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STRONG TOPOLOGIES ON VECTOR-VALUED FUNCTION SPACES

Marian Nowak, Zielona Góra
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Abstract. Let (X, ‖ · ‖X) be a real Banach space and let E be an ideal of L0 over a σ-
finite measure space (Ω, Σ, µ). Let (X) be the space of all strongly Σ-measurable functions
f : Ω → X such that the scalar function f̃ , defined by f̃(ω) = ‖f(ω)‖X for ω ∈ Ω, belongs
to E. The paper deals with strong topologies on E(X). In particular, the strong topology
β(E(X), E(X)∼n ) (E(X)∼n = the order continuous dual of E(X)) is examined. We generalize
earlier results of [PC] and [FPS] concerning the strong topologies.

Keywords: vector valued function spaces, locally solid topologies, strong topologies,
Mackey topologies, absolute weak topologies
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Introduction and preliminaries

Vector-valued function spaces E(X) endowed with some natural topologies have
been examined by many authors (cf. [FPS], [FN], [G], [M], [PC], [R]). In the case
when E is provided with a locally convex-solid topology ξ one can topologize the
space E(X) as follows. Let {pα : α ∈ A } be a family of Riesz seminorms on E

that generates ξ. By putting pα(f) = pα(f̃) for f ∈ E(X) (α ∈ A ) we obtain
a family {pα : α ∈ A } of solid seminorms on E(X) that defines a locally convex-
solid topology ξ on E(X) (called the topology associated with ξ). In particular, one
can consider the topologies β(E, E′), τ(E, E′), |σ|(E, E′) associated with the strong
topology β(E, E′), the Mackey topology τ(E, E′) and the absolute weak topology
|σ|(E, E′) (E′ = the Köthe dual of E). These topologies have been examined by
N. Phuang-Các [PC] and M. Florencio, P. J. Paul, C. Sáez [FPC]. The topology
β(E, E′) is called the natural topology on E(X) (see [FPS]). In particular, in [FPS]
it is shown that if β(E, E′) = τ(E, E′) then the topological dual of (E(X), β(E, E′))
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is identifiable with E′(X∗) iff the topological dual X∗ of X has the Radon-Nikodym
Property (briefly RNP) with respect to µ.
Following the definition of the order dual in the theory of Riesz spaces one can

define the order dual E(X)∼ of E(X) as the space of all those linear functionals
F on E(X) for which sup{|F (h)| : h ∈ E(X), h̃ � f̃} < ∞ for each f ∈ E(X)
(see Section 1). In this paper we consider strong topologies β(E(X), I), where I

is an ideal of E(X)∼. We show that the topologies β(E(X), I) are locally solid.
In particular, we obtain that β(E(X), E(X)∼) coincides with the Mackey topology
τ(E(X), E(X)∼) and β(E, E∼) = β(E(X), E(X)∼) (see Theorem 3.3).
First of all we are interested in the topology β(E(X), E(X)∼n ), where E(X)∼n

stands for the order continuous dual of E(X) (see Section 1). Due to A.V. Bukhvalov
([B3], [B4]) we know that E(X)∼n is identifiable with the space E′(X∗, X) of X-weak
measurable functions and E′(X∗, X) = E′(X∗) iff X∗ has the RNP with respect
to µ. It turns out that the formal similarity between the dual systems 〈E, E′〉
and 〈E(X), E′(X∗, X)〉 is complete. In fact, we prove that the strong topology
β(E(X), E′(X∗, X)) coincides with the natural topology β(E, E′) (see Theorem 3.4).
Due to this identity we can examine the topology β(E(X), E′(X∗, X)) by making use
of the properties of the topology β(E, E′) (see Corollary 3.5). We generalize earlier
results of [PC], [FPS] concerning the strong topologies on E(X), where the dual pair
〈E(X), E′(X∗)〉 with X∗ satisfying the RNP is considered. In particular, we easily
obtain that if β(E, E′) = τ(E, E′) then the topological dual of E(X) endowed with
β(E(X), E′(X∗, X)) is identifiable with E′(X∗, X) (see Theorem 3.6.).
Finally we show that if (E, ‖ · ‖E) is a Banach function space with the norm

‖ · ‖E satisfying the σ-Fatou property, then the strong topology β(E(X), E′(X∗, X))
coincides with the topology of the norm ‖ · ‖E(X) on E(X) (see Theorem 3.8).

