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Abstract. We prove by using well-founded trees that a countable product of supercom-
plete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result
extends results given in [1], [5], [6], [19], [26] and its proof improves that given in [19].
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1. Introduction

This article belongs to a series of papers investigating the supercompleteness or
paracompactness of product spaces under the structural condition that the factors be

recursively decomposable or refinable to compact parts. It was proved by Z. Frolík in
[6] that a countable product of locally compact paracompact spaces is paracompact.

K. Alster proved in [1] that countable products of C-scattered Lindelöf spaces are
again Lindelöf. A similar result for paracompact spaces was given in [5], extending an

earlier result of [28] for scattered paracompact spaces. On the other hand, the earlier
result of Telgársky [30] on finite products of C-scattered paracompact spaces was

extended to the stronger, combinatorial condition of supercompleteness [21] by the
first author in [16]. Following this research line ([14], [16], [17], [26]), the first author

and J. Pelant gave in [19] the result establishing the supercompleteness of countable
products of C-scattered supercomplete spaces, which implies the above-mentioned

results of [1], [6], [5], and [28]. However, Frolík [6] had also proved (more generally)
that the countable product of Čech-complete paracompact spaces is paracompact.
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His result was extended to supercomplete spaces in [16]. In this paper, we continue

this research by establishing a common generalization of the above results by showing
that the countable product of Čech-scattered supercomplete spaces is supercomplete.

By using well-founded trees associated with the Ginsburg-Isbell locally fine core-

flection [10], the proof given in [19] was quite compact. (These trees were introduced
in [26], and applied in [18].) By using a more refined technique, we extend these

results to the case of spaces scattered with respect to Čech-complete subsets. A
similar result for Lindelöf spaces is obtained as a corollary to our general theorem

on supercompleteness. This case essentially extends that of C-scattered spaces, since
Čech-complete paracompacta do not have the property that their products with

paracompacta are always paracompact. The main new idea is the perverse product
of trees. Well-founded subtrees of the perverse products admit induction arguments

from bottom to top, making the proof more compact and readable. Instead of ex-
haustions of K -scattered spaces (as in [16], [17]) we use related decomposition trees

of those spaces.

The notion of Čech-scattered spaces is an important common limit of the notions
C-scattered and Čech-complete.

locally compact

������������

������������
scattered

����
��

��
��

�

Čech-complete

�� ������������
C-scattered

������������

p-space

������������� Čech-scattered

��
p-scattered

Indeed, one might conjecture that our main result could be generalized to spaces

scattered with respect to sets in a countably productive category of spaces. However,
it cannot even be extended to the case of metrizable-scattered paracompacta; the

classical Michael line [24] ([4], Ch. 5, Ex. 1.4) is scattered with respect to countable
sets and provides a simple counter-example.
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1.1. Recursive covers

In general, open covers of products X × Y cannot be reduced to those of the

factors, in particular to covers obtained as products U ×V , where U (resp. V ) is an
open cover of X (resp. Y ). However, we may consider product covers in a recursive

sense by recursively localizing them to the members of the product cover. When
the factor covers are chosen from uniformities, this leads to the so-called Ginsburg-

Isbell derivatives of product covers, defined and considered later in Section 2.3. It
is sufficient here to define recursive open covers of the product space X × Y as

well-founded trees in which every element is an element of the form U × V , and the
immediate successors of an element form an open product cover of the corresponding

subspace. These covers generalize the notion of simplicial subdivisions, and the
condition of well-foundedness corresponds to the requirement that every descending

chain of the subdivision is finite. This generalization provides a connection between
the product and the factors, and the question of those classes of spaces in which

every open cover can be refined by a recursive cover is a problem important for
topological arguments based on the factor spaces. This can be done, for example,

when both factors are Čech-complete. In this paper we consider the problem in the
case of infinitely many factors.

