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TOPOLOGICAL PROPERTIES OF THE SOLUTION SET OF 

A CLASS OF NONLINEAR EVOLUTIONS INCLUSIONS 

NlKOLAOS S . PAPAGEORGIOU, Athens 

(Received July 27, 1993) 

Abstract. In the paper we study the topological structure of the solution set of a class of 
nonlinear evolution inclusions. First we show that it is nonempty and compact in certain 
function spaces and that it depends in an upper semicontinuous way on the initial condition. 
Then by strengthening the hypothesis on the orientor field F(£, rr), we are able to show that 
the solution set is in fact an Ha-set. Finally some applications to infinite dimensional control 
systems are also presented. 
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1 . INTRODUCTION 

A subset of a metric space is an i^-set if it is the intersection of a decreasing se­
quence of nonempty, compact absolute retracts. It was Yorke [15], who first proved 
that the Cauchy problem x(t) = f(t,x(t)) a.e., x(0) = xo, with a continuous vector 
field f: T x (Rn -> [Rn has a solution set which is an Rs-set of C(T, (Rn). His re­
sult was subsequently extended to differential inclusions (i.e. multivalued differential 
equations) by Himmelberg-Van Vleck [6] and DeBlasi-Myjak [2] for differential inclu­
sions in IRn and by Papageorgiou [11] and Deimling-Rao [3] for differential inclusions 
in Banach spaces. 

The purpose of this paper is to establish such a topological regularity for the so­
lution set of a class of nonlinear evolution inclusions. Evolution inclusions involve 
unbounded operators, which are precluded by the formulation of Papageorgiou [11] 
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and Deimling-Rao [3]. Hence evolution inclusions model partial differential equa­
tions with multivalued terms and play an important role in optimal control and 
mathematical physics; see Papageorgiou [12] and Chang [1]. 

2. PRELIMINARIES 

Let X, Y be two Hausdorff topological spaces and f,g:X-±Y. We say that / , 
g are "nomotopic", if there exists h: [0,1] x X —> Y continuous such h(0,x) = f(x) 

and h(l,x) = g(x) for all x G X. A function / : X -> Y homotopic to a constant 
map is said to be "null-homotopic". 

A Hausdorff topological space C is said to be "contractible", if the identity map 
ic- C —> C is null-homotopic. So there exists h: [0,1] x C -> C continuous and 
x o G C such that h(0,x) = x and h(l,x) = x$ for all x G C. It is easy to check that 
a contractible space is path connected and so a fortiori connected. 

A set C in a metric space is said to be an "absolute retract", if it can replace (R 
in Tietze's extension theorem; i.e. for every metric space Y and closed A C Y, each 
continuous function f: A —> C admits a continuous extension f: Y —> C. Evidently 
an absolute retract is contractible. Indeed let Y = [0,1] x C, A = {0,1} x C and 
f(0,x) = x, f(l,x) = XQ on C. Thus an Ii^-set is the intersection of compact, 
contractible sets. Hyman [7] proved that the converse is also true; i.e. if C has such 
a representation, then it is an Rs-set. An IJ^-set is therefore nonempty, compact 
and connected (in fact, also acyclic). But an I^-set need not be path connected. 
Consider the following set: 

A = ({0} x [0,1]) U [{*, x}:x = sin 1/t, t G (0,1)]. 

This set is Rs, but not path connected (there is no path joining (0,0) to the point 

(j.o))-
Let (CI, E) be a measurable space and X a separable Banach space. We will be 

using the following notations: 

Pf(c)(X) = {A C X: nonempty, closed, (and convex)} 

and P(a?)fc(c)(K) = {A C. X: nonempty, (weakly-) compact, (and convex)}. 

A multifunction F: Ct -> Pf(X) is said to be measurable, if the IR+-valued function 
LJ -> d(x, F(LJ)) = inf {\\x - z\\: z G F(w)} is measurable for every x G X. If there is 
a cr-finite measure //(•) defined on E and E is //-complete (or more generally without 
requiring the presence of //(•), when E is closed under the Souslin operation), then 
the above definition of measurability is equivalent to saying that GrF = {(tu,x) G 
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n x X: x e F(u)} G £ x B(X), with B(X) being the Borel cr-field of X (graph 

measurability). For further details we refer to the survey paper of Wagner [14]. 