For the terminology concerning Riesz spaces we refer to [AB1], [AB2]. Given a
topological vector space (L, τ), by (L, τ)∗ and Bd(L, τ) we will denote its topological
dual and the collection of all τ -bounded subsets of L respectively.
Throughout the paper let (Ω,Σ, µ) be a complete σ-finite measure space and let

L0 denote the corresponding space of equivalence classes of all Σ-measurable real
valued functions.
Let E be an ideal of L0 with suppE = Ω. As usual, let E∼ stand for the order

dual of E. The Köthe dual E′ of E is defined by

E′ =

{
v ∈ L0 :

∫

Ω
|u(ω)v(ω)| dµ < ∞ for all u ∈ E

}
.

Since the measure space (Ω,Σ, µ) is assumed to be σ-finite, the order continuous dual
E∼

n coincides with the σ-order continuous dual E∼
c (see [KA, Chap. 10, §2]), and by

[KA, Theorem 6.1.1] we have E∼
n = {ϕv : v ∈ E′}, where ϕv(u) =

∫
Ω u(ω)v(ω) dµ

for all u ∈ E. It is known that E∼
n separates points of E iff suppE′ = Ω.
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Let (X, ‖ · ‖X) be a real Banach space, and let SX and BX denote the unit
sphere and the unit ball in X respectively. Let X∗ stand for the topological dual of
(X, ‖ · ‖X). By L0(X) we will denote the linear space of equivalence classes of all
strongly Σ-measurable functions f : Ω→ X . For f ∈ L0(X) let f̃(ω) = ‖f(ω)‖X for
ω ∈ Ω. Let

E(X) = {f ∈ L0(X) : f̃ ∈ E}

(see [B1], [CHM], [FN]).
Now we recall terminology concerning the solid structure of E(X) (see [FN]).
A subset H of E(X) is said to be solid whenever f̃1 � f̃2 with f1 ∈ E(X), f2 ∈ H

implies f1 ∈ H . A linear subspace B of E(X) is called an ideal of E(X) whenever
B is a solid subset of E(X).
A linear topology τ on E(X) is said to be locally solid if it has a local base at zero

consisting of solid sets. A linear topology τ on E(X) that is at the same time locally
solid and locally convex will be called a locally convex-solid topology on E(X).
A seminorm � on E(X) is said to be solid if �(f1) � �(f2) whenever f̃1 � f̃2.

1. Order dual and order continuous dual of
vector valued function spaces

We begin by recalling the terminology concerning the duality theory of vector
valued function spaces as set out in [N1]. For a linear functional F on E(X) let us
put

|F |(f) = sup{|F (h)| : h ∈ E(X), h̃ � f̃}.

The set
E(X)∼ = {F ∈ E(X)# : |F |(f) < ∞ for all f ∈ E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of
E(X)). For F1, F2 ∈ E(X)∼ we will write |F1| � |F2| whenever |F1|(f) � |F2|(f) for
all f ∈ E(X).
A subset M of E(X)∼ is said to be solid whenever |F1| � |F2| with F1 ∈

E(X)∼, F2 ∈ M implies F1 ∈ M . A linear subspace I of E(X)∼ is called an ideal of
E(X)∼ if I is a solid subset of E(X)∼.

Theorem 1.1 (cf. [N1, Theorem 3.2]). Let τ be a locally solid topology on E(X).
Then (E(X), τ)∗ is an ideal of E(X)∼.

For a subset M of E(X)∼ we will denote by S(M) its solid hull, i.e., the smallest
solid set in E(X)∼ containing M . Note that

S(M) = {F ∈ E(X)∼ : |F | � |G| for some G ∈ M}.
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We shall need the following lemma.

Lemma 1.2 (cf. [N1, Lemma 2.1]). Let M be a subset of E(X)∼. Then for
f ∈ E(X) we have

sup{|F |(f) : F ∈ M} = sup{|G(f)| : G ∈ S(M)}
= sup{|G(f)| : G ∈ conv(S(M))}.