2. Preliminaries

We give here technical preliminary definitions necessary for the proof of Theo-
rem 3.2. This section is divided into four subsections. We adopt many definitions

from [10], [19], in particular the definitions of well-founded tree and the locally finite
(Ginsburg-Isbell) coreflection operator λ. We consider in this paper trees as par-

tially ordered sets T with the underlying set denoted by the same symbol. Here we
exclusively consider rooted trees T such that every element has only finitely many

predecessors.

2.1. K -scattered spaces

We recall that if K is a class of topological spaces, then a space X is called K -

scattered [30], [31] if every non-empty closed subset of X contains a point having a
K -neighbourhood in this subset. We can define the K -derivatives of aK -scattered

space X by transfinite induction as follows. Let DK (X) denote the subset of all
p ∈ X having no K -neighbourhood. Then DK (X) is a closed subset of X , and we

set
D
(0)
K (X) = X, D

(α+1)
K (X) = DK (D

(α)
K (X)),
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and

D
(β)
K (X) =

⋂

α<β

D
(α)
K (X)

in case β is a limit ordinal. Define

RankK (X) = min{α ∈ Ord: D
(α)
K (X) = ∅}.

The ordinal number RankK (X) is called the K -rank of X . In particular, the K -
rank of a locally K space is at most one. In this paper, C denotes the class of

all compact spaces and Č [31] denotes the class of all Čech-complete spaces. If
K is a closed-hereditary class, then (in this paper all spaces are assumed to be

at least Tychonoff spaces) we can define the corresponding K -decomposition tree

TK (X) of X as follows. (For terminology concerning trees, the reader is kindly

referred to [18] or [19].) The elements of TK (X) are closed subsets of X defined
by using the derivative sets D

(α)
K (X). Let α = RankK (X). Thus, Dα

K (X) = ∅,
but Dα

K (X) �= ∅ for all α < α. The closed subset
⋂{Dα

K (X) : α < α} is denoted
by the symbol topK (X); notice that this is a locally K subset such that every

point p of X− topK (X) has a closed neighbourhood Up such that RankK (Up) < α.
Also note that α is a limit ordinal if, and only if, topK (X) is empty. For K = C ,

topK (X) is just locally compact, whereas forK = Č and X paracompact this is, by
a theorem of Frolík [8], itself Čech-complete, which is a convenient feature of Č . We

let Root(TK (X)) = X , and the set of immediate successors of X is defined to consist
of the set topK (X) and of all such closed subsets U ofX−topK (X) with non-empty

interior and for which RankK (U) < α. If RankK (X) = 0, then TK (X) = {X};
otherwise, the sets U satisfy RankK (U) < α, and we can (recursively) define the

tree TK (X) by hanging topK (X) and the trees TK (U) below X . Then TK (X) is
a well-founded tree. Indeed, we can consider the mapping r : TK (X) → Ord given
by r(P ) = RankK (P ). If B were an infinite branch of TK (X), then {r(P ) : P ∈
B} would contain an infinite decreasing set of ordinal numbers, which would be
impossible. The decomposition trees (for K = C and for a metrizable X) were first

explicitly mentioned in [17].

2.2. Perverse products of trees

Next we consider special products of trees. If (Ti : i ∈ I) is a family of trees, then
the direct product

∏
i∈I

Ti is defined as the direct product of the partially ordered sets

Ti. Thus, the direct T product consists of the Cartesian product of the Ti equipped

with the direct product order relation: for p, q ∈ T , p � q if and only if πi(p) � πi(q)
for all i ∈ I. In general, this direct product is not a tree. Another drawback of this
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product from our point of view is that branches of T do not in general project onto

branches in the factor trees Ti. This disadvantage is even shared by the weak direct
product of the Ti consisting of all p ∈

