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SIMPLE PARAMEDIAL GROUPOIDS

Jung R. Cho, Pusan, Jaroslav Ježek and Tomáš Kepka, Praha

(Received September 27, 1996)

The present note is a free continuation of [1] and [2] and its purpose is to initiate the

study of simple paramedial groupoids—a small contribution to the task of describing
simple algebras satisfying strong linear indentities.

A reader is referred to [1] for notation and various prerequisities.1

1. Basic properties of simple paramedial groupoids

1.1 Theorem. Let G be a (non-trivial) simple paramedial groupoid. Then

exactly one of the following three cases takes place:

(1) oG is an injective transformation of G.

(2) G is a finite unipotent medial quasigroup.

(3) G is zeropotent.

�����. By [1, 2.1(iii)], r = ker(oG) is a congruence of G, and hence either

r = idG or r = G×G.
If r = idG, then oG is injective, and hence we will assume that r = G×G. Then

G is unipotent, i.e., xx = e = yy for all x, y ∈ G. By [1, 2.9(i)], s = ker(LeRe) is a
congruence of G. Again, we have either s = idG or s = G×G.

First, let s = idG. Then LeRe = ReLe is an injective endomorphism of G and
consequently both Le and Re are injective transformations of G. By [1, 2.9(ii)], G

is a cancellative medial groupoid. However, it is proved in [3] that every simple
cancellative medial groupoid is a finite quasigroup.
Now, let s = G × G. Then e · xe = e · ye for all x, y ∈ G and it follows that

e · xe = e = ex · e. Further, by [1, 2.6(i)], t = ker(L2e) is a congruence of G. If

1While working on this paper, the first author was supported by the Basic Science Research
Institute Program, Ministry of Education, Korea 1966, No. BSRI-96-1433 and the second
one by the Grant Agency of the Czech Republic, Grant # 201/96/0312
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t = idG, then both Le and Re are injective and G is cancellative ([1, 2.6(ii), 2.9(ii)]).

But e · xe = e · ye implies x = y for all x, y ∈ G, which is a contradiction. Thus
t = G×G and we have e · ex = e = xe · e for every x ∈ G.
Put I = {a ∈ G ; ae = e = ea}. Clearly, e ∈ I and if a ∈ I and x ∈ G, then

e · ax = xe · ae = xe · e = e, ax · e = ex · ea = ex · e = e, e · xa = ae · xe = e · xe = e

and xa · e = ea · ex = e · ex = e, so that ax, xa ∈ I. We have proved that I is an

ideal of G. But then w = (I × I) ∪ idG is a congruence of G and if w = G×G, then
I = G and G is zeropotent. If w = idG, then I = {e}, e is an absorbing element of
G and G is again zeropotent (in fact, I = {e} is not possible). �

1.2 Lemma. Let G be a non-trivial finite idempotent medial groupoid and let f

be an antiautomorphism of G such that idG and G×G are the only congruences of

G which are invariant under f . Then exactly one of the following three cases takes

place:

(1) G is a quasigroup.

(2) G is a semilattice.

(3) G is a rectangular band.

�����. First, let r denote the intersection of all cancellative congruences of G.

Then r is the smallest cancellative congruence of G and, if we define a relation r1
on G by (a, b) ∈ r1 iff (f(a), f(b)) ∈ r1, we get a cancellative congruence r1, so that

r ⊆ r1. This shows that r is invariant under f .
If r = idG, then G is cancellative and, since G is finite, it is a quasigroup. Now, we

will assume that r = G×G, i.e., no proper homomorphic image of G is cancellative.
Let s be the smallest congruence of G such that the corresponding factor is a

semilattice. Again, define s1 by (a, b) ∈ s1 iff (f(a), f(b)) ∈ s. It is easy to check
that s1 is a congruence of G and (x, xx) ∈ s1, (xy, yx) ∈ s1 and (x · yz, xy · z) ∈ s1

for all x, y, z ∈ G. Thus G/s1 is a semilattice, s ⊆ s1, s is invariant under f and we
can assume that s = G×G.

Now, sinceG is non-trivial and finite, at least one proper non-trivial factorgroupoid
H of G is simple. According to our assumptions, H is neither cancellative nor a

semilattice. Using the description of simple idempotent medial groupoids as given
in [3] we conclude that H is either an LZ-semigroup or an RZ-semigroup. In both

cases, t �= G × G, where t is the smallest congruence such that the corresponding
factor is a rectangular band. As usual, t is invariant under f , and therefore t = idG.