A linear functional F on E(X) is said to be order continuous, whenever for a net

(fσ) in E(X), f̃σ
(o)−→ 0 in E implies F (fσ) → 0 (see [B3], [B4]). The set consisting

of all order continuous linear functionals on E(X) will be denoted by E(X)∼n and
called the order continuous dual of E(X) (see [N1, Definition 2.3]).
It is known that E(X)∼n is an ideal of E(X)

∼ (see [N1]).
To describe the space E(X)∼n we now recall the terminology concerning spaces of

X-weak measurable functions (see [B2], [B3], [B4]).
For a given function g : Ω→ X∗ and x ∈ X we denote by gx the real function on Ω

defined by gx(ω) = g(ω)(x) for ω ∈ Ω. A function g is said to be X-weak measurable
if the functions gx are measurable for each x ∈ X . We shall say that two X-weak
measurable functions g1, g2 are equivalent whenever g1(ω)(x) = g2(ω)(x) µ-a.e. for
each x ∈ X .
By L0(X∗, X) we will denote the linear space consisting of the equivalence classes

of all X-weak measurable functions g : Ω → X∗. In view of the super Dedekind
completeness of L0 the set {|gx| : x ∈ BX} is order bounded in L0 for each g ∈
L0(X∗, X). Thus we can define the so-called abstract norm ϑ : L0(X∗, X)→ L0 by

ϑ(g) = sup{|gx| : x ∈ BX} for g ∈ L0(X∗, X).

Then L0(X∗) ⊂ L0(X∗, X) and ϑ(g) = g̃ for g ∈ L0(X∗). For an ideal K of L0 let

K(X∗, X) = {g ∈ L0(X∗, X) : ϑ(g) ∈ K}.

A subset C of K(X∗, X) is said to be solid if ϑ(g1) � ϑ(g2) with g1 ∈ K(X∗, X)
and g2 ∈ C implies g1 ∈ C. A solid linear subspace of K(X∗, X) is called an ideal
of K(X∗, X) (see [N1, Definition 1.2]).
In particular, the space E′(X∗, X) is of importance. Due to A.V. Bukhvalov [B4,

Theorem 3.5], E′(X∗, X) = E′(X∗) iff X∗ has the RNP with respect to µ. It is
known that reflexive Banach spaces and separable dual Banach spaces have the RNP
(see [DU]).
The following important theorem describes order continuous linear functionals on

E(X) in terms of the space E′(X∗, X) (see [B3, Theorem 4.1]).

404



Theorem 1.3. Assume that suppE′ = Ω. Then for a linear functional F on
E(X) the following statements are equivalent:

(i) F is order continuous.

(ii) There exists a unique g ∈ E′(X∗, X) such that

F (f) = Fg(f) =
∫

Ω
〈f(ω), g(ω)〉dµ for all f ∈ E(X).

Moreover, for each g ∈ E′(X∗, X) we have

|Fg|(f) =
∫

Ω
f̃(ω)ϑ(g)(ω) dµ for all f ∈ E(X).

Since E(X)∼n is an ideal of E(X)
∼, it is clear that a subset I of E(X)∼n is an ideal

of E(X)∼ iff I is an ideal of E(X)∼n , i.e., |F1| � |F2| with F1 ∈ E(X)∼n , F2 ∈ I

implies F1 ∈ I.

The following theorem generalizes [PC, Proposition 6] and will be needed later.

Theorem 1.4. Let K be an ideal of E′ with suppK = Ω and assume that C is
a solid subset of K ′(X∗, X). Then for each f ∈ E(X) the following identities hold:

sup

{∣∣∣∣
∫

Ω
〈f(ω), g(ω)〉dµ

∣∣∣∣ : g ∈ C

}
= sup

{∫

Ω
|〈f(ω, g(ω)〉| dµ : g ∈ C

}

= sup

{∫

Ω
f̃(ω)ϑ(g)(ω) dµ : g ∈ C

}
.

�����. Observe that the set {Fg : g ∈ C} is a solid subset of E(X)∼. In fact, let
|F | � |Fg|, where F ∈ E(X)∼ and g ∈ C. Since Fg ∈ E(X)∼n and E(X)∼n is an ideal
of E(X)∼ we conclude that F ∈ E(X)∼n . Hence by Theorem 1.3, F = Fg′ for some
g′ ∈ E′(X∗, X), and |Fg′ | � |Fg|. By [N1, Corollary 2.4] we see that ϑ(g′) � ϑ(g), so
g′ ∈ C, because C is a solid subset of K(X∗, X). Thus S({Fg : g ∈ C}) = {Fg : g ∈
C}. Combining Lemma 1.2 and Theorem 1.3 we obtain our identities. �
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2. Absolute weak topologies

Throughout this section let I be an ideal of E(X)∼ that separates points of
E(X). We have the dual system 〈E(X), I〉 with the duality 〈f, F 〉 = F (f) for
f ∈ E(X), F ∈ I (see [N1]). For each f ∈ E(X) let us put

�f (F ) = |F |(f) for all F ∈ I.

