{B}(H_0, f_0)(t)
\end{equation}

be fulfilled uniformly on \([a, b]\), where \(H_k \in BV_{n \times n}(a, b), \varphi_k \in BV_n(a, b)\). Then for any sufficiently large \(k\) problem \((1.1_k), (1.2_k)\) has a unique solution \(x_k\) and
\begin{equation}
(1.29) \quad \lim_{k \to +\infty} \| x_k - \varphi_k - x_0^* \|_{sup} = 0 .
\end{equation}
Corollary 1.3. Let (1.6)–(1.9), (1.11), (1.12) hold and conditions (1.13).

\begin{align*}
(1.30) \quad \lim_{k \to +\infty} \int_a^t H_k(s) dA_k(s) &= \int_a^t H_0(s) dA_0(s), \\
(1.31) \quad \lim_{k \to +\infty} \int_a^t H_k(s) df_k(s) &= \int_a^t H_0(s) df_0(s), \\
(1.32) \quad \lim_{k \to +\infty} d_j A_k(t) &= d_j A_0(t) \quad (j = 1, 2)
\end{align*}

and

\begin{align*}
(1.33) \quad \lim_{k \to +\infty} d_j f_k(t) &= d_j f_0(t) \quad (j = 1, 2)
\end{align*}

be fulfilled uniformly on \([a, b]\), where \(H_k \in BV_{n \times n}(a, b)\). Let, moreover, either

\begin{align*}
(1.34) \quad \lim_{k \to +\infty} \sup_{a \leq t \leq b} \left(\|d_j A_k(t)\| + \|d_j f_k(t)\| \right) < +\infty \quad (j = 1, 2)
\end{align*}

or

\begin{align*}
(1.35) \quad \lim_{k \to +\infty} \sup_{a \leq t \leq b} \sum_{a \leq s \leq b} \|d_j H_k(t)\| < +\infty \quad (j = 1, 2)
\end{align*}

Then (1.10) holds.

Corollary 1.4. Let (1.6)–(1.9), (1.11), (1.12) hold and conditions (1.13).

\begin{align*}
(1.36) \quad \lim_{k \to +\infty} A_k(t) &= A_0(t), \\
(1.37) \quad \lim_{k \to +\infty} f_k(t) &= f_0(t), \\
(1.38) \quad \lim_{k \to +\infty} \int_a^t d\left[H^{-1}_0(s) H_k(s) \right] \cdot A_k(s) &= A_0(t)
\end{align*}

and

\begin{align*}
(1.39) \quad \lim_{k \to +\infty} \int_a^t d\left[H^{-1}_0(s) H_k(s) \right] \cdot f_k(s) &= f_0(t)
\end{align*}

be fulfilled uniformly on \([a, b]\), where \(A_0, \ H_k \in BV_{n \times n}(a, b); \ f_0, f_k \in BV_n(a, b)\).

Moreover, let the system

\[dx(t) = dA_0(t) \cdot x(t) + df_0(t),\]
where $A_0(t) = A_0(t) - A_1(t), f_0(t) = f_0(t) - f_1(t)$ has the unique solution satisfying condition (1.20). Then

$$
((A_k, f_k, l_k))_{k=1}^{+\infty} \in S(A_0, f_0, l_0).
$$

Corollary 1.5. Let (1.6) (1.9) hold and there exist a natural number m and matrix-and vector-functions $A_0j \in BV_{n \times n}(a, b)$ ($j = 1, \ldots, m$), $A_0m(t) = A_0(t)$ and $f_0j \in BV_n(a, b)$ ($j = 1, \ldots, m$). $f_0m(t) = f_0(t)$ such that

$$
\lim_{k \to +\infty} \sup_{a}^{b} (A_{km}) < +\infty
$$

and for every $j \in \{1, \ldots, m\}$ the conditions

$$
\lim_{k \to +\infty} A_kj(t) = A_0j(t),
$$

$$
\lim_{k \to +\infty} f_kj(t) = f_0j(t).
$$

be fulfilled uniformly on $[a, b]$, where

$$
A_{k1}(t) = A_k(t), \quad A_{k,j+1}(t) = H_{kJ}(t) + B(H_{kJ}, A_k)(t),
$$

$$
f_{k1}(t) = f_k(t), \quad f_{kJ+1}(t) = B(H_{kJ}, f_k)(t),
$$

$$
H_{kJ}(t) = \left[I - A_{kJ}(t) + A_0j(t) \right] \times \ldots \times \left[I - A_{k1}(t) + A_{01}(t) \right].
$$

Then (1.10) holds.