∏
i∈I

Ti such that {i ∈ I : πi(p) �= Root(Ti)} is
finite. For this reason we define special subproducts having this desired property. (In
this paper, the term subproduct means a subset of the direct product.) A perversity

is a finite sequence p = (p1, . . . , pn) of integers satisfying p1 = 0 and pi+1 = pi or
pi+1 = pi+1 for i ∈ [1, n− 1]. (This concept has been used in intersection homology
theory, see e.g. [23].) The set of perversities has a natural coordinatewise partial
order inherited from the usual ordering of functions � → �.
In this paper, we shall use this concept in a modified sense suitable for our pur-

poses: henceforth a perversity is a decreasing sequence p : � → �which is eventually
zero. Let (Ti : i ∈ �) be a countable family of trees, and let P be a set of perversi-
ties. For a tree T , the level function LevelT : T → � is defined by letting LevelT (p)
be the number of predecessors of p in T . (We denote by Leveln(T ) the set of all
p ∈ T such that LevelT (p) = n.) Then the perverse product

∏
P

Ti is the subset of the

Cartesian product
∏
i∈I

Ti consisting of all elements x such that there is a perversity

p ∈ P such that

LevelTi(πi(x)) = p(i)

for all i ∈ �. Thus, a perverse product is always a subproduct of the weak direct
product of the Ti. However, the perverse product of countably many trees is a

tree, provided that the associated family of perversities is itself a tree under its
natural partial order. Furthermore, and more importantly for this paper, the perverse

product of trees is a partially ordered set such that infinite chains project onto infinite
chains in the factors, provided that the the set of perversities has the same property.

When Ti = T for each i, then the perverse product of the Ti is called the perverse
power of T and denoted by T�

P . In the sequel, we will consider ‘set-theoretic’ trees

T consisting of (labelled) subsets of a set X . For set-theoretic trees Ti,i ∈ I, the
set-theoretic direct product simply consists of the Cartesian products

∏
i∈I

Pi of the

underlying sets Pi of elements of the Ti. Set-theoretic perverse products are defined

in the same way. For subsets A ⊂ ∏
i∈�

Xi such that {i ∈ � : πi[A] �= Xi} is finite,
we define Seg(A) = max{i ∈ � : πi[A] �= Xi}. Otherwise, we put Seg(A) = ∞.
Thus, the function Seg is finite-valued for all elements of weak direct (and a fortiori,

perverse) set-theoretic products.
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2.3. Ginsburg-Isbell derivatives

In this paper, the symbol F (X) denotes the fine uniformity (i.e., the filter of all
normal covers) of a Tychonoff space X . The important link between well-founded

trees and uniformities is established by the Ginsburg-Isbell derivatives [10] µ(α), the
largest of which is the locally fine coreflection denoted by λµ. This connection (see

[26]) has been used in several papers as a technical tool. Let µX be a uniform space,
and let V be a cover of X . Then (we can take this as a definition) V belongs to

λµ if, and only if there is a well-founded set-theoretic tree T on X satisfying the
condition

(∗) For any element P of T , the immediate successors of P form a uniform cover

of P

and for which the maximal elements of T form a refinement of V . A uniform space
µX is called supercomplete [21] if every open cover of X belongs to λµ. Because
covers refinable by the end elements of a well-founded set-theoretic tree satisfying

(∗) have σ-discrete closed refinements, a supercomplete space is always topologically
paracompact. In a supercomplete space, the open covers can be obtained by a

combinatorial process from uniform covers. (The name “supercomplete” is derived
from the original definition: a uniform space µX is supercomplete if its uniform

hyperspace of closed subsets is complete. The definition above pertains to the results
of [21].) (A form of supercompleteness was already considered in [3].) Thus, the well-

founded trees provide a close link between the following three objects:

1) the structure of K -scattered spaces;

2) the open covers of a supercomplete space;

3) the Ginsburg-Isbell locally fine coreflection.

Let us point out the meaning of this connection. The Ginsburg-Isbell derivatives

naturally appear when one deals with covers of product spaces. Usually open covers
(or even normal covers) of products X × Y cannot be refined by products U ×V of

normal covers. In technical notation, this means that

FX ×FY �= F (X × Y ).