In other words, G is a rectangular band. �

1.3 Proposition. Let G be a (non-trivial) finite simple paramedial groupoid

such that oG is injective. Then exactly one of the following three cases takes place:

(1) G is a quasigroup.
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(2) G is commutative (and hence medial) and not cancellative.

(3) There exist a rectangular band G(∗) and an antiautomorphism f of G(∗) such
that xy = f(x) ∗ f(y) (= f(y ∗ x)) for all x, y ∈ G.

�����. Clearly, oG is a permutation and, by [1, 2.4], there exist an idempotent

medial groupoid G(∗) and an antiautomorphism f of G(∗) such that xy = f(x)∗f(y)
for all x, y ∈ G. Since G is simple, idG and G×G are the only congruences of G(∗)
that are invariant under f . Now, we can apply 1.2.
If G(∗) is a quasigroup, then G is also a quasigroup.

If G(∗) is a semilattice, then G is commutative.
If G(∗) is a rectangular band, then one may check easily that G is neither can-

cellative nor commutative. �

1.4 Lemma. Let G be a simple paramedial groupoid containing at most three

elements. Then G is medial.

�����. Easy to check. �

1.5 Example. Consider the following four-element groupoid G1:

0 1 2 3
0 0 0 0 0
1 0 0 1 0
2 0 0 0 3
3 0 2 0 0

Then G1 is a simple zeropotent non-medial paramedial groupoid.

1.6 Example. Consider the following four-element groupoid G2:

0 1 2 3
0 0 2 0 2
1 0 2 0 2
2 1 3 1 3
3 1 3 1 3

Then G2 is a simple non-medial paramedial groupoid, G2 is not cancellative, oG2

is a permutation and Id(G2) = {0, 3} is not a subgroupoid of G2.

1.7 Example. Consider the following four-element groupoid G3:

0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 3 0 1 2
3 2 1 0 3

393



Then G3 is a simple non-medial paramedial quasigroup and Id(G3) = {0, 3} is not
a subgroupoid of G3.

1.8 Example. Consider the following four-element groupoid G4:

0 1 2 3
0 2 0 2 0
1 2 0 2 0
2 3 1 3 1
3 3 1 3 1

Then G4 is a simple medial and paramedial groupoid (notice that G2 and G4 are

not isomorphic).

Let G be a (non-trivial) simple paramedial groupoid. We will say that G is

– of type (I) if G is cancellative;
– of type (II) if G is zeropotent;

– of type (III) if G is commutative but neither cancellative nor zeropotent;
– of type (IV) if there exist a rectangular band G(∗) and an antiautomorphism

f of G(∗) such that xy = f(x) ∗ f(y) for all x, y ∈ G;
– of type (V) if G is of none of the above types.

Clearly, every simple paramedial groupoid is of just one of these five types. Fur-

ther, by 1.1 and 1.3, every simple paramedial groupoid of type (V) is infinite.

2. Antiautomorphisms of rectangular bands

2.1. Let G be a rectangular band. Define two relations α and β on G by (a, b) ∈ α

iff a = ab and (c, d) ∈ β iff d = cd. Then both α and β are congruences of G,
G/α is an RZ-semigroup, G/β is an LZ-semigroup and α ∩ β = idG. Moreover,

(a, ba) ∈ α and (b, ba) ∈ β for all a, b ∈ G. Now, it is clear that the mapping
ϕ : G → G/α ×G/β, ϕ(x) = (x/α, x/β), is an isomorphism of G onto the cartesian

product G/α×G/β.

Let f be an antiautomorphism of G. Then (a, b) ∈ α iff (f(a), f(b)) ∈ β, and hence
the mapping � : G/α → G/β, �(x/α) = f(x)/β, is an antiisomorphism of G/α onto

G/β; in particular, card(G/α) = card(G/β). Similarly, ς : G/β → G/α, ς(x/β) =
f(x)/α, is an antiisomorphism of G/β onto G/α. Setting g(u, v) = (ς(v), �(u)),

u ∈ G/α, v ∈ G/β, we get an antiautomorphism of G/α×G/β and ϕf = gϕ.

2.2. Let A and B be an RZ-semigroup and LZ-semigroup, resp., such that

card(A) = card(B) � 2. Put G = A × B and consider bijections � : A → B

and ς : B → A. Now, define f(a, b) = (ς(b), �(a)), a ∈ A, b ∈ B. Then f is an
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antiautomorphism of G (by 2.1, every antiautomorphism is of this type), σ = ς� is

a permutation of A and τ = �ς is a permutation of B.
Suppose that idG and G × G are the only congruences of G that are invariant

under f .