Remark. Identity (2.5) from Lemma 2.1 below shows that in Theorem 1.1 and Corollaries 1.1–1.4 we can assume without loss of generality that $H_0(t) = I$ ($t \in [a, b]$).
2. Auxiliary propositions

Let \(f, g, h \in BV_1(a, b) \) and \([c, d] \subseteq [a, b]\). We shall make use of the following formulas:

\[
\begin{align*}
(2.1) & \quad \int_c^d f(s) \, d\left[\int_c^s g(\tau) \, d\tau \right] = \int_c^d f(s)g(s) \, dh(s), \\
(2.2) & \quad \int_c^d f(s) \, dg(s) + \int_c^d g(s) \, df(s) = f(d)g(d) - f(c)g(c) \\
& \quad + \sum_{c<s<d} d_1 f(s) \cdot d_1 g(s) - \sum_{c<s<d} d_2 f(s) \cdot d_2 g(s), \\
(2.3) & \quad \int_c^d f(s) \, d \left[\sum_{c<s<d} d_1 g(\tau) \right] = \sum_{c<s<d} f(s) \, d_1 g(s)
\end{align*}
\]

and

\[
\begin{align*}
(2.4) & \quad \int_c^d f(s) \, d \left[\sum_{c<s<d} d_2 g(\tau) \right] = \sum_{c<s<d} f(s) \, d_2 g(s)
\end{align*}
\]

(see [9], Theorem 1.4.25, 1.4.33 and Lemma 1.4.23).

Lemma 2.1. Let \(G, H, A \in BV_{n \times n}(a, b) \) and \(\varphi \in BV_n(a, b) \); then for any \(t \in [a, b] \) we have

\[
\begin{align*}
(2.5) & \quad B(G, B(H, A))(t) = B(GH, A)(t), \\
(2.6) & \quad B(G, B(H, \varphi))(t) = B(GH, \varphi)(t), \\
(2.7) & \quad B(G, \int_a^s \, dH(s) \cdot \varphi(s))(t) = \int_a^t \, dB(G, H)(s) \cdot \varphi(s)
\end{align*}
\]

and

\[
\begin{align*}
\mathcal{I}(G, \mathcal{I}(H, A))(t) = \mathcal{I}(GH, A)(t).
\end{align*}
\]

Proof. Let us show that (2.5) is valid. According to equalities (2.1)–(2.4) and

\[
d_j \left[\int_a^t \, dH(s) \cdot A(s) \right] = d_j H(t) \cdot A(t) \quad (j = 1, 2)
\]
we have

\[
B(G, B(H, A))(t) = G(t)B(H, A)(t) - \int_a^t dG(s) \cdot B(H, A)(s)
\]

\[
= G(t) \left[H(t)A(t) - H(a)A(a) - \int_a^t dH(s) \cdot A(s) \right]
\]

\[
- \int_a^t dG(s) \cdot \left[H(s)A(s) - H(a)A(a) - \int_a^\tau dH(\tau) \cdot A(\tau) \right]
\]

\[
= G(t)H(t)A(t) - G(a)H(a)A(a) - G(t) \int_a^t dH(s) \cdot A(s)
\]

\[
- \int_a^t dG(s) \cdot H(s)A(s) + \int_a^t dG(s) \cdot \int_a^\tau dH(\tau) \cdot A(\tau)
\]

\[
= G(t)H(t)A(t) - G(a)H(a)A(a) - \int_a^t dG(s) \cdot H(s)A(s)
\]

\[
- \int_a^t G(s) \cdot dH(s) \cdot A(s) + \sum_{\alpha < s \leq t} d_1 G(s) \cdot d_1 H(s) \cdot A(s)
\]

\[
- \sum_{\alpha \leq \tau < s} d_2 G(s) \cdot d_2 H(s) \cdot A(s) = G(t)H(t)A(t) - G(a)H(a)A(a)
\]

\[
- \int_a^t d \left[\int_a^\tau dG(\tau) \cdot H(\tau) + \int_a^\tau G(\tau) \cdot dH(\tau) \right] \cdot A(s)
\]

\[
= G(t)H(t)A(t) - G(a)H(a)A(a) - \int_a^t d\left[G(s)H(s) \right] \cdot A(s)
\]

\[
= B(GH, A)(t).
\]

The proof of equality (2.6) is analogous.