However, under suitable conditions (see, for example, [13],[14],[16]) it is possible to
refine all normal covers of X ×Y by covers obtained from combinatorial refinements

of product covers, i.e., the equation

λ(FX ×FY ) = F (X × Y )
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holds. The supercompleteness of the product FX×FY means that all open covers

of X × Y are refinable by such combinatorial refinements, producing a link between
the open covers and the covers of the factor spaces. Strong theorems of this type can
be obtained in a natural way, by the above remarks, for products of K -scattered

spaces, where K is a suitable class of topological spaces.

2.4. Čech-completeness

By using perverse products, we show in this paper that the above link is preserved
in countable products if the class K consists of spaces with a strong completeness

property: Čech-completeness. We recall that a Tychonoff space X is called Čech-
complete (abbreviated to Č -complete) if X is an absolute Gδ space. It was proved
by Frolík in [7] that X is a paracompact Čech-complete space if and only if it has a

sequence (Un) of locally finite open covers Un such that whenever (Fn : n ∈ �) is a
centered family of closed subsets of X such that for each n ∈ �, Fn ⊂ Un ∈ Un for

some Un, then the intersectionK =
⋂{Fn : n ∈ �} is nonempty and compact. (Such

a sequence U is called a complete sequence.) We can assume that the sequence (Un)

is normal, and that the sets Fn are of the form U i. Such compact setsK coverX , and
the finite intersections

⋂{U i : i ∈ [1, n]} form their countable neighbourhood bases.
These facts can be directly obtained from Frolík’s characterization of Čech-complete
paracompact spaces: X is Čech-complete and paracompact if and only there is a

completely metrizable space M and a perfect onto map f : X → M .

3. Countable products of Čech-scattered paracompacta

We prove here that countable products of Č -scattered supercomplete spaces are

supercomplete. We give here specific preliminary definitions for the proof of 3.2.
To describe the trees we shall deal with, we start from the Č -decomposition tree

TČ (X) of X . As in [18] and [19], let End(T ) denote the set of all maximal elements
of any tree. Recall that for each point P of TČ (X) the immediate successors of P ,

P �∈ End(TČ (X)), are the Čech-complete closed subset topČ (P ) of P and the closed
sets Q ⊂ P − topČ (P ) such that 1) RankČ (Q) < RankČ (P ) and 2) the interiors

int(Q) in P are non-empty. The end elements of TČ (X) are closed Čech-complete
subsets of X . Hence, each P ∈ End(TČ (X)) has a complete sequence (Un,P ) of

normal closed covers. We extend TČ (X) to a (non-well-founded) finer tree T (X) as
follows. First we define for each P ∈ End(TČ (X)) a tree TP . We put Root(TP ) = P ;

the immediate successors of P are the elements of U1,P ; inductively, the immediate
successors of an elementQ of level n are the non-empty setsQ∩U , where U ∈ Un+1,P .
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We denote the collection of these sets by �Un+1,P . We form T (X) by adding the trees

TP as subtrees below P . In order to choose a suitable subproduct of
∏
i∈�

T , we define

a sequence of perversities (see Section 2) as follows. Let p1 = (0, 0, 0, . . .). Suppose
that pn = (i1, . . . , im, 0, 0, . . .) has been defined. Put

k = min{j ∈ � : ij = ij+1}.

Then define pn+1 = (i1, . . . , ik + 1, ik+1, . . . , im, 0, 0, . . .). The first elements of this
sequence (in abbreviated notation) are (),(1),(1,1),(2,1),(2,1,1),(2,2,1) etc. (Notice

that P is linearly ordered, and hence any perverse product of trees with respect to
P is again a tree.) Let P = {pn : n ∈ �} and let T ′ = (

∏
i∈�

T )P be the perverse

set-theoretic power of T = T (X) with respect to P as explained in Section 2. The

root of T ′ (the unique element of level 0) is Xω and the elements of level 3, say, are
products

P1 × P2 ×X ×X × . . . ,

where P1 is of level 2 and P2 is of level 1 in T . Although the tree T ′ is not well-
founded in general, it has the following property of perverse products: if (Pn) is an

infinite increasing subset of T ′ (i.e., an infinite subset of a branch of T ′) then for
each i ∈ �, the projections πi[Pn] form an infinite increasing subset of T .