Then �f is a solid seminorm on I, that is, �f (F1) � �f (F2) whenever |F1| � |F2|.
We define the absolute weak topology |σ|(I, E(X)) on I as the locally convex-solid
topology generated by the family {�f : f ∈ E(X)}.

Theorem 2.1. For a subset M of I the following statements are equivalent:
(i) M is |σ|(I, E(X))-bounded.
(ii) M is σ(I, E(X))-bounded.

�����. (i) ⇒ (ii) Obvious.
(ii) ⇒ (i) For 0 � e ∈ E let Ee = {u ∈ E : |u| � λe for some λ > 0}. Let

pe(u) = inf{λ > 0: |u| � λe} for u ∈ E. Then (Ee, pe) is a Banach space (see [V,
Theorem 7.4.2]) and Bpe(1) = {u ∈ E : pe(u) � 1} = [−e, e]. Let Ee(X) = {h ∈
L0(X) : h̃ ∈ Ee} and let pe(h) = pe(h̃). Then the space (Ee(X), pe) is a Banach space
(see [B1, Theorem 2]). It is easy to observe that Bpe

(1) = {h ∈ Ee(X) : pe(h) �
1} = {h ∈ Ee(X) : h̃ � e}.
Let F ∈ M and let e = ex0, where x0 ∈ SX . Then sup{|F (h)| : h ∈ E(X), h̃ �

e} < ∞, because |F (h)| � |F |(h) � |F |(e) < ∞ for each h ∈ E(X) with h̃ � e = ẽ.
This shows that the functional F |Ee(X) restricted to Ee(X) is bounded on B�e

(1).
Thus F |Ee(X) is pe-continuous on Ee(X), that is, F |Ee(X) ∈ (Ee(X), pe)

∗ = Ee(X)∗.
Since M is σ(I, E(X))-bounded, sup{|F (h)| : F ∈ M} < ∞ for each h ∈ E(X). It
follows that the set {F |Ee(X) : F ∈ M} is σ(Ee(X)∗, Ee(X))-bounded. Hence by the
uniform boundedness theorem (see [Wi, Theorem 3.3.6]) the set {F |Ee(X) : F ∈ M}
is bounded in Ee(X)∗, so there exists c > 0 such that sup{|F (h)| : F ∈ M, h ∈
Bpe
(1)} � c, i.e.,

sup{|F (h)| : F ∈ M, h ∈ Ee(X), h̃ � e}
= sup{|F (h)| : F ∈ M, h ∈ E(X), h̃ � ẽ} � c.

It follows that sup{|F |(e) : F ∈ M} � c.
For f ∈ E(X) let us put e = f̃ . Then ẽ = e = f̃ , so |F |(e) = |F |(f) and

sup{|F |(f) : F ∈ M} � c. This shows that M is |σ|(I, E(X))-bounded. �

Corollary 2.2. The solid hull S(M) of a σ(I, E(X))-bounded subset of I is also
σ(I, E(X))-bounded.
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�����. Assume that M is a σ(I, E(X))-bounded subset of I. By Theorem 2.1,
M is |σ|(I, E(X))-bounded. Hence also its solid hull S(M) is |σ|(I, E(X))-bounded.
Hence S(M) is σ(I, E(X))-bounded, as desired. �

3. Strong topologies

Let I be an ideal of E(X)∼ that separates points of E(X). For each M ∈
Bd(I, σ(I, E(X)) (= the collection of all σ(I, E(X))-bounded subsets of I) let

�M (f) = sup{|F (f)| : F ∈ M}.

The strong topology β(E(X), I) is the Hausdorff locally convex topology on E(X)
generated by the family {�M : M ∈ Bd(I, σ(I, E(X)))}.

Theorem 3.1. The strong topology β(E(X), I) is locally solid and is generated
by the family of solid seminorms

�M (f) = sup{|F |(f) : F ∈ M}

where M runs over the family BdS(I, σ(I, E(X))) of all σ(I, E(X))-bounded solid
subsets of I.

�����. Assume thatM ∈ Bd(I, σ(I, E(X))). Then by Corollary 2.2 its solid hull
S(M) is σ(I, E(X))-bounded and �M (f) � �S(M)(f) for all f ∈ E(X). Moreover,
in view of Lemma 1.2, �S(M) = sup{|G(f)| : G ∈ S(M)} = sup{|F |(f) : F ∈ M},
so �S(M) is a solid seminorm. This shows that to generate β(E(X), I) it is enough
to restrict ourselves to the family {�M : M ∈ BdS(I, σ(I, E(X)))}, where �M (f) =
sup{|F |(f) : F ∈ M}. �

To describe the mutual connection between strong topologies on E and E(X) we
briefly explain the general relationship between topological structures of E and E(X)
(see [FN]).
Let x ∈ SX . Given u ∈ E let us put u(ω) = u(ω)x for ω ∈ Ω. Then u ∈ L0(X)

and ‖u(ω)‖X = |u(ω)| for ω ∈ Ω, so u ∈ E(X). For a solid seminorm � on E(X) let
us set

�̃(u) = �(u) for all u ∈ E.

