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WEAK BAER MODULES LOCALIZED WITH RESPECT TO

A TORSION THEORY

Seog-Hoon Rim, Taegu, and Mark L. Teply, Milwaukee1

(Received September 1, 1995)

In [1], Fuchs and Viljoen described the modules B over a valuation domain R

such that ExtR(B, X) = 0 for all bounded torsion and all divisible modules X .
This weak form of Baer’s splitting problem was considered in [4], [5], [6], and [7]

for arbitrary torsion theories over an associative ring. As in the valuation ring case,
modules playing the role of B in the “Ext condition” above are called B∗-modules.

(A precise definition is given later.) Under the hypothesis that τ is of finite type
(i.e., the filter associated with τ has a cofinal subset of finitely generated left ideals),

results in [5] (and [6]) gave characterizations of torsion theories τ whose τ -torsionfree
modules are (flat) B∗-modules. The main purpose of this note is to prove a result

(Theorem 2) that allows us to remove the restrictive overall hypothesis that τ is of
finite type from all the main results of [5] and [6].

Let R be an associative ring with 1, let τ be a torsion theory of left R-modules
and let Lτ be the filter of left ideals of R associated to τ . By τ(M) we denote

the τ -torsion submodule of a module M , and by Qτ we denote the localization of
R relative to τ ; Qτ has a natural ring structure that extends the ring structure of

R/τ(R). For the basic properties of τ and other torsion theoretic terms used in this
note, see Golan [2].

Recall that a left R-module E is called τ -injective if ExtR(T, E) = 0 for each τ -

torsion module T . As in [7], a module D is called τ -divisible if D is a homomorphic
image of a direct sum of τ -injective modules. A module M is called a D∗-module

if ExtR(M, D) = 0 for each τ -divisible module D. A module M is said to have τ -
bounded order ifM is a submodule of a moduleN with a set of generators annihilated

by a left ideal I in Lτ . A module M is called a B∗-module if ExtR(M, X) = 0 for
each τ -divisible X and each X with τ -bounded order.

1 This paper was supported in part by the TGRC-KOSEF, 1994, and BSRI-95-1402.
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Before stating our main result, we need the following minor generalization of [7,

Lemma 2.6].

Lemma 1. If a Qτ -module B is a D∗-module, then Qτ ⊗R B ∼= B and B is a

projective Qτ -module.

�����. Let m : Qτ ⊗R B −→ B be the multiplication map. If k =
∑

qi ⊗ bi ∈
kerm, then

⋂
(R/τ(R) : qi)k = 0; hence kerm ⊆ τ(Qτ ⊗R B). But Qτ ⊗R B is a

projective Qτ -module by [7, Lemma 2.5]. Consequently, Qτ ⊗R B is τ -torsionfree,
and hence kerm = 0. �

As in [2], we say that τ is an exact torsion theory if the localization functor for τ

is exact, and we say that τ is perfect if the localization of each module M is given
by Qτ ⊗R M .

We can now give our main result.

Theorem 2. If every τ -torsionfree Qτ -module is a D∗-module, then τ is a perfect

torsion theory and Qτ is a semisimple artinian ring.

�����. Since every τ -torsionfree Qτ -module is assumed to be a D∗-module,

then every τ -torsionfree Qτ -module is projective as a Qτ -module by Lemma 1. Since
τ(Qτ ) = 0, it follows that every nonsingular left Qτ -module must be projective.

Hence Qτ is a left nonsingular ring, and thus Qτ is a left noetherian ring by [3,
Theorem 5.23].

Next we show that τ is an exact torsion theory. Let E be a τ -torsionfree τ -injective

module, and consider the exact sequence

0 −→ ker f −→ E
f−→ F −→ 0,

where F is τ -torsionfree. Since ker f must be τ -torsionfree and τ -injective in this
situation, then ker f is a Qτ -module by [2, Proposition 26.33]. Hence F is a Qτ -

module. By Lemma 1, F is a projective Qτ -module; so, as a direct summand of E,
F must be τ -injective. Thus τ is exact by [2, Proposition 44.1].