We also need a property of the Ginsburg-Isbell locally fine coreflection λ. Let

µX be a uniform space. Covers U ∈ λµ are called λ-uniform covers of µX . If
A is a subset of X , then V is called a λ-uniform neighbourhood of A, if V is a

uniform neighbourhood of A relative to λµ, i.e., there is a cover U ∈ λµ such that⋃
St(A, U ) ⊂ V . The proof of the following essential lemma is straightforward.

Lemma 3.1 (The λ-neighbourhood induction lemma). Let µX be a uniform

space, let A ⊂ X , let V be a λ-uniform cover of the subspace A and for each V ∈ V

let V ′ be a λ-uniform neighbourhood of V in X . Then
⋃{V ′ : V ∈ V } is a λ-uniform

neighbourhood of A in X . Moreover, if G is a λ-uniform cover of each V ′, then A

has a λ-uniform neighbourhood N such that G is a λ-uniform cover of N .

�����. For the first statement, there is a cover U ∈ λµ such that V = U �
A. Write V = {Vi}. For each Vi, there is a cover Wi = {W i

j } ∈ λµ such that
St(Vi, Wi) ⊂ V ′

i . Form a cover L of X by taking all sets of the form Ui ∩W i
j where

Vi = Ui ∩ A, and additionally all members of U which do not meet A. Then L

belongs to λµ. Moreover, St(A, L ) is contained in the union of the V ′, proving the

first claim. Indeed, if Ui ∩W i
j meets A, then W i

j meets the corresponding Vi, and is
contained in V ′

i .
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For the second statement, there is for each Vi a cover Wi = {W i
j} ∈ λµ such

that Wi � V ′
i ≺ G . We can assume that Wi is as in the previous paragraph, and

we define L in the same way. The union N of all members of L that meet A

is a λµ-neighbourhood of A such that L � N ≺ G . Indeed, the elements of this

restriction are of the formW ∩Ui∩W i
j (where the latter intersection meets A) which

is contained in V ′
i ∩W i

j and therefore in a member of G . �

Let us now state our main result.

Theorem 3.2. Let (Xi : i ∈ �) be a countable family of Č -scattered paracompact
spaces. Then the product space

∏
i∈�

FXi is supercomplete.

�����. We can replace the factorsXi by their discrete sum denoted byX . (Then∏
i∈�

Xi is a closed subproduct of Xω.) Let us, however, denote the ith factor of Xω

by Xi. We show that for every open cover G of Xω, the cover G <ω consisting of all
finite unions of elements of G belongs to λ(F (X)ω). (As noted in [27], it is enough

to consider G <ω instead of G .) We construct a well-founded tree TG of subsets of Xω

and show by induction from End(TG ) to Root(TG ) that G <ω is a λ-uniform cover

of each element of TG . We consider the perverse power T ′ as given above, and we
construct the desired tree TG as a well-founded subtree T ′′ of T ′. We let T ′′ consist

of all P ∈ T ′ which do not have a predecessor Q satisfying the following condition
(let s = Seg(Q)):

(#) there exist open sets M1, . . . , Ms ⊂ X , N1, . . . , Ns ⊂ X and a finite subfamily

G ′ of G such that

Q ⊂
s⋂

i=1

π−1i [Mi] ⊂
s⋂

i=1

π−1i [Mi] ⊂
s⋂

i=1

π−1i [Ni] ⊂
s⋂

i=1

π−1i [Ni] ⊂
⋃
(G ′).