Clearly �̃ is well defined, because �(u) does not depend on x ∈ SX in virtue of the
solidness of �. It is easy to check that �̃ is a Riesz seminorm on E.
Assume that τ is a locally convex-solid topology on E(X). Then τ is generated by

a family {�α : α ∈ A } of solid seminorms defined on E(X) (see [FN, Theorem 2.2]).
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By τ̃ we will denote the locally convex-solid topology on E generated by the family
{�̃α : α ∈ A } of Riesz seminorms on E. Clearly τ̃ is a Hausdorff topology, whenever
τ is a Hausdorff topology.
We will need the following result.

Theorem 3.2 (cf. [FN]). Let ξ, ξ1, ξ2 be locally convex-solid topologies on E and
let τ , τ1, τ2 be locally convex-solid topologies on E(X). Then:

(i) ξ̃ = ξ and τ̃ = τ .
(ii) If ξ1 ⊂ ξ2, then ξ1 ⊂ ξ2.
(iii) If τ1 ⊂ τ2, then τ̃1 ⊂ τ̃2.

Now we are in position to describe the relationship between the strong topologies
β(E, E∼) and β(E(X), E(X)∼).

Theorem 3.3. The strong topology β(E(X), E(X)∼) coincides with the Mackey
topology τ(E(X), E(X)∼). Hence τ(E(X), E(X)∼) is locally solid. Moreover, the
following identities hold:

β(E, E∼) = β(E(X), E(X)∼) and �β(E(X), E(X)∼) = β(E, E∼).

�����. Since β(E(X), E(X)∼) is a locally solid topology (see Theorem 3.1), in
view of Theorem 1.1 we have (E(X), β(E(X), E(X)∼)∗) ⊂ E(X)∼. It follows that
β(E(X), E(X)∼) ⊂ τ(E(X), E(X)∼), so β(E(X), E(X)∼) = τ(E(X), E(X)∼), as
desired.
In view of Theorem 1.1, Iτ =

(
E(X), τ(E, E∼)

)∗ ⊂ E(X)∼, so by the Mackey-
Arens theorem τ(E, E∼) ⊂ τ(E(X), Iτ ). Moreover, σ(E(X), Iτ ) ⊂ σ(E(X), E(X)∼),
so τ(E(X), Iτ ) ⊂ τ(E(X), E(X)∼) (see [Ro]). Thus τ(E, E∼) ⊂ τ(E(X), E(X)∼).
Hence by Theorem 3.2 we get

τ(E, E∼) = �τ(E, E∼) ⊂ �τ(E(X), E(X)∼).

Moreover, since (E, �τ(E(X), E(X)∼)∗ ⊂ E∼ (see [AB1, Theorem 5.7]), we get
�τ(E(X), E(X)∼) ⊂ τ(E, E∼).

Hence, by applying Theorem 3.2 we conclude that τ(E, E∼) ⊂ τ(E(X), E(X)∼)
and τ(E(X), E(X)∼) ⊂ τ(E, E∼), so τ(E, E∼) = τ(E(X), E(X)∼). In view of

Theorem 3.2 it follows that τ(E, E∼) = �τ(E(X), E(X)∼). Since β(E(X), E(X)∼) =
τ(E(X), E(X)∼) and β(E, E∼) = τ(E, E∼) (see [F, 81 I(g)]) the proof is complete.