2.2.1 Lemma. Let a ∈ A and n � 2 be such that the elements a, σ(a), . . . ,
σn−1(a) are pair-wise different and σn(a) = a. Then A = {a, σ(a), . . . , σn−1(a)},
card(A) = n and σ is an n-cycle.

�����. Let C = {a, σ(a), . . . , σn−1(a)} and D = �(C); we have C ⊆ A and
D ⊆ B. Moreover, put L = {(σi(a), �σj(a)) ; 0 � i, j < n} ⊆ G, Kc = {(c, �σi(a)) ;

0 � i < n} ⊆ G, c ∈ A − C, and Hd = {(σi(a), d) ; 0 � i < n} ⊆ G, d ∈ B − D.
Clearly, these subsets of G are pair-wise disjoint, card(L) � 2 and r �= idG, where

r = idG ∪(L×L)∪⋃
(Kc×Kc)∪

⋃
(Hd×Hd), c ∈ A−C, d ∈ B−D. Since f(L) ⊆ L,

f(Kc) ⊆ H�(c) and f(Hd) ⊆ Kς(d), the relation r remains invariant under f .

Let (u, v) ∈ G. Then (u, v)Kc = {(c, v)} and Hd(u, v) = {(u, d)}. If u ∈ C, then
Kc(u, v) ⊆ L and L(u, v) ⊆ L. If u /∈ C, then Kc(u, v) ⊆ Ku and L(u, v) ⊆ Ku.

If v ∈ D, then (u, v)Hd ⊆ L and (u, v)L ⊆ L. If v /∈ D, then (u, v)Hd ⊆ Hv and
(u, v)L ⊆ Hv.

We have checked that r is a congruence of the rectangular band G. Now, r = G×G

and it follows that L = G and C = A, D = B. �

2.2.2 Lemma. Let a, b ∈ A be such that a �= b, σ(a) = a and σ(b) = b. Then

A = {a, b}.
�����. Put C = {a, b}, D = �(C), L = {(a, �(a)), (a, �(b)), (b, �(a)), (b, �(b))},

Kc{(c, �(a), (c, �(b))}, c ∈ C − A, Hd = {(a, d), (b, d)}, d ∈ B − D. Then these
sets are pair-wise disjoint and r = idG ∪(L × L) ∪⋃

(Kc ×Kc) ∪
⋃
(Hd ×Hd) is an

f -invariant congruence of G. Thus r = G×G, L = G and C = A. �

2.2.3 Lemma. Precisely one of the following two cases takes place:

(1) card(A) = card(B) = 2, σ = idA, τ = idB , ς = �−1 and � = ς−1.

(2) card(A) = card(B) = n � 2 is finite and both σ and τ are n-cycles.

�����. In view of 2.2.1 and 2.2.2, we can assume that card(A) is infinite and

that the elements a, σ(a), σ2(a), . . . are pair-wise different for some a ∈ A. Proceeding
similarly as in the proof of 2.2.1, we can show that A = {a, σ(a), σ2(a), . . .}. Then
a /∈ σ(A), a contradiction. �

2.3. Let n � 2, A = B = {1, 2, . . . , n} and let G = A × B be the corresponding
rectangular band (see 2.2); we have (i, j)(k, l) = (k, j). Further, choose the bijections

395



� and ς of A in such a way that � = idA and ς(i) = (i+ 1) (mod n) for every i ∈ A.

Then σ = τ = ς is an n-cycle. Finally, f(i, j) = ((j + 1) (mod n), i).
Now, let a, b, u, v ∈ A, 1 � a < b � n, and let r denote the smallest congruence

of the rectangular band G such that r is invariant under f and r contains the pair

((a, u), (b, v)). We have b = σs(a) for a unique s, 1 � s < n.

2.3.1 Lemma. ((σi(a), x), (σi(b), x)) ∈ r and ((x, σi(a)), (x, σi(b))) ∈ r for all

x, i ∈ A.

�����. First, (a, x) = (a, x)(a, u) and (b, x) = (a, x)(b, v), so that ((a, x),

(b, x)) ∈ r. Further, (σ(x), a) = f(a, x), (σ(x), b) = f(b, x), (σ(a), σ(x)) = f(σ(x), a),
(σ(b), σ(x)) = f(σ(x), b), etc.

For x ∈ A, let Hx = {(σi(a), x) ; 1 � i � n} and Kx = {(x, σi(a)) ; 1 � i � n}.
�

2.3.2 Lemma. If the numbers n and s are relatively prime, then r = G×G.

�����. Denote by ⊕ the addition modulo n on A, so that A(⊕) becomes a
cyclic abelian group, where n plays the role of a neutral element.