(Obviously, T ′′ is a filter of T ′ and hence a subtree.) We will prove that T ′′ is a well-
founded tree. To see this, assume that T ′′ contains an infinite increasing sequence

(Pn : n ∈ �). Since T ′′ is a subtree of T ′, for each i, the projections πi[Pn] form
an infinite increasing sequence in Ti, where Ti denotes the ith factor of T ′. Since

TČ (Xi) is well-founded, there are (for each i) ni and P (i) ∈ End(TČ (Xi)) such that
(πi[Pn] : n � ni) is an infinite increasing sequence in TP (i) . This implies that there

are elements Ui,n ∈ Un,P (i) , n � ni, with πi[Pn] = Ũi,n and

s⋂

n=ni

Ui,n =
s⋂

n=ni

Ũi,n �= ∅
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for all s � ni. Since (Un,P (i)) is a complete sequence for P (i)), it follows that the set

Ki =
⋂

n∈�
πi[Pn])

is non-empty and compact. Since the elements Pn are products, clearly

K =
⋂

n∈�
Pn =

∏

i∈�
Ki

and thus there is a finite subfamily G ′ of G such that K ⊂ ⋃
(G ′). By Wal-

lace’s lemma (general form) (proved by Frolík [6], Lemma 3), we can find open

sets W1, . . . , Ws such that

s⋂

i=1

π−1i [Ki] ⊂
s⋂

i=1

π−1i [Wi] ⊂
⋃
(G ′).

Let us recall that the sets πi[Pn] have been chosen so that they form a countable
neighbourhood base of the corresponding compact set Ki in the subspace P (i) (see

Section 2). Thus we can find for each i ∈ [1, s] a number ni such that πi[Pni ] ⊂ Wi.
As a consequence, by taking n = max(n1, . . . , ns) and keeping in mind that πi[Pn] ⊂
πi[Pni ] for all i ∈ [1, s], we see that

Pn ⊂
( s∏

i=1

πi[Pn]

)
×

(∏

i>s

Xi

)
⊂

s⋂

i=1

π−1i [Wi] ⊂
⋃
(G ′),

which easily yields a contradiction with Pn+1 ∈ T ′′. Thus, T ′′ is well-founded.

After constructing T ′′ we use it to prove that G <ω belongs to λ(F (X)ω). We
prove this by induction on the partial order of T ′′. We shall prove that for each

P ∈ T ′′, there is a λ-uniform neighbourhood VP of P in Xω such that G <ω is a λ-
uniform cover of VP . Let P ∈ End(T ′′). Then there are open sets M1, . . . , Ms ⊂ X ,

N1, . . . , Ns ⊂ X such that

P ⊂
s⋂

i=1

π−1i [Mi] ⊂
s⋂

i=1

π−1i [Mi] ⊂
s⋂

i=1

π−1i [Ni] ⊂
s⋂

i=1

π−1i [Ni] ⊂
⋃
(G ′)

for some finite subfamily G ′ of G . It easily follows that P has a uniform neighbour-

hood VP such that G <ω is a uniform cover of VP . Now let P ∈ T ′′ and assume that
the claim is true for each successor Q of P in T ′′. By the definition of the perverse

order of T ′′, inherited from that of T ′, there is i ∈ � such that for each immediate
successor Q of P in T ′, we have πj [P ] = πj [Q] for all j �= i, whereas the elements
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πi[Q] are immediate successors of Pi = πi[P ] in the tree T (X). There are three

possibilities:

Case 1: Pi belongs to TČ (X)−End(TČ (X)), and hence the immediate successors of Pi

are elements of TČ (X);

Case 2: Pi belongs to End(TČ (X)), and the immediate successors of Pi are elements of
�U1,Pi or

Case 3: Pi belongs to�Uk,Z for some k ∈ � and Z ∈ End(TČ (X)), and the immediate

successors are elements of �Uk+1,Z .