Let F: fi, -> Pf(X) be a measurable multifunction and let 1 ^ p ^ oo. By SF we 

will denote the set of selectors of F(-) that belong in the Lebesgue-Bochner space 

Lp(n,X)-,i.e.Sp
F = {/ eLp(ft,X): f(u) e F((jj)n-a.e.}. This set may be empty. It 

is easy to check using Aumann's selection theorem (see Wagner [14], theorem 5.10), 

that SF T-- 0 if and only if u -> inf {||x||: x e F(u>)} e L\. Furthermore, SF is closed 

in LP(Q,X) and it is convex if and only if for ^-almost all u) G ft, F(LJ) is convex. 

Let Y, Z be two Hausdorff topological spaces. A multifunction G: Y -> 2Z \ {0} 

is said to be upper semicontinuous (u.s.c), if for all C C Z nonempty closed, the set 

G~(C) = {y eY: G(y) n C ^ 0} is closed in Y. If G(-) is u.s.c. with closed values 

and Z is regular, then GrG = {(y,z) e Y x Z: z e G(y)} is closed. The converse is 

true if G(Y) is compact in Z. 

On Pf(X), we can define a generalized metric, known in the literature as Hausdorff 

metric, by setting 

Һ(A, B) = max sup d(a, B), sup d(b, A) 
- я.ť= 4 ha R -aEA beB 

where d(a ,£) = inf {\\a - b\\: b e B} and d ( M ) = inf {||6 - a\\: a G A}. Then 

(Pf(X), h) is a complete generalized metric space and Pfc(X) is a closed subset of it. 

A multifunction H: X —> Pf(X) is said to be Hausdorff continuous (/i-continuous), 

if it is continuous from X into (Pf(X), h). 

The mathematical setting of our problem will be the following: Let T = [0,r] and 

H a separable Hilbert space. Let X be a dense subspace of H carrying the structure 

of a separable reflexive Banach space, which embeds into H continuously. Identifying 

H with its dual (pivot space), we have that X —> H -> X*, with all embeddings being 

continuous and dense. We will also assume that they are compact. Such a triple of 

spaces is known in the literature as "evolution triple" (see Zeidler [16]; sometimes 

the name "Gelfand triple" is also used). To have a concrete example in mind, let 

Z be a bounded domain in (Rn and let m e N. Set X = Hfi*(Z), H = L2(Z) and 

X* = H~rn(Z). From the Sobolev embedding theorem, we have that (X,H,X*) is 

an evolution triple with all embeddings being compact. By || • || (resp. | • |, || • ||*), we 

will denote the norm of X (resp. of H, X*). Also by (•, •) we will denote the inner 

product in H and by (•,•) the duality brackets for the pair (X,X*). The two are 

compatible in the sense that ('r)\XxH ~ (''")• ^ e t 

W(T) = {xe L2(T,X):x G L2(T,X*)}. 

In the definition, the derivative is understood in the sense of vector valued distri-
1 / 9 

butions. When furnished with the norm ||X||VI/(T) = [ I M ^ t x ) + INIL2(X*)] > ^ e 
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space W(T) becomes a Banach space, which is clearly separable and reflexive. It is 
well known that W(T) -> C(T,H) continuously (see Zeidler [16], proposition 23.23, 
p. 422). So every element in W(T) after possible modification on a Lebesgue null 
set is equal to a continuous function form T into H. In addition, since we assumed 
that X —> H compactly, we have that W(T) -> L2(T,H) compactly (see Zeidler 
[16], p. 450). Note that if X is a Hilbert space (like in the example), then W(T) is 
a Hilbert space too. 

We will be studying the solution set of the following evolution inclusion defined 
on T and the evolution triple (X, H,X*): 

j x(t) + A(t,x(t)) e F(t,x(t))a.e.\ 
(1) i x(0) = xo J 

3. EXISTENCE THEOREM 

In the section, we present an existence theorem for Cauchy problem (1). For this, 

we will need the following hypotheses on the data: 

H(A) : A: T x X -> X* is an operator s.t. 

(1) t -> A(t,x) is measurable, 

(2) x -> A(t,x) is hemicomtinous, monotone (i.e. for all x, y, z e X, the IR-valued 

function A —> (A(t,x + AH),z) is continuous on [0,1] (hemicontinuity) and for 

all x, y e X, we have (A(t,x) — A(t,y),x - y) ^ 0 (monotonocity)), 

(3) (A(t,x),x) ^ c||a;||2 a.e. with c > 0, 

(4) \\A(t,x)\l < ax(t) + (3i(t)\\x\\ a.e. with ax(-) e L\, &(•) e L~. 

H(F): F: T x H -> Pfc(H) is a multifunction s.t. 