Now, let x ∈ A and let Lx denote the block of r such that (a, x) ∈ Lx. Put
C = {i ∈ A ; (σi(a), x) ∈ Lx}. Clearly, n ∈ C and s ∈ C (since (b, x) ∈ r by 2.3.1)

and, if i ∈ C, then i ⊕ s ∈ C (again by 2.3.1). Consequently, D ⊆ C, where D is
the subgroup generated by s in A. But s and n are relatively prime, and so D = A

and C = A. We have proved that Hx ⊆ Lx. Since f(Hx) = Kσ(x), the set Kσ(x) is
contained in the block of r determined by (σ(x), a).

Let x, y ∈ A. Then x = σj(a) and y = σk(a) for some j, k ∈ A and we have
(y, x) ∈ Hx ∩Ky. In particular, Hx ∩Ky is non-empty, which means that Hx ∪Ky

is contained in a block of r. Now, it is clear that r = G×G. �

2.3.3 Lemma. The following conditions are equivalent:

(i) n is a prime number.

(ii) idG and G×G are the only f -invariant congruences of the rectangular bandG.

�����. (i) implies (ii). Let t �= idG be an f -invariant congruence of G. There

are a, b, u, v ∈ A such that ((a, u), (b, v)) ∈ t and either a �= b or u �= v; we can
assume a �= b, the other case being dual. Now, t = G×G by the preceding lemmas.

(ii) implies (i). Suppose, on the contrary, that n is not prime and let 2 � m < n

be such that m divides n. Define a relation t on G by ((i, j), (k, l)) ∈ t iff m divides

both i−k and j− l. Then t is an f -invariant congruence of G and ((n, 1), (m, 1)) ∈ t,
((n, 1), (m, 1)) /∈ t. Thus idG /∈ t /∈ G×G. �
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3. Simple paramedial groupoids of type (IV)

For every prime number p � 2, define a groupoid Rp = {(i, j) ; 1 � i, j � p},
(i, j)(k, l) = ((l + 1) (mod p), i). We have (i, j)(k, l) = f(i, j) ∗ f(k, l), where Rp(∗)
is the rectangular band from 2.3 and f is the antiautomorphism defined also in 2.3.

Now, id and R
(2)
p are the only f -invariant congruences of Rp∗ (2.3.3) and it follows

easily that Rp is a simple paramedial groupoid of type (IV) (if r is a congruence

of Rp, then r is invariant under o = f and, since Rp is finite, r is also invariant
under f−1; thus r is a congruence of Rp(∗)). Notice that the groupoid Rp possesses

no idempotent elements, Rp is anticommutative (i.e., xy = yx for x, y ∈ Rp only if
x = y) and that Rp is antimedial (i.e., xu · vy = xv · uy only if u = v). Finally,

observe that Rp contains no proper subgroupoid.

Put R′
2 = {(i, j) ; 1 � i, j � 2} and define a multiplication on R′

2 by (i, j)(k, l) =
(l, i). Then R′

2 becomes a (four-element) simple paramedial groupoid of type (IV),

R′
2 corresponds to 2.2.3(i) and R′

2=̃G2 (see 1.6).

3.1 Theorem. (i) R′
2 and Rp, p running through prime numbers, are pair-wise

non-isomorphic simple paramedial groupoids of type (IV).

(ii) Every simple paramedial groupoid of type (IV) is finite and isomorphic to one
of the groupoids from (i).

�����. (ii) Let G be a simple paramedial groupoid of type (IV). There exist a
rectangular band G(∗) and an antiautomorphism f of G(∗) such that xy = f(x)∗f(y)
for all x, y ∈ G. If r is an f -invariant congruence of G(∗), then r is also a congruence

of the paramedial groupoid G (and so either r = idG or r = G × G). Now, we can
use the auxiliary results from the preceding section. �

4. Simple paramedial groupoids of type (III)

For n � 1, let Yn = {a0, a1, . . . , an} and let a multiplication be defined on Yn

by aiaj = a0 for i �= j, a0a0 = a0 and aiai = ak, k = (i + 1) (mod n) for i �= 0.
Then Yn is a simple paramedial groupoid of type (III). Further, Y2 is a two-element
semilattice and, for n � 2, Yn contains just one idempotent element, namely a0; in

both cases, a0 is an absorbing element of Yn. Notice also that Yn, except for the
above mentioned idempotents, possesses no proper subgroupoids.

4.1 Theorem. (i) The groupoids Yn, n � 1 are pair-wise non-isomorphic simple
paramedial groupoids of type (III).
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(ii) Every simple paramedial groupoid of type (III) is finite and isomorphic to one

of the groupoids from (i).