Let us verify (2.7). By (2.1) and (2.6) it can be easily shown that

\[
B \left(G, \int_a^t dH(s) \cdot \varphi(s) \right) (t) = B(G, H \varphi - B(H, \varphi))(t)
\]

\[
= B(G, H \varphi)(t) - B(G, B(H, \varphi))(t)
\]

\[
= B(G, H \varphi)(t) - B(GH, \varphi)(t)
\]

\[
= \int_a^t d \left[G(s)H(s) \right] \cdot \varphi(s) - \int_a^t dG(s) \cdot H(s) \varphi(s)
\]

\[
= \int_a^t dB(G, H)(s) \cdot \varphi(s).
\]
Finally, using (2.1), (2.5) and (2.7) we have

\[I(G, I(H, A))(t) \]
\[= \int_a^t \left[G(\tau) + B\left(G, \int_a^\tau d[H(s) + B(H, A)](s) \cdot H^{-1}(s) \right) \right] \cdot G^{-1}(\tau) \]
\[= \int_a^t \left[G(\tau) + \int_a^\tau dB(G, H + B(H, A))(s) \cdot H^{-1}(s) \right] \cdot G^{-1}(\tau) \]
\[= \int_a^t \left[G(\tau) + \int_a^\tau dB(G, H)(s) \cdot H^{-1}(s) \right. \]
\[+ \left. \int_a^\tau dB(G, B(H, A))(s) \cdot H^{-1}(s) \right] \cdot G^{-1}(\tau) \]
\[= \int_a^t \left[\int_a^\tau d[G(s)H(s)] \cdot H^{-1}(s) + \int_a^\tau dB(GH, A)(s) \cdot H^{-1}(s) \right] \cdot G^{-1}(\tau) \]
\[= \int_a^t \left[G(\tau)H(\tau) + B(GH, A)(\tau) \right] \cdot H^{-1}(\tau)G^{-1}(\tau) = I(GH, A)(t). \]

Therefore (2.8) is proved.

\[\square \]

Lemma 2.2. Let \(h \in BV_n(a, b) \) and \(H \in BV_{n \times n}(a, b) \) be a nonsingular matrix-function on \([a, b]\). Then the mapping

\[x \rightarrow y = Hx + h \]

establishes a one-to-one correspondence between the solutions \(x \) and \(y \) of the systems

\[(2.9) \quad dx(t) = dA(t) \cdot x(t) + df(t) \]

and

\[(2.10) \quad dy(t) = dA^*(t) \cdot y(t) + df^*(t), \]

respectively, where

\[A^*(t) = I(H, A)(t), \]
\[f^*(t) = h(t) - h(a) + B(H, f)(t) - \int_a^t dA^*(\tau) \cdot h(\tau) \]
Besides, for every \(j \in \{1, 2\} \) and \(t \in [a, b] \)

(2.11) \(I + (-1)^j d_j A^*(t) = \left[H(t) + (-1)^j d_j H(t) \right] \left[I + (-1)^j d_j A(t) \right] H^{-1}(t) \).

Proof. Let \(x \) be a solution of the system (2.9) and let \(y(t) = H(t) x(t) + h(t) \) for \(t \in [a, b] \). In view of (2.7) and the definition of a solution we have

\[
\int_a^t dB(H, A)(s) \cdot x(s) = B(H, x - f)(t) \quad \text{for} \quad t \in [a, b].
\]