We consider these three cases separately. In Case 3, the elements of �Uk+1,Z

form a uniform cover (with respect to the fine uniformity of X) of Pi, and hence the

immediate successors of P form a uniform cover of P , and by the induction hypothesis
each of them has a λ-uniform neighbourhood V such that G <ω is a λ-uniform cover

of V . By Lemma 3.1, P itself has such a neighbourhood. Case 2 is similar. In
Case 1, exactly one of the immediate successors of Pi has the form topČ (Pi); let

Q0 = π−1i [topČ (Pi)] ∩ P be the corresponding immediate successor of P . By the
induction hypothesis, Q0 has a λ-uniform neighbourhood V0 such that G <ω is a λ-

uniform cover of V0. Then P − V0 has a closed λ-uniform neighbourhood W0 such
thatW0∩Q0 = ∅, and such that the binary cover {V0, W0} is a λ-uniform cover of P .

Indeed, there is a λ-uniform cover W of Xω such that St(P − V0, W ) ∩Q0 = ∅. We
can assume that W consists of the closures of basic open sets. Then each element W

of W � P that meets P −V0 satisfies πi[W ]∩ πi[Q0] = ∅, which implies that W is an
immediate successor of P . But then by the inductive hypothesis, each W ∈ W � P

withW∩(P−V0) �= ∅ has a λ-uniform neighbourhood VW such that G <ω is λ-uniform
cover of VW . It easily follows that P has a λ-uniform neighbourhood VP satisfying

the condition of our claim. (Indeed, by 3.1 the set V0 has a λ-uniform neighbourhood
V ′
0 such that G

<ω is a λ-uniform cover of V ′
0 . The setsW such thatW ∩(P −V0) �= ∅

together with V0 form a λ-uniform cover of P . As G <ω is λ-uniform over the sets
VW and V ′

0 , the set P has by a new application of 3.1 a λ-uniform neighbourhood

VP with the desired property.)

This completes the inductive step in the proof of our claim. Since T ′′ is well-

founded, it follows that the claim holds for the root of T ′′, which is Xω, and conse-
quently G <ω is a λ-uniform cover of Xω, as required. �

Corollary 3.3. Let (µnXn : n ∈ �) be a countable family of Čech-scattered
supercomplete spaces. Then

∏
n∈�

µnXn is supercomplete.
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�����. Indeed, for each n we have λµn = F (Xn). By 3.2,
∏

n∈�
FXn is super-

complete. Hence, λ
∏

n∈�
F (Xn) contains every open cover of the topological product

of the Xn. But then so does

λ
∏

n∈�
µn = λ

∏

∈�
λµn = λ

∏

n∈�
F (Xn),

which implies the result. �

Corollary 3.4. Let (Xn : n ∈ �) be a countable family of Čech-scattered para-
compact spaces. Then

∏
n∈�

Xn is paracompact.

Corollary 3.5. Let (Xn : n ∈ �) be a countable family of Čech-scattered Lindelöf
spaces. Then

∏
n∈�

Xn is a Lindelöf space.

�����. Here we have a non-trivial application of supercompleteness. Let c(X)
be the uniformity of X generated by all countable cozero-covers. Then for each Xi,

cXi is supercomplete, because Xi is Lindelöf. By Corollary 3.3 the product
∏
i∈�

cXi is

supercomplete. Thus, λ
∏
i∈�

cXi contains every open cover of the product. But
∏
i∈�

cXi

has a base consisting of countable covers, and so does its locally fine coreflection
λ

∏
i∈�

cXi. (The reader is advised to think in terms of well-founded trees; a countably

branching well-founded tree is countable.) It follows that every open cover of the

product space has a countable refinement, and hence a countable subcover, implying
that the product is Lindelöf. �

Remark 1. Theorem 3.2 also readily implies that the countable product of ul-
traparacompact Čech-scattered spaces is ultraparacompact. This corollary is proved
in the same way as 3.5, but the uniformity generated by countable cozero-covers is

replaced by the uniformity generated by clopen partitions.