�
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Now we examine the strong topology β(E(X), I), where I is an ideal of E(X)∼n .
Recall that E(X)∼n = {Fg : g ∈ E′(X∗, X)}, where for each g ∈ E′(X∗, X)

Fg(f) =
∫

Ω
〈f(ω), g(ω)〉dµ and |Fg|(f) =

∫

Ω
f̃(ω)ϑ(g)(ω) dµ

for all f ∈ E(X) (see Theorem 1.3).
Given an ideal of E(X)∼n let AI = {g ∈ E′(X∗, X) : Fg ∈ I}. Then AI is an ideal

of E′(X∗, X) and AI = ÃI(X∗, X), where

ÃI = {v ∈ E′ : |v| � ϑ(g) for some g ∈ AI}

is an ideal of E′ (see [N1, Theorem 2.6, Theorem 1.2]).
Conversely, if K is an ideal of E′ then K(X∗, X) is an ideal of E′(X∗, X) and the

set IK = {Fg : g ∈ K(X∗, X)} is an ideal of E(X)∼n .
Thus instead of the topologies β(E(X), I) we can consider topologies β(E(X),

K(X∗, X)), where K is an ideal of E′.
For each C ∈ BdS(K(X∗, X), σ(K(X∗, X), E(X))) (= the collection of all

σ(K(X∗, X), E(X))-bounded solid subsets of K(X∗, X)) let us put

�C(f) = sup{|Fg(f)| : g ∈ C}.

Note that MC = {Fg : g ∈ C} ∈ BdS(IK , σ(IK , E(X))) and by Lemma 1.2 we get

�C(f) = sup{|Fg(f)| : Fg ∈ MC}

= sup{|Fg|(f) : Fg ∈ MC} = sup
{∫

Ω
f̃(ω)ϑ(g)(ω) dµ : g ∈ C

}
.

Thus the strong topology β(E(X), K(X∗, X)) (= β(E(X), IK)) is generated by the
family {�C : C ∈ BdS(K(X∗, X), σ(K(X∗, X), E(X)))}, where

�C(f) = sup

{∫

Ω
f̃(ω)ϑ(g)(ω) dµ : g ∈ C

}
for all f ∈ E(X).

Now let K be an ideal of E′ with suppK = Ω. Let β(E, K) and |σ|(E, K) stand
for the strong topology and the absolute weak topology on E with respect to the
dual system 〈E, K〉. Since Bd(K, σ(K, E)) = Bd(K, |σ|(K, E)) (see [AB1, Theorem
19.15]), arguing as in the proof of Theorem 3.1 we obtain that the strong topology
β(E, K) is generated by the family {pD : D ∈ BdS(K, σ(K, E))} of Riesz seminorms,
where BdS(K, σ(K, E)) denotes the collection of all σ(K, E)-bounded solid subsets
of K and

pD(u) = sup

{∫

Ω
|u(ω)v(ω)| dµ : v ∈ D

}
for all u ∈ E.
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Now we are ready to state our main result that shows that the formal similarity
between the dual systems 〈E, E′〉 and 〈E(X), E′(X∗, X)〉 is complete.

Theorem 3.4. Let K be an ideal of E′ with suppK = Ω. Then the following
identities hold:

β(E, K) = β(E(X), K(X∗, X)) and �β(E(X), K(X∗, X)) = β(E, K).

In particular, we get

β(E, E′) = β(E(X), E′(X∗, X)) and �β(E(X), E′(X∗, X)) = β(E, E′).

�����. To show that β(E, K) ⊂ β(E(X), K(X∗, X)) assume that D ∈
BdS(K, σ(K, E)). One can easily check that the set CD = {g ∈ K(X∗, X) : ϑ(g) ∈
D} is a solid subset of K(X∗, X). Moreover, by Theorem 1.4, for each f ∈ E(X) we
have

sup

{∣∣∣∣
∫

Ω
〈f(ω), g(ω)〉dµ

∣∣∣∣ : g ∈ CD

}
= sup

{∫

Ω
f̃(ω)ϑ(g)(ω) dµ : g ∈ CD

}

= sup

{∫

Ω
f̃(ω)|v(ω)| dµ : v ∈ D

}
= pD(f̃) = pD(f).

It follows that CD ∈ BdS(K(X∗, X), σ(K(X∗, X), E(X))) and �CD(f) = pD(f) for
each f ∈ E(X). Hence β(E, K) ⊂ β(E(X), K(X∗, X)).

In turn, to see that �β(E(X), K(X∗, X)) ⊂ β(E, K), assume that

C ∈ BdS(K(X
∗, X), σ(K(X∗, X), E(X))).

Let DC = {v ∈ K : |v| � ϑ(g) for some g ∈ C}. To prove that DC is a solid subset
of K, assume that |v1| � |v2|, where v1 ∈ K and v2 ∈ DC . Then |v1| � |v2| � ϑ(g)
for some g ∈ C. Hence v1 ∈ DC . By Theorem 1.4, for each u ∈ E we have

sup

{∣∣∣∣
∫

Ω
u(ω)v(ω) dµ

∣∣∣∣ : v ∈ DC

}
= sup

{∫

Ω
|u(ω)v(ω)| dµ : v ∈ DC

}

= sup

{∫

Ω
|u(ω)|ϑ(g)(ω) dµ : g ∈ C

}
= sup

{∣∣∣∣
∫

Ω
〈u(ω), g(ω)〉dµ

∣∣∣∣ : g ∈ C

}

= �C(u) = �̃C(u).