From [2, Corollary 45.6 and Theorem 45.1] and the two preceding paragraphs,

we see that τ is perfect. But for a perfect torsion theory, every Qτ -module is τ -
torsionfree; so in this case, every Qτ -module is projective. Therefore, Qτ is a semi-

simple artinian ring. �

In [5] the question, “When is every τ -torsionfree module a B∗-module?” is con-

sidered. Similarly, in [6] the question, “When is every τ -torsionfree module a flat
B∗-module?” is studied. These questions are answered under the hypothesis that τ
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is of finite type. The answers to these questions show that τ must be closely related

to the Goldie torsion theory τg; the τg-torsionfree modules are precisely the nonsin-
gular modules. The finiteness property of τ is used to prove the following key lemma
of [5]:

[5, Lemma 4.] Let τ be of finite type. If every τ -torsionfree module is a B∗-
module, then Qτ is a semisimple artinian ring and τ induces the Goldie torsion

theory on R/τ(R)−mod.

When Qτ is semisimple and τ is perfect, then τ automatically induces the Goldie

torsion theory on R/τ(R)−mod. Hence Theorem 2 shows that [5, Lemma 4] is true
without the hypothesis that τ is of finite type. Since [5, Lemma 4] is the only source

of the use of the hypothesis that τ is of finite type throughout [5] and [6], all of the
main results of [5] and [6] are true without the assumption that τ is of finite type.

(In results on the Goldie theory, such as [5, Proposition 11 and Theorem 12] or [6,
Theorem 10], this means that the overall hypothesis that R has finite left uniform

dimension is not needed.)

Example 3. Let � denote the integers, � the rational numbers, and � the real
numbers. Consider R to be either matrix ring:

R =

(
� �

0 �

)
or R =

(
� �[x]
0 �

)
.

The old versions of the results in [5] and [6] do not apply to Goldie torsion theory for
R, as R does not have finite left uniform dimension. But since R has many properties

similar to the matrix rings in [5, Theorem 18] and [6, Theorem 14], one might have
wondered if every τg-torsionfree R-module is a B∗-module. Our Theorem 2 shows

immediately that this is not the case.

In addition to generalizing results from [5] and [6], we illustrate the use of Theorem
2 with the following application. We use hdRM to denote the homological dimension
of a left R-module M .

Corollary 4. If τ(R) = 0, the following statements are equivalent:
(1) Every τ -torsionfree Qτ -module is a D∗-module,

(2) Every Qτ -module is a D∗-module,

(3) hdRQτ � 1 and Qτ is a semisimple artinian ring.

�����. (1) ⇐⇒ (2). From Theorem 2, Qτ is semisimple artinian; so every
Qτ -module must be τ -torsionfree.

(1) =⇒ (3). This is immediate from Theorem 2 and [7, Lemma 2.1].
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(3) =⇒ (1). Let B be a Qτ -module, and let D be τ -divisible. We need to show

that ExtR(B, D) = 0. Since Qτ is semisimple artinian, we may assume that B = Qτ .
Let

⊕
Eα −→ D be an epimorphism, where each Eα is τ -injective. Let Fα be a

free R-module with Fα −→ Eα an epimorphism. Since τ(R) = 0, then Fα ⊆
⊕

Qτ ;

so the τ -injectivity of each Eα gives rise to the epimorphism

⊕

α

( ⊕
Qτ

)
−→

⊕
Eα −→ D.

Since hdRQτ � 1, we have an exact sequence

ExtR(Qτ ,
⊕

Qτ ) −→ ExtR(Qτ , D) −→ 0.

But (Qτ )R is a flat and Qτ ⊗R Qτ
∼= Qτ ; so ExtR(Qτ ,

⊕
Qτ ) ∼= ExtQτ (Qτ ,

⊕
Qτ ) =

0. Therefore, ExtR(Qτ , D) = 0, as desired. �
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