By this and (2.1) we obtain

\[
\int_a^t dA^*(s) \cdot y(s) + f^*(t) - f^*(a)
\]

\[
= \int_a^t dA^*(s) \cdot \left[(y(s) - h(s)) + B(H, f)(t) + h(t) - h(a) \right]
\]

\[
= \int_a^t d \left[\int_a^s d \left[H(\tau) + B(H, A)(\tau) \right] \cdot H^{-1}(\tau) \cdot H(s) x(s) \right. \\
\left. + B(H, f)(t) + h(t) - h(a) \right]
\]

\[
= \int_a^t d \left[(H(s) + B(H, A)(s)) \cdot x(s) + B(H, f)(t) + h(t) - h(a) \right]
\]

\[
= \int_a^t dH(s) \cdot x(s) + B(H, x - f)(t) + B(H, f)(t) + h(t) - h(a)
\]

\[
= \int_a^t dH(s) \cdot x(s) + B(H, x)(t) + h(t) - h(a)
\]

\[
= H(t) x(t) - H(a) x(a) + h(t) - h(a)
\]

\[
= y(t) - y(a) \quad \text{for} \quad t \in [a, b],
\]

i.e. \(y \) is a solution of the system (2.10).

Let us prove the converse assertion. It is sufficient to show that for every \(t \in [a, b] \)

(2.12) \(I(H^{-1}, A^*)(t) = A(t) - A(a) \)

and

(2.13) \(-H^{-1}(t) h(t) + H^{-1}(a) h(a) + B(H^{-1}, f^*)(t) \)

\[+ \int_a^t dI(H^{-1}, A^*)(\tau) \cdot H^{-1}(\tau) h(\tau) = f(t) - f(a). \]

396
By (2.8) we have

\[I(H^{-1}, A^*)(t) = I(H^{-1}, I(H, A))(t) = I(I, A)(t) \]
\[= \int_a^t d[I + B(I, A)(s)] = B(I, A)(t) = A(t) - A(a). \]

Therefore equality (2.12) is proved.

Let us show that (2.13) is valid. Let \(R(t) \) be the left hand side of equality (2.13).

In view of (2.5) and (2.7) it is easy to verify that

\[B\left(H^{-1}, \int_a^t dB(H, A)(s) \cdot H^{-1}(s)h(s)\right)(t) = \int_a^t dA(s) \cdot H^{-1}(s)h(s) \]

and

\[B\left(H^{-1}, \int_a^t dH(s) \cdot H^{-1}(s)h(s)\right)(t) = -\int_a^t dH^{-1}(s) \cdot h(s). \]

Taking these equalities, (2.1), (2.5), (2.7) and (2.12) into account, we obtain

\[R(t) = -H^{-1}(t)h(t) + H^{-1}(a)h(a) + B(H^{-1}, h)(t) \]
\[+ B(H^{-1}, B(H, f))(t) - B\left(H^{-1}, \int_a^t dA^*(s) \cdot h(s)\right)(t) \]
\[+ \int_a^t dA(s) \cdot H^{-1}(s)h(s) = B(I, f)(t) - \int_a^t dH^{-1}(s) \cdot h(s) \]
\[- B\left(H^{-1}, \int_a^t \mathcal{I}(H, A)(s) \cdot h(s)\right)(t) + \int_a^t dA(s) \cdot H^{-1}(s)h(s) \]
\[= f(t) - f(a) - \int_a^t dH^{-1}(s) \cdot h(s) - B\left(H^{-1}, \int_a^t dH(s) \cdot H^{-1}(s)h(s)\right)(t) \]
\[- B\left(H^{-1}, \int_a^t dB(H, A)(s) \cdot H^{-1}(s)h(s)\right)(t) + \int_a^t dA(s) \cdot H^{-1}(s)h(s) \]
\[= f(t) - f(a). \]

Hence (2.13) is valid.

Equality (2.11) follows from the equalities

\[d_j A^*(t) = d_j \left[H(t) + B(H, A)(t)\right] \cdot H^{-1}(t) \quad (j = 1, 2) \]

and

\[d_j B(H, A)(t) = d_j \left[H(t)A(t)\right] \cdot d_j H(t) \cdot A(t) \quad (j = 1, 2) \]

The lemma is proved. \(\square \)
Lemma 2.3. Let \(\alpha_k, \beta_k \in BV_1(a,b) \) (\(k = 0,1,\ldots \)).