(1) t —> F(t,x) is a measurable, 

(2) x -> F(t,x) has a sequentially closed graph in H x Hw, where Hw denotes the 

Hilbert space H endowed with the weak topology (i.e. Gv F(t, •) = {(x,y) e 

H x H: y e F(t,x)} is sequentially closed in H x Hw), 

(3) \F(t,x)\ = sup{\y\: y e F(t,x)} ^ a2(t) + lh(t)\x\ a.e. with a2(-) G L\, 

&(•) e L?. 
By a solution of (1), we mean a function x(-) e W(T) such that 

x(t) + A(t,x(t)) = f(t) a.e., x(0) = x0 e H 

with / e L2(T,H), f(t) e F(t,x(t)) a.e. (i.e. / G S2
F(.Mm))). We will denote the 

solution set of (1) by S(x0). So S(x0) C W(T). 
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Theorem 3.1. If hypotheses H(A), H(F) hold and x0 G H, then S(x0) is a 

nonempty and weakly subset ofW(T). 

P r o o f . We will start by obtaining some a priori bounds for the elements in 

S(xo). So let x(-) G S(x0). Then by definition, we can find / G S2 , x s.t. 

x(t) + A(t,x(t)) = f(t) a.e., x(0) = x0 

hence (x(t),x(t)) + (A(t,x(t)),x(t)) = (f(t),x(t)) a.e. 

and so ~ | * M | 2 + c | k W f ^ | / W | * |*M| a.e. 

On the right-hand side, apply Cauchy's inequality with e > 0 and also note that 

there exists (5 > 0, | • | ^ (5\\ • ||, since by hypothesis X embeds into H continuously. 

So we have 

| / (0 | • \x(t)\ ^ I3\f(t)\ • \\x(t)\\ ^ £-^-\f(t)\2 + %-\\x(t)f. 
2єl 

Let e = #-. Then we have: 
2c 

2"Sl l ( "l ! « iJm? < £(<"*<0 + ft(<>|*<<>|) 

* ^ + ̂ W _ 
hence \x(t)\2 ^ \x0\

2 + ^-\\af2 + ?-\\lh\L f \x(s)f ds. 
c c Jo 

Invoking GronwalPs inequality, we deduce that there exists M\ > 0 s.t. for all 
x G S(x0) and all t G T, we have 

\x(t)\ < M i . 

Using this bound, we get 

~t\x(t)\2 + c\\x(t)\\2^M1\f(t)\a.e. 

hence 2c / ||a;(t)||2 dt < |x0 |2 + 2Mi / | / ( t ) | dt 
jo jo 

and so 2c / ||z(*)||2 d* < |z0 |2 + 2MX / a2(t) dt + H&IUMfr. 
Jo Jo 

Hence there exists M2 > 0 s.t. for all x € S(xo), we have 

(2) IMU-w < M2. 
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Finally, let h <E L2(T,X). We have 

/ (±(s),h(s))ds ^ [ {-A(s,x(s)),h(s))ds +1 f (f(s),h(s))ds\ 
do Jo 'Jo I 

f \\A(s,x(s)) \l\\h(s)\\ ds + p f \f(s)\ • \\h(s)\\ ds 
do do 

/ (aiOO + ft(s)\\x(s)|| + f3a2(s) + /? • p2(s)M1)\\h(s)\\ ds. 
do 

Applying the Cauchy-Schwartz inequality, we get that there exists M3 > 0 s.t. 

( 3 ) | ( ( i , f t ) )o |<M 3 - | | h | | L 2 ( x ) 

thus ||rr|U2(AT*) < M3. 

(here ((x,h))0 = fQ
r (x(t),h(t)) dt; i.e. the duality brackets for the pair (L2(T, X), 

L2(T,X*))). 

From (2) and(3) above, we see that S(x0) is a bounded subset of W(T), hence 
it is relatively sequentially uj-compact and since W(T) —> L2(T,H) compactly (see 
section 2), we get that S(x0) is relatively compact in L2(T,H). 

Let PMX : H —> H be the Mi-radial retraction map and consider the new orientor 
field F(t,x) = F(t,pMl(x)); i.e. 

_(F(t,x), i f | a , | ^ M i , 

F ( * , a ? ) = l^W)' ifN^Mi-
Clearly t —•> F(t,x) is measurable (see hypothesis H(F) (1)), whole since PMi(') 

is nonexpansive, we can easily check that F(t, •) has a graph which is sequentially 
closed in H x Hw. Finally, note that 

\F(t,x)\ ^a2(t)+P2(t)M1 =if(t) a.e., with </>(•) e L\. 