�����. Every commutative paramedial groupoid is medial and our result follows

from the classification of simple commutative medial groupoids given in [3]. �

5. Simple paramedial groupoids of type (II)—linear representations

5.1 Proposition. Let G be a simple paramedial groupoid of type (II) (and
0 = aa, a ∈ G). Then there exist a commutative semigroup S(+) and automorphisms
f , g of S(+) such that the following conditions are satisfied:

(i) G ⊆ S and ab = f(a) + g(b) for all a, b ∈ G.

(ii) 0 is an absorbing element of S(+) and f(x) + g(x) = 0 for every x ∈ S.

(iii) f2 = g2.

(iv) S(+) is either zeropotent or idempotent.

(v) The algebra S(+, f, g, f−1, g−1) is simple and generated by G.

�����. By [4], there exist a commutative semigroup S(+) and automorphisms

f , g of S(+) such that the conditions (i), (ii) and (iii) are satisfied; obviously, we
can assume that the algebra S̃ = S(+, f, g, f−1, g−1) is generated by G. Moreover

(considering the factor S̃/s, where s is a congruence of S̃ maximal with respect
to s ∩ (G × G) = idG), we can assume that r ∩ (G × G) �= idG for every non-

identical congruence r of S̃. Now, if r is such a congruence and t = r ∩ (G × G),
then t is a congruence of G, t �= idG, and hence t = G × G ⊆ r. Consequently,

G ⊆ A = {x ∈ S ; (0, x) ∈ r} and A = S, since A is evidently a subalgebra of S̃.
Thus r = S × S and we have proved (v). Now, it remains to show (iv); to that

purpose, we can assume that S(+) is not zeropotent.

The endomorphism x → 2x of S̃ is not constant, and so it is an injective endo-

morphism of S̃. Using an obvious and standard construction, we embed S̃ into a
(simple) algebra S̃1 = S1(+, f1, g1, f

−1
1 , g−11 ) such that x → 2x is an automorphism

of S̃1. Now, proceeding similarly as in [5], we can show that S1(+) is idempotent. �

5.2 Remark. Let G be a simple paramedial groupoid of type (II). Proceeding

similarly as in the proof of 5.1, we can show that there exist a commutative semigroup
S(+) and endomorphisms f , g of S(+) such that the conditions (i), (ii), (iii) and

(iv) from 5.1 are satisfied and, moreover, the following is true:

(v′) The algebra Ŝ = S(+, f, g) is simple and generated by G.

Now, f2(= g2) is an endomorphism of Ŝ, and hence either ker(f2) = G × G or
ker(f2) = idG. In the former case, we must have card(G) = 2, and so ker(f2) = idG,
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provided that card(G) � 3. However, then f and g are injective endomorphisms of

S(+).

6. Simple paramedial groupoids of type (I)—linear representations

First, recall that a non-trivial cancellative groupoid G is called c-simple if idG

and G ×G are the only cancellative congruences of G. Further, let A be the group
given by two generators α, β and one relation α2 = β2, and let R = ZA be the

corresponding group-ring over the ring Z of integers.

6.1 Proposition. The following conditions are equivalent for a quasigroup Q:

(i) Q is a c-simple paramedial quasigroup.

(ii) There exist a simple R-module structure Q(+, rx ; r ∈ R) defined on Q and

an element w ∈ Q such that ab = αa+ βb+ w for all a, b ∈ Q.

�����. The result is an easy consequence of [1, 6.2]. �

6.2 Proposition. Let G be a c-simple paramedial cancellative groupoid. Then

the q-envelope of G (see [2, 5.3]) is a c-simple paramedial quasigroup.

�����. See [1, 4.11] and [2, 5.1,5.3]. �

References

[1] J. R. Cho, J. Ježek and T. Kepka: Paramedial groupoids. (Preprint).
[2] J. Ježek and T. Kepka: Equational theory of paramedial groupoids. (Preprint).
[3] J. Ježek and T. Kepka: Medial groupoids. Rozpravy ČSAV 93/2 (1983).
[4] J. Ježek and T. Kepka: Linear equational theories and semimodule representations.
(Preprint).

[5] J. Ježek and T. Kepka: Simple semimodules over commutative semirings. Acta Sci.
Math. Szeged 46 (1983), 17–27.

Authors’ addresses: ���� �� ���, Pusan National University, Kumjung, Pusan
609-735, Republic of Korea; �	
���	
 ����� and ����� ����	, Charles Univer-
sity, Sokolovská 83, 186 00 Praha 8, Czech Republic.

399


		webmaster@dml.cz
	2020-07-03T12:06:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