It follows that DC ∈ BdS(K, σ(K, E)) and pDC (u) = �̃C(u) for each u ∈ E. Hence

β(E, K) ⊃ �β(E(X), K(X∗, X)), as desired. Since β(E, K) ⊂ β(E(X), K(X∗, X))

and �β(E(X), K(X∗, X)) ⊂ β(E, K), by Theorem 3.2 we get

β(E, K) = �β(E, K) ⊂ �β(E(X), K(X∗, X)) ⊂ β(E, K)
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and

β(E(X), K(X∗, X)) = �β(E(X), K(X∗, X)) ⊂ β(E, K)

⊂ β(E(X), K(X∗, X)).

Thus the proof is complete. �

As a consequence of Theorem 3.4 we obtain the following result.

Corollary 3.5. Let E be a perfect function space (i.e., E′′ = E). Then the space
(E(X), β(E(X), E(X)∼n )) is complete.

�����. In view of [F, 81 I(d)] the space (E, β(E, E′)) is complete and satisfies the
Fatou property, so by [AB1, Theorem 11.4] for D ∈ BdS(E′, σ(E′, E)) the seminorms
pD have the Fatou property (i.e., 0 � uα ↑ u in E implies pD(uα) ↑ pD(u)). Hence
by [B1, Theorem 3] the space (E(X), β(E, E′)) is complete. In view of Theorem 3.4
the space (E(X), β(E(X), E(X)∼n )) is complete as well. �

Remark. The above result extends [PC, Corollary of Proposition 10] where X∗

is assumed to be separable (so X∗ satisfies the RNP).

Now we examine the properties of β(E(X), E(X)∼n )) in the case when β(E, E′)
coincides with the Mackey topology τ(E, E′). Since the space (E∼

n , σ(E∼
n , E)) is

sequentially complete (see [KA, Corollary 10.3.1]), in view of [W, Proposition 4.15]
the identity τ(E, E′) = β(E, E′) holds whenever the space (E′, β(E′, E)) is separable
(cf. [We], [K, 30.7(1)]).

Theorem 3.6. Assume that τ(E, E′) = β(E, E′). Then the following statements
hold:

(i) β(E(X), E(X)∼n ) is a Lebesgue topology (i.e., f̃n
(o)−→ 0 in E imply fn → 0 for

β(E(X), E(X)∼n )).
(ii) (E(X), β(E(X), E(X)∼n ))

∗ = E(X)∼n .
(iii) β(E(X), E(X)∼n ) coincides with the Mackey topology τ(E(X), E(X)∼n ), so the

space (E(X), τ(E(X), E(X)∼n )) is barreled and τ(E(X), E(X)∼n ) is locally solid.
(iv) Every σ(E(X)∼n , E(X))-compact absolutely convex subset of E(X)∼n is con-

tained in a solid σ(E(X)∼n , E(X))-compact absolutely convex subset of E(X)∼n .

�����. (i) Assume that (fn) is a sequence in E(X) with f̃n
(o)−→ 0 in E. Then

f̃n → 0 for β(E, E′) because β(E, E′) = τ(E, E′) = τ(E, E∼
n ) and τ(E, E∼

n ) is a
Lebesgue topology (see [MR, Corollary 2.4], [AB1, Theorem 9.1]). Hence pD(f̃n)→ 0
for each D ∈ BdS(E′, σ(E′, E)). Since pD(f̃) = pD(fn) for n ∈ � and β(E, E′) =
β(E(X), E(X)∼n ) (see Theorem 3.4) we conclude that fn → 0 for β(E(X), E(X)∼n ),
as desired.
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(ii) From (i) it easily follows that (E(X), β(E(X), E(X)∼n ))
∗ ⊂ E(X)∼n . Since

τ(E(X), E(X)∼n ) ⊂ β(E(X), E(X)∼n ), we obtain that (E(X), β(E(X), E(X)
∼
n )

∗ ⊃
E(X)∼n .
(iii) In view of the Mackey-Arens theorem (ii) implies that β(E(X), E(X)∼n ) ⊂

τ(E(X), E(X)∼n ).
(iv) Let M be a σ(E(X)∼n , E(X))-compact absolutely convex subset of E(X)∼n .