\[
\lim_{k \to +\infty} \|\beta_k - \beta_0\|_{\text{sup}} = 0.
\]

\[
\lim_{k \to +\infty} \sup_{a}^{b} (\alpha_k) < +\infty.
\]

and the condition

\[
\lim_{k \to +\infty} [\alpha_k(t) - \alpha_k(a)] = \alpha_0(t) - \alpha_0(a)
\]

be fulfilled uniformly on \([a,b]\). Then

\[
\lim_{k \to +\infty} \int_{a}^{t} \beta_k(\tau) \, d\alpha_k(\tau) = \int_{a}^{t} \beta_0(\tau) \, d\alpha_0(\tau)
\]

uniformly on \([a,b]\).

Lemma 2.4. Let condition (1.9) hold and let

\[
(2.14) \quad \lim_{k \to +\infty} Y_k(t) = Y_0(t)
\]

uniformly on \([a,b]\), where \(Y_k \) is a fundamental matrix of the system (1.5_k) for any \(k \in \{0,1,\ldots\} \). Then

\[
\inf \{ |\det (Y_0(t))| : t \in [a,b] \} > 0,
\]

\[
(2.15) \quad \inf \{ |\det (Y_0^{-1}(t))| : t \in [a,b] \} > 0
\]

and

\[
(2.16) \quad \lim_{k \to +\infty} Y_k^{-1}(t) = Y_0^{-1}(t)
\]

uniformly on \([a,b]\).

The proofs of Lemmas 2.3 and 2.4 are given in [1].
3. Proof of the main results

Proof of Theorem 1.2. In view of (1.19) \(l_k^*: BV_n(a, b) \rightarrow \mathbb{R}^n \) is a bounded linear operator for every sufficiently large \(k \). Moreover, it is not difficult to see that by the mapping

\[x \rightarrow y = H_k x + h_k \]

a one-to-one correspondence between solutions of problem (1.1\(_k\)), (1.2\(_k\)) and solutions of the problem

(3.1\(_k\))
\[dy(t) = dA_k^* y(t) + df_k^*(t), \]
(3.2\(_k\))
\[l_k^*(y) = c_k^*, \]

is given, where \(c_k^* = c_k + l_k^*(h_k) \). In fact, according to Lemma 2.2 it is sufficient to show that equality (1.2\(_k\)) implies equality (3.2\(_k\)) and conversely. But this is obvious, since

\[l_k^*(y) = l_k(H_k^{-1} y) = l_k(x) + l_k^*(h_k). \]

It follows from (1.20)–(1.25) that the conditions of Theorem 1 from [1] are fulfilled for the sequence of problems (3.1\(_k\)), (3.2\(_k\)) \((k = 1, 2, \ldots)\) and problem (1.17), (1.18). Hence by the same theorem problem (3.1\(_k\)), (3.2\(_k\)) has the unique solution \(y_k \) for any sufficiently large \(k \) and

\[\lim_{k \rightarrow +\infty} \|y_k - x_0^*\|_{\sup} = \lim_{k \rightarrow +\infty} \|H_k x_k + h_k - x_0^*\|_{\sup} = 0, \]

where \(x_k(t) = H_k^{-1}(t)[y_k(t) - h_k(t)] \) is the unique solution of problem (1.1\(_k\)), (1.2\(_k\)).

Proof of Corollary 1.2. Verifying the conditions of Theorem 1.2. (1.12) and (1.13) we obtain (1.19) and

(3.3)
\[\lim_{k \rightarrow +\infty} \|H_k^{-1} - H_0^{-1}\|_{\sup} = 0. \]

Put
\[h_k(t) = -H_k(t)\varphi_k(t) \quad \text{for} \quad t \in [a, b] \quad (k = 1, 2, \ldots) \]

Then by (1.7), (1.8), (1.27) and (3.3) conditions (1.20)–(1.22), where \(c_0^* = c_0 \) and \(l_0^*(y) = l_0(H_0^{-1} y) \), are satisfied.