Let V = {ft G L2(T,H): \h(t)\ ^ tp(t) a.e.}. We know hat V equipped with the 

relative weak L2(T, H)-topology is compact, metrizable. Let ft € V and consider the 

following evolution equation 

( x(t) + A(t,x(t)) =h(t) a.e.l 

\ x(0)=xo } ' 

From theorem 30.A, p. 771 of Zeidler [16], we know that the above Cauchy prob­
lem has unique solution p(h)(-) G W(T). We will show that the map ft -> p(h) is 
sequentially weakly continuous from V into W(T). To this end, assume that ftn -> ft 
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in V and let xn = p(hn). From the a priori bounds established earlier in the proof, we 
have that {xn}n^i is relatively sequentially weakly compact in W(T). So by passing 
to a subsequence if necessary, we may assume that xn —> x in W (T) and xn --> z 
in L2(T, X*). It is easy to see that z = x. Note that given u G L2(T,X), for every 
n ^ 1, we have 

((xn,u))Q + ((A(xn),u))0 = ((hn,u))0 

where ((v))o denotes the duality brackets for the pair (L2(T, X), L2(T, X*)) (re­
call that L2(T,XY = L2(T,X*)), and A: L2(T,X) -> L2(T,X*) is defined by 
A(x)(-) = A(-,x(-)) (i.e. A(-) is the Nemitsky (superposition) operator correspond­
ing to A(t,x)). Observe that 

((xn,u))0 -» ((x,u))0 

and ((hn,u))0 = (hn,u)L2(H) -> (h,u)L2^H) = ((hn,u))0. 

Also for every n ^ 1, we have 

(xn(t),xn(t) -x(t)) + (A(t,xn),xn(t) -x(t)) = (hn(t),xn(t) -x(t)) a.e. 

so ((A(xn),xn -x))Q = (hn,xn -x)L2(H) - ((xn,xn -x))0. 

Using the integration by parts rule for elements of W(T) (see Zeidler [16], propo­
sition 23.23 (iv), p. 423), we have 

((xn,xn - x))0 = -\xn(b) - x(b)\ + ((x,xn - x))0 

hence ((A(xn),xn -x))0 = (hn,xn - x)L2 ( H ) - -\xn(b) - x(b)\ - ((x,xn - x))0. 

But recall that W(T) embeds into L2(T,H) compactly and into C(T,H) continu­
ously. Hence (hn,xn — x)L2^H) -> 0 and |xn(b) — x(b)\ -> 0 as n -> co. Furthermore, 
since xn ^% x in W(T), ((x,xn - x))0 -> 0. Therefore, finally we have 

((A(xn),xn — x))Q -> 0 as n -> oo. 

The operator A(-) is clearly monotone and hemicontinuous (since A is) and so 

it has property (M) (see Zeidler [16], pp. 583-584). Since by hypothesis H(A) (4) 

{A(xn)}n>1 is bounded in L2(T,X*), we may assume that A(xn) A v in L2(X*). 

Then because of property (M), we have that v = A(x); i.e. 

A(xn)^A(x) inL2(X*), 

hence ((A(xn),u))Q -> ((A(x),u))Q, 

so ((x,u))0 + ((A(x),u))0 = ((h,u))0 for all u e L2(X), 

thus x(t) + A(t,x(t)) = h(t) a.e.,:r(0) = x0 

and finally x = p(h). 
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Hence, we have established the sequential weak continuity of p: V -> W(T). 

Next consider the multifunction R: V -> 2V defined by 

R(h) = S2
( v. 

V ' F ( . , p ( / i ) ( . ) ) 

First let us show that R(-) has nonempty values. Indeed let {sn}n^>i be simple 
functions s.t. sn(t) -4 p(h)(t) a.e. in H. Because of the measurability of F(-,x), 
we have that t -> F(t,sn(t)) is measurable and so through a simple application of 
Aumann's selection theorem, we can find gn G L2(T, H), gn(t) G F(t, sn(t)) a.e. Note 
that |gn(£)| ^ <p(t) a.e. and recall that </?(•) G L\. So by passing to a subsequence if 
necessary, we may assume that gn —> g in L2(T,H). Using theorem 3.1 of [10], we 
have 

g(t) G conviu — \im{gn(t)}n>1 C conviv — \imF(t, sn(t)) a.e. 