Since the Mackey topology τ(E(X), E(X)∼n ) is solid there exists a solid neighbour-
hood of 0 for τ(E(X), E(X)∼n ), say U , such that U ⊂ C0. Hence C = C00 ⊂
U0, where U0 is a σ(E(X)∼n , E(X))-compact absolutely convex and solid subset of
E(X)∼n , because polars of solid sets are solid (see [N1, Theorem 3.3]). �

Hence as a consequence of Theorem 3.6 we get the following result.

Corollary 3.7. Assume that τ(E, E′) = β(E, E′). Then

(E(X), β(E(X), E(X)∼n ))
∗ = {Fg : g ∈ E′(X∗)}

iff X∗ has the RNP with respect to µ.

Remark. In the case when Ω is a locally compact Hausdorff topological space
and µ is a positive Radon measure on Ω the result of Corollary 3.7 was obtained by
M. Florencio, P. J. Paúl, C. Sáez [FPS, Theorem 1].

Now we will deal with strong topologies on Köthe-Bochner spaces. Let (E, ‖ · ‖E)
be a Banach function space. The space E(X) provided with the solid norm ‖ · ‖E(X)

defined by ‖f‖E(X) = ‖f̃‖E is usually called a Köthe-Bochner space (see [CHM]).
The most important examples of Köthe-Bochner spaces are the Lebesgue-Bochner
space Lp(X) (1 � p � ∞) and their generalization, the Orlicz-Bochner spaces Lϕ(X).
We will denote by TE and TE(X) the topologies of the norms ‖ · ‖E and ‖ · ‖E(X)

respectively. It is known that (see [N1, Theorem 3.5]):

E(X)∗ = (E(X), TE(X))
∗ = E(X)∼.

Assume that ‖ · ‖E satisfies the σ-Fatou property (i.e., 0 � un ↑ u in E implies
‖un‖E ↑ ‖u‖E). Then

(3.1) ‖u‖E = sup

{∣∣∣∣
∫

Ω
u(ω)v(ω) dµ

∣∣∣∣ : v ∈ E′, ‖v‖E′ � 1
}

where ‖ · ‖E′ is the associated norm on the Köthe dual E′ of E, i.e.,

‖v‖E′ = sup

{∣∣∣∣
∫

Ω
u(ω)v(ω) dµ

∣∣∣∣ : u ∈ E, ‖u‖E � 1
}
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(see [KA, Theorem 6.1.6]). Since TE is the finest locally solid topology on E (see
[AB1, Theorem 16.7]), we obtain that β(E, E′) ⊂ TE . Moreover, making use of the
identity (3.1) we can easily obtain that TE ⊂ β(E, E′). Thus (cf. [F, 81 I(e)])

(3.2) β(E, E′) = TE .

As an application of (3.2) and Theorem 3.4 we have

Theorem 3.8. Assume that (E, ‖ · ‖E) is a Banach function space with ‖ · ‖E

satisfying the σ-Fatou property. Then β(E(X), E(X)∼n ) = TE(X).

Corollary 3.9. Assume that (E, ‖ · ‖E) is a Banach function space with ‖ · ‖E

satisfying the σ-Fatou property. Then the following statements are equivalent:
(i) The space (E(X), τ(E(X), E(X)∼n )) is barreled.
(ii) τ(E(X), E(X)∼n ) = TE(X).
(iii) E(X)∼n = E(X)∗.
(iv) ‖ · ‖E is order continuous.
(v) τ(E, E′) = TE .
(vi) τ(E, E′) = β(E, E′).

�����. (i) ⇒ (ii) Assume that the space (E(X), τ(E(X), E(X)∼n )) is bar-
reled, i.e., τ(E(X), E(X)∼n ) = β(E(X), E(X)∼n ). By Theorem 3.8 we conclude that
τ(E(X), E(X)∼n ) = TE(X).
(ii) ⇒ (iii) Obvious.
(iii) ⇒ (iv) See ([N2, Corollary 2.5]).
(iv) ⇒ (v) Assume that ‖ · ‖E is order continuous. Then E∼

n = (E, ‖ · ‖E)∗ = E∗

(see [KA, Corollary 6.1.1]), so τ(E, E′) = τ(E, E∼
n ) = τ(E, E∗) = TE .

(v) ⇒ (vi) It follows from (3.2).
(vi) ⇒ (i) See Theorem 3.6. �
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