Applying Lemma 2.3, from (1.11), (1.13), (1.14) and (3.3) we find that (1.23) holds and (1.24) is fulfilled uniformly on \([a, b]\), where

\[A_0^*(t) = I(H_0, A_0)(t). \]
On the other hand,

\[f_k^*(t) = B(H_k, f_k - \varphi_k)(t) + \int_a^t dB(H_k, A_k)(s) \cdot \varphi_k(s) \quad \text{for} \quad t \in [a, b] \]

for any natural \(k \). Therefore, (1.28) implies that (1.25), where

\[f_0^*(t) = B(H_0, f_0)(t), \]

is fulfilled uniformly on \([a, b]\).

Taking into account Lemma 2.2 and the equalities

\[l_0^*(H_0x_0) = l_0(x_0) = c_0 \]

it is not difficult to see that problem (1.17), (1.18) has a unique solution

\[x_0^*(t) = H_0(t)x_0(t). \]

Moreover, it can be easily shown that inequality (1.12) is equivalent to the condition

\[\det (H_0(t^+) \cdot H_0(t^-)) \neq 0 \quad \text{for} \quad t \in [a, b]. \]

Thus in virtue of (1.9) and (2.11) condition (1.16) is fulfilled.

According to theorem 1.2 condition (1.26) holds. Hence (1.29) follows from (1.26) and (3.3). \(\square \)

Proof of Corollary 1.3. By (1.32), (1.33) and (1.34) (or (1.35)) we have

\[\lim_{k \to +\infty} \sum_{a < s \leq t} \left[d_1 H_k(s) \cdot d_1 A_k(s) - d_1 H_0(s) \cdot d_1 A_0(s) \right] = 0 \]

\[\lim_{k \to +\infty} \sum_{a < s \leq t} \left[d_1 H_k(s) \cdot d_1 f_k(s) - d_1 H_0(s) \cdot d_1 f_0(s) \right] = 0 \]

\[\lim_{k \to +\infty} \sum_{a \leq s < t} \left[d_2 H_k(s) \cdot d_2 A_k(s) - d_2 H_0(s) \cdot d_2 A_0(s) \right] = 0 \]

and

\[\lim_{k \to +\infty} \sum_{a \leq s < t} \left[d_2 H_k(s) \cdot d_2 f_k(s) - d_2 H_0(s) \cdot d_2 f_0(s) \right] = 0 \]

uniformly on \([a, b]\). From this, the integration-by-parts formula (2.2), (1.30) and (1.31) we obtain that the conditions (1.14) and (1.28), where \(\varphi_k(t) \equiv 0 \), are fulfilled uniformly on \([a, b]\).

Therefore, Corollary 1.3 follows from Corollary 1.2. \(\square \)

400
Proof of Corollary 1.4. Using (1.13), (1.36) and (1.38) we have
\[d_j A_*(t) = 0 \quad \text{for} \quad t \in [a, b] \ (j = 1, 2). \]

Hence, in view of (1.9)
\[\det (I + (-1)^j d_j A_0(t)) \neq 0 \quad \text{for} \quad t \in [a, b] \ (j = 1, 2). \]

On the other hand, (1.13), (1.36)–(1.39) yield
\[\lim_{k \to +\infty} B(H^{-1}_k A_k)(t) = B(I, A_0)(t) \]
and
\[\lim_{k \to +\infty} B(H^{-1}_k f_k)(t) = B(I, f_0)(t) \]
uniformly on \([a, b]\). Thus, Corollary 1.4 is a direct consequence of Corollary 1.2. □

Proof of Corollary 1.5. It is suffices to assume in Corollary 1.2 that \(\varphi_k(t) = 0 \) and \(H_k(t) = H_{km}(t) \) and to notice that by (2.5), (2.6) and (2.8) for every \(j \in \{1, \ldots, m\} \) and \(t \in [a, b] \)
\[B(B_{kj}, B(B_{kj}, \ldots, B(B_{k1}, A_k) \ldots))(t) = B(H_{kj}, A_k)(t), \]
\[B(B_{kj}, B(B_{kj}, \ldots, B(B_{k1}, f_k) \ldots))(t) = B(H_{kj}, f_k)(t), \]
and
\[I(B_{kj}, I(B_{kj}, \ldots, I(B_{k1}, A_k) \ldots))(t) = I(H_{kj}, A_k)(t), \]
where \(B_{kj}(t) = I - A_{kj}(t) + A_{0j}(t) \). □

Proof of Theorem 1.1. Sufficiency follows from Corollary 1.2.