But since F(t,-) has a graph which is sequentially weakly closed in H x H^, 
we can easily check that w - \imF(t,sn(t)) = {y G H: y = w — \imynk,ynk G 
F(t,snk(t)),ni <n2 < ... <nk < ...} C F(t,p(h)(t)) a.e. hence g G S2

 ( , 

and so R(h) 7-- 0. It is easy to see that in fact, for every h G V, R(h) G Pfc(V). 
We claim that R: V -> -P/C(V) is u.s.c, when V equipped with the relative weak 
L2(T, H)-topology, for which it is a compact, metrizable space. Knowing this fact, to 
establish the upper semicontinuity of R(-), it is enough to show that GrH is closed 
in V x V equipped with the product weak topology (for which it is compact and 
metrizable). So let [hn,fn] G Gr.R, [hn,fn]

 w^w [h, f] in V x V. Then p(hn) A p(h) 
in W(T) -=-> p(hn) A p(h) in L2(T, H) and so by passing to a subsequence if necessary, 
we may assume that p(hn)(t) A> p(h)(t) a.e. in H. Using as before, theorem 3.1 of 
[10] and the fact that GrF(t, •) is sequentially closed in H x Hw, we get 

f(t) G conv w - \imF(t,p(hn)(t)) C F(t,p(h)(t)) a.e. 

hence / G R(h). 

Therefore Gr R is closed in V x V with the relative product weak topology and so 

R(-) is u.s.c. as claimed. 
So we can apply the Kakutani-KyFan fixed point theorem to get x G R(x). As in 

the beginning of the proof, we can get that \x(t)\ ^ Mi => F(t,x(t)) = F(t,x(t)) => 
S(x0) 7- 0. Finally, we will show hat S(x0) is weakly closed in W(T) and since we 
already know that it is bounded, it is weakly compact. Since in separable, reflexive 
Banach spaces (as is W(T)), bounded sets endowed with the relative weak topology 
are relatively compact and metrizable, we can work with sequences. So let {xn}n^i C 
S(x0) and assume xn A x in W(T). Then by definition xn = p(fn) with fn G 
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S2 / v. Prom earlier parts of the proof, we have that | /n(£)| ^ <p(0 a-e- Hence 
F{->xn(-)j 

we may assume that fn ^> / in L2(T,H) thus p(fn) ^> p(f) in W(T). So a: = p(f); 
i.e. S(x0) is weakly closed, hence weakly compact in W(T). D 

In fact from the previous proof, we easily get the following continuous dependence 
result: 

Theorem 3.2. If hypotheses H(A) and H(F) hold, then the multifunction S: 
H -> Pwk(W(T)) is u.s.c. from H into W(T)W. 

P r o o f . LetC C W (T) be a weakly closed set. Let S _ (C) = {z G H: S(z)nC ^ 
0}. Let {zn}n^i C S~(C) and assume that zn A z in H. Take xn G S(zn)DC. From 
the proof of theorem 3.1, we can easily see that {xn}n^i is bounded in W(T) and 
so we may assume that xn A x in W(T). Then x G C and as in the proof of 
theorem 3.1, we can get x G S(z) hence x G S(z) n C and so z G S~(C) -=> S(-) is 
it.s.c. as claimed. D 

Recalling the W(T) embeds into L2(T,H) compactly, form theorems 3.1 and 3.2 
above we get: 

Theorem 3.3. If hypotheses H(A) and H(F) hold, then for every x0 G H, S(x0) 

is a nonempty compact subset o" 2(T, H) and furthermore, the solution multifunc­

tion S:H -> Pfc (L
2(T, H)) is u.s.c. 

Iix0 e X (smooth initial datum), then from Papageorgiou [9] we know that S(x0) 
is compact in C(T, H). So we have: 

Theorem 3.4. If hypotheses H(A) and H(F) hold, then for every x0 G X, S(x0) 
is a nonempty compact subset of C(T,H) and the solution multifunction S: X —> 
Pk(C(T,H)) is u.s.c. 

Remark. If for every x0 G H, S(x0) is a singleton, then from theorem 3.2 
(resp. 3.3 and 3.4), we have that the solution map is continuous form H into W(T)W 

(resp. continuous form H into L2(T, H) and continuous from X into C(T, H)). Note 
that if F(t,x) is single valued and locally Lipschitz in the #-variable, then we can 
easily check that S(x0) is a singleton. 
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4 . TOPOLOGICAL REGULARITY OF THE SOLUTION SET 

In this section, by strengthening our hypothesis on the orientor field F(t,x), we 
can establish the topological regularity of the solution set S(XQ). 

The stronger hypothesis on F(t,x) is the following: 
H(F)1: F:T x H -» Pfc(H) is a multifunction s.t. 
(1) t —> F(t,x) is measurable, 
(2) x —£> F(t, x) is /i-continuous, 

(3) \F(t,x)\ = sup{\y\: y G F(t,x)} ^ a2(t) + f32(t)\x\ a.e with a2, fo G L™. 