Remark 2. One can easily show that supercomplete products are rectangular in
the sense of Pasynkov [25]. Hence, Theorem 3.2 yields the additional corollary that
finite products of Čech-scattered paracompacta are rectangular, and by [25] such

products satisfy the logarithmic inequality for the covering dimension.

Remark 3. Theorem 3.2 can be generalized to spaces which are countable unions
of closed paracompact Čech-scattered parts. This readily follows from our proof using

decomposition trees. For a space X =
⋃{Fn : n ∈ �}, where the sets Fn are closed

and K -scattered, the decomposition tree TK (X) is defined as the tree obtained by
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hanging the trees TK (Fn) below the root X . A cover V of a uniform space µX is

called σ-uniform if there is a countable collection (Fn : n ∈ �) of closed subspaces
of X such that X =

⋃{Fn : n ∈ �} and for each n, V � Fn is a uniform cover
of the subspace Fn. We note that the uniformity generated by all σ-uniform open

covers of µX is the metric-fine coreflection mµ (see [11], [9]). (Recall here that every
uniform cover has a σ-uniformly discrete refinement, hence so does every σ-uniform

cover.) The proof of 3.2 applies here, but the immediate successors of some elements
in the tree T ′′ are divided into countably many parts, corresponding to the sets Fn,

and one has to replace the product of the fine uniformities by m
( ∏

n∈�
F (Xn)

)
. The

conclusion is that the locally fine coreflection of m(F (X)ω) contains all the open
covers of Xω, which implies that every open cover of Xω is normal and thus that

Xω is paracompact. We also obtain the following generalization of 3.3.

Theorem 3.6. Let (µnXn : n ∈ �) be a countable family of supercomplete
spaces, each of which is a countable union of closed Čech-scattered subsets. Then

m
( ∏

n∈�
µnXn

)
is supercomplete.

Remark 4. Since uniformly continuous perfect pre-images of supercomplete
spaces are again supercomplete ([16]), one can ask whether the problem of count-

able products could be reduced to the metrizable case. Unfortunately, there are
Č -scattered paracompacta which are not perfect pre-images of metrizable spaces; for

example, we can take the 1-point Lindelöfization of an uncountable discrete space.
Indeed, it turns out that Č -scattered metrizable spaces are, in fact, Čech-complete.

We give here a sketch of proof. Let us proceed by transfinite induction. Let (X, �) be
a Č -scattered metric space with RankČ (X) = α and suppose that the claim is true

for all metrizable Č -scattered spaces of lesser rank. If topČ (X) is empty, then X has
an open cover by sets E such that RankČ (E) < α. Then by the inductive hypoth-

esis, X is locally Čech-complete and since X is paracompact, a result of Frolík [8]
implies that X is itself Čech-complete. On the other hand, if topČ (X) is non-empty,

then—since X is metrizable—topČ (X) is a Gδ subset of X , in fact, we can write
topČ (X) =

⋂{Gn : n ∈ �}, where Gn = {p ∈ X : �(p, E) < 1/n}. As topČ (X)

is locally Čech-complete and paracompact, it is by [8] Čech-complete, and therefore
has a complete (compatible) metric σ. By the Hausdorff extension theorem [12], we

extend σ to a compatible metric σ′ of X . For each n, Fn = X−Gn is a closed subset
with RankČ (Fn) < α and by the induction hypothesis has a complete metric σn. We

extend each σn to a compatible metric σn
′ of X . Define

σ(x, y) = σ′(x, y) +
∑

n∈�
2−n(1 ∧ σn

′(x, y))
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for all x, y ∈ X ; then it is not difficult to check that σ is a complete compatible

metric for X . Thus, X is completely metrizable or, equivalently, Čech-complete.
This finishes the inductive step. It is not difficult to see how to extend the above
argument to spacesX in which for every closed subspace A ⊂ X , a complete sequence

of open covers of A can be extended to a complete open family in X . Then an
inductive argument similar to the above one enables us to give a complete sequence

of covers for the whole space.
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