Let us show necessity. Let \(c_k \in \mathbb{R}^n \ (k = 0, 1, \ldots) \) be an arbitrary sequence satisfying (1.6) and let \(e_j = (\delta_{ij})_{i=1}^n \ (j = 1, \ldots, n) \), where \(\delta_{ij} = 1 \) if \(i = j \) and \(\delta_{ij} = 0 \) if \(i \neq j \).

In view of (1.10) we may assume without loss of generality that problem (1.1k), (1.2k) has a unique solution \(x_k \) for every natural \(k \).

For any \(k \in \{0, 1, \ldots\} \) and \(j \in \{1, \ldots, n\} \) let us denote
\[y_{kj}(t) = x_k(t) - x_{kj}(t) \quad \text{for} \quad t \in [a, b], \]
where \(x_{kj} \) is the unique solution of (1.1k) satisfying
\[l_k(x) = c_k - e_j. \]
Moreover, by $Y_k(t)$ let us denote the matrix-function whose columns are $y_{k1}(t), \ldots, y_{kn}(t)$.

It can be easily shown that y_{kj} is a solution of (1.5_k) and

\[l_k(y_{kj}) = c_j \quad (j = 1, \ldots, n; \quad k = 0, 1, \ldots). \tag{3.4} \]

If for some k and $\alpha_j \in \mathbb{R}$ ($j = 1, \ldots, n$)

\[\sum_{j=1}^{n} \alpha_j y_{kj}(t) = 0 \quad \text{for} \quad t \in [a,b], \]

then using (3.4)

\[\sum_{j=1}^{n} \alpha_j c_j = 0 \]

and therefore

\[\alpha_1 = \ldots = \alpha_n = 0. \]

i.e. Y_k is the fundamental matrix of system (1.5_k) for every $k \in \{0, 1, \ldots\}$. Hence by (1.6), (1.10) and Lemma 2.4 conditions (2.14)–(2.16) hold. We may assume without loss of generality that

\[Y_k(a) = I \quad (k = 0, 1, \ldots). \]

For every $k \in \{0, 1, \ldots\}$ and $t \in [a, b]$ assume that

\[H_k(t) = Y_k^{-1}(t) \]

and verify (1.11)–(1.15).

Condition (1.12) coincides with (2.11).

According to Proposition III.2.15 from [9] for every $k \in \{0, 1, \ldots\}$ and $t \in [a, b]$ we have

\[Y_k^{-1}(t) = I - B(Y_k^{-1}, A_k)(t). \tag{3.5} \]

402
Thus (1.11) is evident. On the other hand, by (2.7) and (3.5), from (1.4) we have
\[
B(H_k, f_k)(t) = B\left(Y_k^{-1}, x_k - \int_a^t dA_k(s) \cdot x_k(s)\right)(t)
\]
\[
= B\left(Y_k^{-1}, x_k(t) - B(Y_k^{-1}, \int_a^t dA_k(s) \cdot x_k(s))\right)(t)
\]
\[
= B(Y_k^{-1}, x_k)(t) - \int_a^t dB(Y_k^{-1}, A_k)(s) \cdot x_k(s)
\]
\[
= Y_k^{-1}(t)x_k(t) - x_k(a) - \int_a^t d[I - Y_k^{-1}(s)] \cdot x_k(s)
\]
\[
= Y_k^{-1}(t)x_k(t) - x_k(a).
\]

This, (1.3), (2.16) and (3.5) imply that conditions (1.13)-(1.15) are fulfilled uniformly on [a, b]. The theorem is proved. □

Corollary 1.1 follows from Theorem 1.1, since for any linear continuous operator \(l: C_n(a, b) \to \mathbb{R}^n \) there exists a linear continuous operator \(\tilde{l}: BV_n(a, b) \to \mathbb{R}^n \) such that \(||l|| = ||\tilde{l}|| \) and \(l(y) = \tilde{l}(y) \) for \(y \in \tilde{C}_n(a, b) \).

References

Author’s address: I. Vekua Institute of Applied Mathematics of Tbilisi State University, 2 University St., 380043 Tbilisi, Republic of Georgia, kig@imath.kheta.georgia.su.