Theorem 4 .1. If hypotheses H(A), H(F)\ hold and XQ G H, then S(x0) is an 
Rs-setofL2(T,H). 

P r o o f . From Rybinski [13], we know that we can find f.TxH —> Ha 
Caratheodery function (i.e. /(•,#) measurable, f(t, •) continuous) s.t. for all (t,x) G 
T x H, f(t,x) G F(t,x). From the Scorza-Dragoni theorem (see Himmelberg [5], we 
know that given e > 0, we can find C£ C T closed s.t. / L is continuous and 
A(T \ C£) < e, with A(-) being the Lebesgue measure on T. Also from the proof 
of theorem 3.1, we know that by considering if necessary F(t,x) instead of F(t,x), 

we may assume that |K(f,x)| ^ m with m = Halloo + H/^llooMi- Next choose 
D£ C T \ C£ closed and set 

(f(t,x), iitec£, 
f[(t,x) = { 1V \ o , nteD£. 

Clearly, since C£ fl D£ = 0, /f (•, •) is a continuous map from (C£ U D£) x H into 
H. Apply Dugundji's extension theorem (see Dugundji [4], theorem 6.1, p. 188), and 
get a function /f: T x H -> H continuous 5.t / | | c u D = /f and 11/1(^^)11 < ^ 
for all (t,x) GT x H. Now use the Lasota-Yorke [8] approximation result to get /f: 
T x H —> H a locally Lipschitz map s.t. for all (t, x) G T x H, we have 

|/IM-/IM)|<^ 

Note that we have 

\f(t,x) - fl(t,x)\ <C |/(f,x) - fe
2(t,x)\ + | / | ( l , . r) - /f(t,a;)| ^2m + e 

while for ̂  G C£, since by construction f(t,x) = f((t,x) = f2(t,x) on C3 x H, we 

have 
\f(t,x)-fl(t,x)\<6. 
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Then define F£: T x H -> Pfc(H) by 

F£ (t, x) = F(t, x) + B(e) + XT\C£ (t)B(2m + s) 

with B(e) = {y e H:\y\ ^ e} and H(2m + e) = {y G H: \y\ ^ 2m + e}. Clearly 
F£(t,x) is a Caratheodory multifunction; i.e. F£(-,x) is measurable and F£(t, •) is /i-
continuous. Observe that since on C£ x H, |/(£,a:) — /f (£,x)\ < s, we have f%(t,x) e 
F£(t,x). Also on (T\C£) x H we have |/(*,re) - f$(t,x)\ < 2m + e and / | (*,x) G 
F£(*,x). 

Now let en = ^ and set Fn(t, a;) = F£n (t, x) and Cn = C£n. We have: 

h(Fn(t, x),F(t, x)) = h(F(t, X) + B(±) + XT\C„ (t)B(2m + £), F(t, x)) 

^ | H ( l ) | + X n C n ( 0 | - 9 ( 2 m + l ) | ^ i + x T \ C n W ( 2 m + l ) , 

hence 0n(t) = sup h(Fn(t,x),F(t,x)) ^ 1 + Xr\c„(*)(2m + £) = ^ ( i ) . 

Recall that A(T\Cn) < K So r;n -> 0 (here —> denotes convergence in the Lebesgue 

measure). Note that 0n(-) is measurable, since x —> h(Fn(t,x),F(t,x)) is continuous 

and so the supremum over H is the same as the supremum over a countable dense 

subset of H. Hence, since t -> h(Fn(t,x),F(t,x)) is measurable, we get that 6n(-) is 

measurable too and 6n —> 0 as n -> oo. By passing to a subsequence if necessary, we 

may assume that 6n(t) -> 0 a.e. So we have 

h(Fn(t,x),F(t,x)) —y 0 a.e. (uniformly in x G H) 

and the exceptional Lebesque null set is independent of x G H. 
Now consider the following multivalued Cauchy problem: 

(x(t) + A(t,x(t)) eFn(t,x(t)) a.e.l 

1 x(0)=x0 J 

Denote its solution set by Sn(x0). Because of the convergence of the Fn's to F 
proved above, we can easily check that 

S(x0) = p | Sn(x0). 
n > l 

From Theorem 3.3 we know that for every n ^ 1, Sn(x0) is nonempty and com-
I A I 

pact in L2(H). Note that f^(t,x) G Fn(t,x) and by construction /3
n(-,-) is locally 

Lipschitz. So for r G [0, r) and y e H, the Cauchy problem 

f i(r) + -4(*,z(0 -= f£(t,z(t)) a.e. on [r,r]l 

I Z(T) = y I 
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has a unique solution zn(-,T,y): [r,r] -> H belonging in VV([r,r]) (see the remark 
following theorem 3.4). Now let x G Sn(x0). Then following Yorke [15], for each 
a G [0,1], we set 

n u . J * W , f o r t e [0 , (1 -A) r ] , 
wn(A,x)(t) = < x r 

\ zn(t, (1 - \)r,x((l - A)r)), for t € [l - A)r,r]. 

Then because of theorem 3.3 (see also the remark following theorem 3.4), we have 
that wn: [0,1] x Sn(x0) -» Sn(xQ) is continuous and wn(0,x) = x, while wn(l,x) = 
zn . So wn(-,-) is a null-homotopy for the set Sn(x0), with base point zn. Hence 
Sn(xo) is contractible and so by Hyman's theorem [7], we finally have that S(XQ) is 
an Rs-set in L2(T,H). • 

If we assume that we have smooth initial datum, then using theorem 3.4 we can 
have the following stronger version of theorem 4.1: 

Theorem 4 .2. If hypotheses H(A) and H(Fi) hold and x0 G X, then S(x0) is 
an Rs-set in C(T,H). 

5 . AN APPLICATION TO CONTROL SYSTEMS 

Consider the following infinite dimensional control system: 

(4) 

r x(t) + A(t,x(t)) = f(t,x(t))u(t) a.e. 

x(0) = x0 

u(t) G U(t) &.e.,u(-) is measurable J 

In this section, the space X in the evolution triple (X, H, X*) is a separable Hilbert 

space. Also the control space is modelled by a separable Banach space Y. In what 

follows C(Y, H) is the Banach space of all bounded linear operators from Y into H. 

We will assume the following concerning the data of (4): 

H(f): f:T xH -* C(Y,H) is a map s.t. 

(1) t —•> f(t,x)u is measurable, 

(2) x -> f(t, x) is continuous from H into C(Y, H) with the operator norm topology, 

(3) | | /(*,-r) | |£ ^ ct2(t) + P2(t)\x\ a.e. with a2 , (52 e L?. 
H(U): U:T -» Pwkc(Y) is a measurable multifunction s.r. U(£) C W G FUc^) 

a.e. 
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A control function u: T —> H is said to be "admissible" if u(-) is measurable and 
u(t) G U(t) a.e. Every admissible control generates a nonempty set of admissible tra­
jectories (theorem 3.1). Let S(x0) be the set of all admissible trajectories generated 
by all possible admissible controls. We define 

R(t) = {x(t): xeS(x0)} 

the reachable set at time t G T of system (4); i.e. R(t) = S(x0)(t) C H. 

Theorem 5.1. If hypotheses H(A), H(f), H(U) hold and x0 G H, then for every 

t eT, R(t) is a nonempty, compact and connected subset of H. 

P r o o f . Let F: T x H -> Pwkc(H) be defined by 

F(t,x) = f(t,x)U(t)= U f(t,x)u. 
ueu{t) 

Let un: T —> Y n ^ 1, be measurable functions s.t. U(t) = {v>n(t)}n>1 for 
all t £ T. Such a sequence exists since by hypothesis H(U), U(-) is a measurable 
multifunction (see theorem 4.2 of Wagner [14]). Then for every v G H, we have 

d(v,F(t,x)) = inf \v-f(t,x)un(t)\, 

hence t -» d(v,F(t,x)) is measurable, 

and so t —> F(t,x) is a measurable multifunction. 

Also note that for every x, y G H, we have 

h{F(t,x),F(t,y)) ^\W\\\f(t,x) - f(t,y)\\c 

where \W\ = sup {||ix||: u G W}. So because of hypothesis H(f) (2), we have that 
F(t,-) is ^-continuous. 

Finally, because of hypothesis H(f) (3), we have: 

\F(t,x)\ ^ a2(t) + P2(t)\x\ a.e. 

with d2 = |VV|a2, /32 = \W\/32 G L+. So the multifunction F(t,x) satisfies hypothesis 
H{F)X. 

Consider the following evolution inclusion: 

( x(t) + A(t,x(t)) £F(t,x(t)) a . e . | 

1 x(0)=xo J 

421 



A straightforward application of Aumann's selection theorem tells us that the 
solution set of the above multivalued Cauchy problem, is equal to S(x0). So from 
theorem 3.4, we have that S(x0) is an I^-set in C(T,H), hence in particular, it is 
nonempty, compact and connected in C(T,H). Since the evaluation at t e T map is 
continuous on C(T,H) (see Dugundji [4], theorem 2.4, p. 260), we get that R(t) is 
nonempty, compact and connected in H. • 

Also if we are given a cost functional J: C(T,H) -> R = R U {+00} to be min­
imized over S(x0), then we can have the following theorem, provided J(-) satisfies 
the hypothesis, 

H(J): J: C(T,H) -> R = R U {+00} is l.s.c 

Theorem 5.2. If hypotheses H(A), H(f), H(U) and H(J) hold and x0 e H, 

then there exists x e S(x0) s.t.J(x) = inf [J(x): x e S(x0)]. 

In particular, if J(x) = rj(x(r)), with rj: H —> R = R U {+cxo} l.s.c, we have a 

terminal cost (Meyer) optimal control problem. 
Now let Z be a bounded domain in UN. Consider the following nonlinear dis­

tributed parameter optimal control problem: 

(5) 

J(x) = / l(z,x(r, z)) åz —> inf = m 

s . « - ^ - ^ ( » ? ( | g r a d a ; | 2 ) ^ ) = f(t,z,x(t,z))u(t,z) 

[ x\TxT = 0,x(0,z) = x0(z), \\u(t,-)\\2 ^ M,u(-,-) is measurable J 

>. 

We will need the following hypotheses on the data of (5): 
H(rj): rj: R+ —» R+ is continuous and there exist 7, S > 0 such that: 
0 ^ rj(X2) ^ 7 for all A > 0 and r?(A2)A - rj(ji2)n > 6(X - u), X ^ u ^ 0. 

H(f)1: / : T x Z x R - + R i s a function s.t. 

(1) (t,z) —> f(t,z,x) is measurable, 

(2) x -> f(t,z,x) is continuous, 

(3) \f(t,z,x)\ ^ (3(t,z) a.e. with /?(-, •) e L°°(T x Z ) + . 
H(l): I: Z x R -» R U {+00} is an integrand s.t. 
(1) (z, x) —> l(z,x) is measurable, 
(2) x —> l(z,x) is l.s.c, 

(3) (p(z) - M\x\ ^ l(z,x) a.e. with <p E Ll(Z), M > 0. 

Remark. A simple example of a function satisfying H(rj) is rj(t) = 1 + 

(t + 1)-1'2. 
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In this case, H = L2(Z), X = H^(Z) and X* = H~l(Z). We know that 
(X, H, X*) is an evolution triple with all embeddings being compact (Sobolev em­
bedding theorem). 

Let a: X x X —> LR be the Dirichlet form defined by 

N M* ( Ft \ ' 

f z ^ ^ t dz) is an equiv-

alent norm on H\(Z), we get that 

\a(x,y)\ ^c\\x\\ - | | y | | , c>0 . 

So there exists A: X -> X*, a generally nonlinear operator s.t. 

(Ax,y) = a(x,y) for all x,y G HQ(Z). 

Also if ((s) = \ ff rj(t) dt and £(v) = C(M), v G (RN, we have 
a(x,y)= / (£'(grad:r),grady) N dz 

Jz 

and using hypotheses H(rj), we have 

a(a; ,a;-y) -a(y,x-y) ^ ||x - y||2 

and so (Ax — .Ay, x — y) ^ J||x — y||2 

which shows that A(-) is strongly monotone and coercive (since A(0) = 0). Fur­
thermore, it is easy to see that A(-) is continuous. So we have satisfied hypothesis 
H(A). 

Let Y = L2(Z) and W = {u G Y: \\u\\2 ^ M) G Pwkc(Y). Also let / : T x H -> 
£(y,H) be defined by f(t,x)u(-) = f(t,-,x(-))u(-) for all (:r,u) G H x Y. Using 
hypothesis H(f)i, we can check that f(t,x) satisfies H(f). Hence the dynamics of 
(5) have the following equivalent evolution equation form: 

( x(t) + Ax(t) = f(t,x(t))u(t) 1 

[ x(0) = xo,u(t) G W a.e.,u(-) = measurable] 

We know that a trajectory of this evolution equation (hence of (5) too), belongs in 
C(T, H). So the integral fzl(z,x(r,z)) dz makes sense. Furthermore, using H(l) we 
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can check that J(-) is l.s.c. on C(T, H). Since the set of trajectories of (5) is compact 

in C(T,H) (theorem 3.4), we have the following existence result for problem (5): 

Theorem 5.3. If hypotheses H(rj), H(f)x, H(l) hold and x0(>) G L2(Z), then 

there exists x e L2(T,H^(Z)) HC(T,L2(Z)) with | f e L2(T,H~1(Z)), which is a 

trajectory of (5) and J(x) = m. 
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